Chapter 3 Inner Product Spaces. Hilbert Spaces

3.1 Inner Product Spaces. Hilbert Spaces

3.1-2 Definition. An inner product space is a vector space X with an inner product defined on X. A Hilbert space is a complete inner product space. An inner product on X is a mapping of X × X into the scalar field k of X such that for all x, y and z in X and any scalar α we have,

(Ip1) \(< x + y, z > = < x, z > + < y, z >.\)

(Ip2) \(< αx, y > = α < x, y >.\)

(Ip3) \(< x, y > = \overline{< y, x >}, \) the complex conjugate of \(< y, x >.\)

(Ip4) \(< x, x > ≥ 0, \) and \(< x, x > = 0 \) if and only if \(x = 0.\)

Notes. (1) An inner product on X defines a norm on X given by \(||x|| = \sqrt{< x, x >}\) and a metric on X given by \(d(x, y) = || x − y || = \sqrt{< x − y, x − y >}.\)

(2) The inner product spaces are normed spaces, Hilbert spaces are Banach spaces.

(3) For all x, y and z in an inner product space and any scalar α,

a) \(< αx + y, z > = α < x, z > + < y, z >.\)

b) \(< x, αy > = \overline{α} < x, y >.\)

c) \(< x, αy + z > = \overline{α} < x, y > + < x, z >.\)

Then the inner product is sesquilinear (linear in the first factor and conjugate linear in the second).

4) Parallelogram equality. If X is an inner product space, then for all x, y \(\in X, \) \(|| x + y ||^2 + || x − y ||^2 = 2(|| x ||^2 + || y ||^2).\) (How?) (From 4) we have: if parallelogram equality is not satisfied in a normed space X, then X is not an inner product space.)

3.1-3 Definition. An element x in an inner product space X is said to be orthogonal to y \(\in X\) if \(< x, y > = 0\) an we write \(x ⊥ y.\) If A, B are subsets of X, then \(x ⊥ A\) if \(x ⊥ a\) for all \(a ∈ A,\) and \(A ⊥ B\) if \(a ⊥ b\) for all \(a ∈ A\) and all \(b ∈ B.\)

Examples.

3.1-4 Euclidean space \(\mathbb{R}^n\) is a Hilbert spaces with inner product defined by \(< x, y > = \sum_{i=1}^{n} \xi_i \gamma_i.\) This inner product induces the norm \(|| x || = (\sum_{i=1}^{n} \xi_i^2)^{\frac{1}{2}}\) and the metric \(d(x, y) = (\sum_{i=1}^{n} (\xi_i − \gamma_i)^2)^{\frac{1}{2}}, \) where \(x = (\xi_1, \xi_2, \ldots, \xi_n)\) and \(y = (\gamma_1, \gamma_2, \ldots, \gamma_n).\)
3.1-5 \textbf{Unitary space C^n} is a Hilbert spaces with inner product defined by \\
\[< x, y > = \sum_{i=1}^{n} \xi_i \overline{\gamma_i}. \]
This inner product induces the norm $\| x \| = \left(\sum_{i=1}^{n} |\xi_i|^2 \right)^{\frac{1}{2}}$ \\
and the metric $d(x, y) = \left(\sum_{i=1}^{n} |\xi_i - \gamma_i|^2 \right)^{\frac{1}{2}}$, where $x = (\xi_1, \xi_2, \ldots, \xi_n)$
and $y = (\gamma_1, \gamma_2, \ldots, \gamma_n)$.

3.1-6 \textbf{Space $L^2[a, b]$}. The completion of the space of all continuous real-valued functions on $[a, b]$ with norm defined by $\| x \| = \left(\int_{a}^{b} x^2(t) dt \right)^{\frac{1}{2}}$ and the inner product $< x, y > = \int_{a}^{b} x(t) y(t) dt$.

\textbf{Note.} The function $x(t)$ can be extended to be complex valued on $[a, b]$ and the corresponding inner product is $< x, y > = \int_{a}^{b} x(t) \overline{y(t)} \, dt$ and the norm is $\| x \| = \left(\int_{a}^{b} |x(t)|^2 \, dt \right)^{\frac{1}{2}}$. Then $L^2[a, b]$ becomes as the completion of the space of all continuous complex-valued functions on $[a, b]$ corresponding to this norm. In each case real or complex, $L^2[a, b]$ is a Hilbert space.

3.1-7 \textbf{Hilbert sequence space ℓ^2}. This space is a Hilbert spaces with inner product defined by $< x, y > = \sum_{i=1}^{\infty} \xi_i \overline{\gamma_i}$. This inner product induces the norm $\| x \| = \left(\sum_{i=1}^{\infty} |\xi_i|^2 \right)^{\frac{1}{2}}$, where $x = (\xi_i)$ and $y = (\gamma_i)$.

3.1-8 \textbf{Space ℓ^p}. This space with $p \neq 2$ is not an inner product space, hence is not a Hilbert spaces.
\textbf{Proof.} Consider $x = (1, 1, 0, 0, 0, \ldots)$ and $y = (1, -1, 0, 0, 0, \ldots)$.
Then $x, y \in \ell^p$ and $\| x + y \|^2 + \| x - y \|^2 = \| (2, 0, 0, 0, 0, \ldots)\|^2 + \| (0, 2, 0, 0, 0, \ldots)\|^2 = 8$. But $2(\| x \|^2 + \| y \|^2) = 2(\| (1, 1, 0, 0, 0, 0, \ldots)\|^2 + \| (1, -1, 0, 0, 0, \ldots)\|^2) = 4(2^\frac{2p}{p}) = 4(2^2) \neq 8$ when $p \neq 2$. Therefore, $\| x + y \|^2 + \| x - y \|^2 \neq 2(\| x \|^2 + \| y \|^2)$.
Hence by note 4) above, the space ℓ^p with $p \neq 2$ is not an inner product space, hence is not a Hilbert spaces.
3.1-9 **Space C[a, b]**. This space is not an inner product space, hence is not a Hilbert spaces.

Proof. Consider \(x(t) = 1 \) and \(y(t) = \frac{t-a}{b-a} \) on the closed interval \(J = [a, b] \). Then \(x, y \in C[a, b] \) and \(\| x \| = 1 \), \(\| y \| = \max_{t \in J} \left| \frac{t-a}{b-a} \right| = 1 \), \(\| x + y \| = \max_{t \in J} \left| 1 + \frac{t-a}{b-a} \right| = 2 \), and \(\| x - y \| = \max_{t \in J} \left| 1 - \frac{t-a}{b-a} \right| = \max_{t \in J} \left| \frac{b-t}{b-a} \right| = 1 \).

Hence \(2(\| x \|^2 + \| y \|^2) = 4 \), but \(\| x + y \|^2 + \| x - y \|^2 = 5 \). Then, \(\| x + y \|^2 + \| x - y \|^2 \neq 2(\| x \|^2 + \| y \|^2) \). Hence by note 4) above, the space \(C[a, b] \) is not an inner product space, hence is not a Hilbert spaces.

3.1-10 **Remarks.** (1) For any \(x, y \) in a real inner product space,
\[< x, y > = \frac{1}{4} (\| x + y \|^2 - \| x - y \|^2). \]
(2) For any \(x, y \) in a complex inner product space,
a) \(\text{Re} < x, y > = \frac{1}{4} (\| x + y \|^2 - \| x - y \|^2) \).
a) \(\text{Im} < x, y > = \frac{1}{4} (\| x + iy \|^2 - \| x - iy \|^2) \).

Proof. Left to the reader.

\[H. W. 1-9, 11. H.W.* 5, 6, 8. \]
3.2 Further Properties of Inner Product Spaces.

3.2-1 Lemma (Schwarz inequality, triangle inequality). If \(x \) and \(y \) are elements in an inner product space, then

a) \(| < x, y > | \leq \| x \| \| y \| \) (Schwarz inequality)

where the equality sign holds if and only if \(\{ x, y \} \) is a linearly dependent set.

b) \(\| x + y \| \leq \| x \| + \| y \| \) (Triangle inequality)

where the equality sign holds if and only if \(y = 0 \) or \(x = cy \) for some \(c \geq 0 \).

Proof. a) If \(y = 0 \), then \(< x, y > = 0 \) and the result is trivial. Let \(y \neq 0 \) and \(\alpha \) be a scalar, we have \(0 \leq \| x - \alpha y \|^2 = < x - \alpha y, x - \alpha y > = < x, x > - \alpha < x, y > - \alpha < y, x > + \alpha^2 < y, y > \)

\[\frac{|< x, y >|^2}{\| y \|^2} \]

we have, \(0 \leq < x, x > - \frac{< y, x >}{< y, y >} < x, y > = \| x \|^2 - < y, y > \)

Hence \(|< x, y >|^2 \leq \| x \|^2 \| y \|^2 \), and then the result follows.

If \(\{ x, y \} \) is linearly dependent, then there is a scalar \(\alpha \) such that \(x = \alpha y \) and \(|< x, y >| = |< \alpha y, y >| = |\alpha| \| y \|^2 = \| \alpha y \| \| y \| = \| x \| \| y \| \).

Conversely, if equality holds, then by (1) either \(y = 0 \) or \(x - \alpha y = 0 \).

Hence \(\{ x, y \} \) is linearly dependent.

b) By using Schwarz inequality we have, \(\| x + y \|^2 = < x + y, x + y > = \| x \|^2 + < x, y > + < y, x > + \| y \|^2 \leq \| x \|^2 + |< x, y >| + |< y, x >| + \| y \|^2 = (\| x \| + \| y \|)^2 \). Hence \(\| x + y \| \leq \| x \| + \| y \| \).

If equality holds, then \(< x, y > + < y, x > = 2\| x \| \| y \| \). However, \(< x, y > + < y, x > = 2 \text{Re}< x, y > \). Then \(\text{Re}< x, y > = \| x \| \| y \| \geq |< x, y >| \). Since the real part can’t exceed the modulus, then \(\text{Re}< x, y > = \| x \| \| y \| \geq |< x, y >| \).

Conversely, if \(y = 0 \) or \(x = cy \), then it is an easy calculation for getting \(\| x + y \| = \| x \| + \| y \| \).

3.2-2 Lemma (Continuity of inner product). If in an inner product space, \(x_n \rightarrow x \) and \(y_n \rightarrow y \) then \(< x_n, y_n > \rightarrow < x, y > \).

Proof. Left to the reader.

3.3 Orthogonal Complements and Direct Sums

Remark 1. A subset M of a vector space X is said to be convex if for all \(x, y \in M \) and all \(\alpha \in [0, 1) \), \(\alpha x + (1-\alpha)y \in M \). Hence, every subspace of X is convex and the intersection of convex sets is convex.

3.3-1 **Theorem.** Let X be an inner product space and M a non empty convex subset which is complete. Then for every \(x \in X \) there exists a unique \(y \in M \) such that \(\delta = \inf_{y \in M} || x - y || = || x - y ||. \)

Proof.

a) **Existence.** Since \(\delta = \inf_{y \in M} || x - y || \), then there is a sequence \((y_n) \) in M such that \(\delta_n \to \delta \), where \(\delta_n = || x - y_n || \). We show that \((y_n) \) is Cauchy. Let \(y_n - x = v_n \). Then \(\delta_n = || v_n || \) and \(|| v_n + v_m || = || y_n + y_m - 2x || = 2 || \frac{1}{2} (y_n + y_m) - x || \geq 2 \delta \), where \(\frac{1}{2} (y_n + y_m) \in M \) because M is convex. Furthermore, \(y_n - y_m = v_n - v_m. \) By using parallelogram equality we have \(|| y_n - y_m ||^2 = || v_n - v_m ||^2 = -|| v_n + v_m ||^2 + 2(|| v_n ||^2 + || v_m ||^2) \leq - (2 \delta)^2 + 2 (\delta_n^2 + \delta_m^2) \). As \(n, m \to \infty \), \(|| y_n - y_m ||^2 \to 0 \). Hence for every \(\epsilon > 0 \), there is \(k \) sufficiently large such that \(|| y_n - y_m || < \epsilon \) for all \(n, m > k \). Hence \((y_n) \) is a Cauchy sequence in M. But M is complete, then \((y_n) \) converges, say \(y_n \to y \in M \). Then \(|| x - y || \geq \delta \). However, \(|| x - y || \leq || x - y_n || + || y_n - y || = \delta_n + || y_n - y || \to \delta. \) Then \(|| x - y || \leq \delta. \) Therefore, \(|| x - y || = \delta \).

b) **Uniqueness.** Suppose that there are \(y, y_0 \in M \) with \(|| x - y || = \delta \) and \(|| x - y_0 || = \delta \). By parallelogram equality, \(|| y - y_0 ||^2 = || (y - x) - (y_0 - x) ||^2 + 2 || y_0 - x ||^2 - || (y - x) + (y_0 - x) ||^2 = 2 \delta^2 + 2 \delta^2 - 4 || \frac{1}{2} (y + y_0) - x ||^2 \)

\[\text{(1)}\]

Since M is convex, then \(\frac{1}{2} (y + y_0) \in M \) which implies that \(|| \frac{1}{2} (y + y_0) - x || \geq \delta \). By this and \((1) \), \(|| y - y_0 ||^2 \leq 2 \delta^2 + 2 \delta^2 - 4 \delta^2 = 0. \) Hence \(|| y - y_0 || = 0 \), that is \(y = y_0 \). This proves the uniqueness.

3.3-2 **Lemma.** In Theorem 3.3-1, let M be a complete subspace Y and \(x \in X \) fixed. Then \(z = x - y \) is orthogonal to Y.

Proof. Suppose that \(z = x - y \) is not orthogonal to Y. Then there is \(y_1 \in Y \) such that \(< z, y_1 > = \beta \neq 0 \). Clearly \(y_1 \neq 0 \), otherwise \(< z, y_1 > = 0 \).

Furthermore, for any scalar \(\alpha \), \(|| z - \alpha y_1 ||^2 = < z, z > - \alpha < z, y_1 > - \alpha [< y_1, z > - \bar{\alpha} < y_1, y_1 >] = < z, z > - \alpha \beta - \alpha [\bar{\beta} - \bar{\alpha} < y_1, y_1 >] \)

Choose \(\bar{\alpha} = \frac{\beta}{< y_1, y_1 >} \) to get \(|| z - \alpha y_1 ||^2 = || z ||^2 - \frac{|| \beta ||^2}{|| y_1 ||^2} \). However, \(|| z || = || x - y || = \delta \) and \(\beta \neq 0 \), then \(|| z - \alpha y_1 ||^2 < || z ||^2 = \delta^2 \) \[\text{.........(2)}\]

Since Y is a subspace, then \((y - \alpha y_1) \in Y \) and so \(|| z - \alpha y_1 || = || x - (y - \alpha y_1) || \geq \delta. \) This is a contradiction with \((2) \). Therefore, \(z = x - y \) is orthogonal to Y.
3.3-3 Definition. A vector space \(X \) is said to be the direct sum of two subspaces \(Y \) and \(Z \) of \(X \), written \(X = Y \oplus Z \), if each \(x \in X \) has a unique representation \(x = y + z \), \(y \in Y \) and \(z \in Z \). Then \(Z \) is called the algebraic complement of \(Y \) in \(X \).

3.3-4 Theorem (Projection Theorem). Let \(Y \) be any closed subspace of a Hilbert space \(H \). Then \(H = Y \oplus Z \), where \(Z = Y^\perp = \{ z \in H : z \perp Y \} \).

Proof. Since \(Y \) is a closed subspace of a Hilbert space \(H \), then \(Y \) is complete. Since \(Y \) is convex then Theorem 3.3-1 and lemma 3.3-2 imply that for any \(x \in X \) there is \(y \in Y \) such that \(z = x - y \perp Y \). Then \(x = y + z \), \(y \in Y \) and \(z \in Y^\perp = Z \) …………………………………………………..(2)

Suppose that there are \(y_1, y_2 \in Y \) and \(z_1, z_2 \in Z \) with \(x = y_1 + z_1 = y_2 + z_2 \). Then \(y_1 - y_2 = z_2 - z_1 \). However, \(y_1 - y_2 \in Y \) and \(z_2 - z_1 \in Z \). Then \(y_1 - y_2 \in Y \cap Y^\perp = \{0\} \). Hence \(y_1 = y_2 \) and \(z_2 = z_1 \). This proves the uniqueness.

Remark 2. From (2) above we can define a mapping (called the orthogonal projection of \(H \) onto \(Y \)) \(P : H \to Y \) defined by \(P_x = y \), where \(x = y + z \), \(y \in Y \) and \(z \in Z \). This mapping has the following properties:

(1) \(P \) is linear and bounded.
(2) \(P \) maps \(H \) onto \(Y \).
(3) \(P(Y) = Y \).
(4) \(P(Y^\perp) = \{0\} \).
(5) \(P^2 = P \) and the restriction of \(P \) on \(Y \) is the identity operator on \(Y \).

Proof. Left to the reader.

3.3-5 Lemma. The orthogonal complement \(Y^\perp \) of a closed subspace \(Y \) of a Hilbert space \(H \) is the null space \(N(P) \) of the orthogonal projection \(P \) of \(H \) onto \(Y \).

Proof. Left to the reader.

Remark 3. If \(M \) is a nonempty subset of an inner product space \(X \), then \(M^\perp \) is a closed vector subspace of \(X \) and \(M \) is a subset of \(M^\perp \perp \).

Proof. Left to the reader.

3.3-6 Lemma. If \(Y \) is a closed subspace of a Hilbert space \(H \), then \(Y = Y^\perp \perp \).

Proof. By Remark 3, \(Y \subseteq Y^\perp \perp \). Conversely, let \(x \in Y^\perp \perp \). By Theorem 3.3-4 there is a unique \(y \in Y \) such that \(x = y + z \). However, \(Y \subseteq Y^\perp \perp \) and \(Y^\perp \perp \) is a vector space, then \(z = x - y \in Y^\perp \perp \), that is \(z \perp Y \). Since \(Y \) is a closed subspace of a Hilbert space then it is complete and so by Lemma 3.3-2 \(z \in Y^\perp \). Hence \(z \perp z \) and so \(z = 0 \). So that \(x = y \) and \(x \in Y \).

Therefore, \(Y^\perp \perp \subseteq Y \). Hence \(Y^\perp \perp = Y \bullet \).

Remark 4. If \(Y \) is a closed subspace of a Hilbert space \(H \) and \(Z = Y^\perp \) then \(Z^\perp = Y^\perp \perp = Y \), \(H = Z + Z^\perp \) and \(P_z x = z \) defines a projection \(P_z : H \to Z \).

Proof. Left to the reader.
3.3-7 Lemma. For any non empty subset M of a Hilbert space H, the span of M is dense if and only if $M^\perp = \{0\}$.

Proof. Let $x \in M^\perp$ and assume that $V = \text{span} \ M$ to be dense in H. Then $x \in \overline{V} = H$, then there is a sequence (x_n) of elements in V such that $x_n \to x$. Since $x \in M^\perp$ then for all $m \in M$, $\langle x, m \rangle = 0$ which implies that $\langle x, v \rangle = 0$ for all $v \in V$, in particular $\langle x, x_n \rangle = 0$ for all $n \in \mathbb{N}$. By the continuity of the inner product, $\langle x, x_n \rangle \to \langle x, x \rangle$. Hence $\langle x, x \rangle = 0$ and so $x = 0$. Therefore, $M^\perp = \{0\}$.

Conversely, suppose that $M^\perp = \{0\}$. Since $M \subseteq \overline{V}$, then $\overline{V}^\perp \subseteq M^\perp = \{0\}$. Hence $\overline{V}^\perp = \{0\}$. By Theorem 3.3-4, $H = \overline{V} \oplus \overline{V}^\perp = \overline{V} \oplus \{0\} = \overline{V}$.

H. W. 6-10. H.W.* 8, Remarks 2, 3 and Lemma 3.3-5.
3.4 Orthonormal Sets and Sequences

3.4-1 Definition. An orthogonal set \(M \) in an inner product space \(X \) is a subset \(M \) of \(X \) whose elements are pairwise orthogonal. An orthonormal subset \(M \) of \(X \) is an orthogonal set in \(X \) whose elements have norm 1. That is, for all \(x, y \in M \),

\[
\langle x, y \rangle = \begin{cases} 0 & \text{if } x \neq y \\ 1 & \text{if } x = y \end{cases}.
\]

Notes.

a) If an orthogonal or an orthonormal set \(M \) is countable, we can arrange it in a sequence \((x_n) \) and call it an orthogonal or an orthonormal sequence, respectively.

b) A family \((x_\alpha) \), \(\alpha \in I \) is called orthogonal if \(x_\alpha \perp x_\beta \) for all \(\alpha, \beta \in I \) and \(\alpha \neq \beta \). The family is orthonormal if it is orthogonal and all \(x_\alpha \) have norm 1, so that for all \(\alpha, \beta \in I \),

\[
\langle x_\alpha, x_\beta \rangle = \begin{cases} 0 & \text{if } \alpha \neq \beta \\ 1 & \text{if } \alpha = \beta \end{cases}.
\]

Remark 1. For an orthogonal elements \(x \) and \(y \) we have,

\[
\| x + y \|_2^2 = \| x \|_2^2 + \| y \|_2^2 \quad \text{(Pythagorean Relation)}.
\]

In general, if \(\{x_1, x_2, \ldots, x_n\} \) is an orthogonal set then

\[
\| x_1 + x_2 + \ldots + x_n \|_2^2 = \| x_1 \|_2^2 + \| x_2 \|_2^2 + \ldots + \| x_n \|_2^2.
\]

Proof. Left to the reader.

3.4-2 Lemma. An orthonormal set is linearly independent.

Proof. Left to the reader.

Examples:

3.4-3 Euclidean space \(\mathbb{R}^n \). The standard basis of \(\mathbb{R}^n \) forms an orthonormal set. (How?)

3.4-4 Hilbert sequence space \(\ell^2 \). The Schauder basis \((e_n) \) of \(\ell^2 \) forms an orthonormal sequence in \(\ell^2 \). (How?)

3.4-5 Continuous functions. Let \(X \) be the inner product space of all continuous real-valued functions on \([0, 2\pi]\) with \(\langle x, y \rangle = \int_0^{2\pi} x(t)y(t)\,dt \). Then \((\cos n t), \) \(n = 0, 1, 2, \ldots \) and \((\sin n t), n \in \mathbb{N} \) are orthogonal sequences. Moreover,

\[
\left(\frac{1}{\sqrt{2\pi}}, \frac{\cos t}{\sqrt{\pi}}, \frac{\cos 2t}{\sqrt{\pi}}, \ldots \right) \text{ and } \left(\frac{\sin nt}{\sqrt{\pi}}, n \in \mathbb{N} \right)
\]

are orthonormal sequences.

Proof. Left to the reader.
3.4-6 Theorem (Bessel's Inequality). Let \((e_n)\) be an orthonormal sequence in an inner product space \(X\). Then for every \(x \in X\), \(\sum_{k=1}^{\infty} |<x, e_k>|^2 \leq \|x\|^2\).

Proof. Consider the finite subset \(\{e_1, e_2, \ldots, e_N\}\) from \((e_n)\). Then

\[
0 \leq \|x - \sum_{i=1}^{N} <x, e_i>e_i\|^2 = <x - \sum_{i=1}^{N} <x, e_i>e_i, x - \sum_{k=1}^{N} <x, e_k>e_k>
\]

\[
= \|x\|^2 - \sum_{k=1}^{N} <x, e_k>e_k - \sum_{i=1}^{N} <x, e_i>e_i + \sum_{i=1}^{N} <x, e_i>e_i + \sum_{k=1}^{N} <x, e_k>e_k
\]

\[
= \|x\|^2 - \sum_{k=1}^{N} |<x, e_k>|^2 + \sum_{k=1}^{N} |<x, e_k>|^2 = \|x\|^2 - \sum_{k=1}^{N} |<x, e_k>|^2.
\]

Hence \(\sum_{k=1}^{\infty} |<x, e_k>|^2 \leq \|x\|^2\).

By letting \(N \to \infty\) we get, \(\sum_{k=1}^{\infty} |<x, e_k>|^2 \leq \|x\|^2\).

Notes. a) The inner product \(<x, e_k>\) above is called the Fourier coefficients of \(x\) with respect to the orthonormal sequence \((e_k)\).

b) If \(\text{dim}(X)\) is finite, then any orthonormal set in \(X\) must be finite because it is linearly independent.

Gram-Schmidt process for orthonormalizing a linearly independent sequence \((x_j)\) in an inner product space \(X\).

1st step. The first element of \((e_k)\) is \(e_1 = \frac{x_1}{\|x_1\|}\).

2nd step. Let \(v_2 = x_2 - <x_2, e_1>e_1\). Since \((x_j)\) is linearly independent, then \(v_2 \neq 0\). Also \(v_2 \perp e_1\), where \(<v_2, e_1> = <x_2, e_1> - <x_2, e_1><e_1, e_1> = 0\). So we can take \(e_2 = \frac{v_2}{\|v_2\|}\).

3rd step. Let \(v_3 = x_3 - <x_3, e_1>e_1 - <x_3, e_2>e_2\). As above \(v_3 \neq 0\), \(v_3 \perp e_1\) and \(v_3 \perp e_2\) (how?). So we can take \(e_3 = \frac{v_3}{\|v_3\|}\).

nth step. Let \(v_n = x_n - \sum_{k=1}^{n-1} <x_n, e_k>e_k\). As above \(v_n \neq 0\) and \(v_n \perp e_i\) for all \(i = 1, 2, \ldots, n-1\). So we can take \(e_n = \frac{v_n}{\|v_n\|}\). Therefore, we have \((e_k)\) as an orthonormal sequence.

3.5 Series Related to Orthonormal Sets and Sequences

3.5-1 Theorem. Let \((e_k) \) be an orthonormal sequence in a Hilbert space \(H \). Then for any scalars \(\alpha_1, \alpha_2, \alpha_3, \ldots \)

a) \(\sum_{k=1}^{\infty} \alpha_k e_k \) converges (in the norm of \(H \)) if and only if \(\sum_{k=1}^{\infty} |\alpha_k|^2 \) converges.

b) If \(\sum_{k=1}^{\infty} \alpha_k e_k \) converges then \(\alpha_k \)'s are the Fourier coefficients \(<x,e_k>\),

where \(x \) denotes the sum \(x = \sum_{k=1}^{\infty} \alpha_k e_k \) and so \(\sum_{k=1}^{\infty} \alpha_k e_k = x = \sum_{k=1}^{\infty} <x,e_k>e_k \).

c) For any \(x \in H \), \(\sum_{k=1}^{\infty} <x,e_k>e_k \) converges.

Proof. a) Let \(S_n = \alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_n e_n \) and \(\sigma_n = |\alpha_1|^2 + |\alpha_2|^2 + \ldots + |\alpha_n|^2 \). Since \((e_k) \) is orthonormal then for \(n > m \), \(\| S_n - S_m \|^2 = \| \alpha_{m+1} e_{m+1} + \alpha_{m+2} e_{m+2} + \ldots + \alpha_n e_n \|^2 = <\alpha_{m+1} e_{m+1} + \alpha_{m+2} e_{m+2} + \ldots + \alpha_n e_n, \alpha_{m+1} e_{m+1} + \alpha_{m+2} e_{m+2} + \ldots + \alpha_n e_n> = |\alpha_{m+1}|^2 \| e_{m+1} \|^2 + |\alpha_{m+2}|^2 \| e_{m+2} \|^2 + \ldots + |\alpha_n|^2 \| e_n \|^2 = \sigma_n - \sigma_m \). Therefore, \((S_n) \) is Cauchy in \(H \) if and only if \((\sigma_n) \) is Cauchy in \(R \). However, both \(H \) and \(R \) are complete then, \((S_n) \) converges if and only if \((\sigma_n) \) converges. Hence, \(\sum_{k=1}^{\infty} \alpha_k e_k \) converges (in the norm of \(H \)) if and only if \(\sum_{k=1}^{\infty} |\alpha_k|^2 \) converges in \(R \).

b) Let \(S_n \rightarrow x; \) that is \(x = \sum_{k=1}^{\infty} \alpha_k e_k \). Let \(n \) be fixed, then for a fixed \(j = 1, 2, \ldots \), \(k \) and \(k \leq n \) we have, \(<S_n, e_j> = <\alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_n e_n, e_j> = <\alpha_j e_j, e_j> = \alpha_j \). By the continuity of the inner product we have, \(\alpha_j = <S_n, e_j> \rightarrow <x, e_j> \) as \(n \rightarrow \infty \). Then we can take \(k (\leq n) \) as large as we please. Hence \(\alpha_j = \lim_{n \rightarrow \infty} \alpha_j = <x, e_j> \) for all \(j = 1, 2, 3, \ldots \). Therefore, \(x = \sum_{k=1}^{\infty} \alpha_k e_k = \sum_{k=1}^{\infty} <x, e_k>e_k \).

b) Let \(x \) be any element in \(H \). By Bessel’s inequality \(\sum_{k=1}^{\infty} |<x, e_k>|^2 \leq \| x \|^2 \). Hence \(\sum_{k=1}^{\infty} |<x, e_k>|^2 \) converges and so by a) \(\sum_{k=1}^{\infty} |<x, e_k>|^2 \) converges.

3.5-2 Lemma. Any \(x \) in an inner product space \(X \) can have at most accountably many non zero Fourier coefficients \(<x,e_k> \) with respect to an orthonormal family \((e_k)_{k \in I} \), in \(X \).

Proof. Left to the reader.

Remark 1. a) The Bessel inequality holds in the case of \((e_k)_{k \in I} \) as an orthonormal family, \(\sum_k |<x, e_k>|^2 \leq \| x \|^2 \). If the equality holds we say that it is the Parseval relation.

3.6 Total Orthonormal Sets and Sequences

3.6-1 Definition. A total set (fundamental set) in a normed space X is a subset M of X whose span is dense in X. A total orthonormal set in X is an orthonormal set which is total.

Remark 1. a) In every Hilbert space \(H \neq \{0\} \) there exists a total orthonormal set.
b) All total orthonormal sets in a given Hilbert space \(H \neq \{0\} \) have the same cardinality, where the cardinality of the total orthonormal set in a Hilbert space \(H \neq \{0\} \) is called the Hilbert dimension or orthogonal dimension of H. If \(H = \{0\} \), the Hilbert dimension is defined to be zero.

3.6-2 Theorem. Let M be a subset of an inner product space X. Then
a) If M is total in X then \(x \in X \) and \(x \perp M \) implies \(x = 0 \).
b) If X is complete and if the condition (\(x \in X \) and \(x \perp M \) implies \(x = 0 \)) is satisfied then M is total in X.

Proof. a) Let H be the completion of X. Then X can be regarded as a subspace of H which is dense in H. However, M is total in X, then spanM is dense in X, then it is dense in H. Hence by Lemma3.3-7, \(M^\perp = \{0\} \). Therefore, \(x \in X \) and \(x \perp M \) implies \(x = 0 \).
b) Use Lemma3.3-7 and the definition of total set to get the result.

3.6-3 Theorem. An orthonormal set M in a Hilbert space H is total in H if and only if \(\sum_{k} |<x,e_k>|^2 = \|x\|^2 \) for all \(x \in H \).

Proof. If M is not total then by Theorem3.6-2 b), there is \(x \in H \), \(x \neq 0 \) and \(x \perp M \). Then \(<x,e_k> = 0 \) for all \(e_k \in M \). Hence \(\sum_{k} |<x,e_k>|^2 = 0 \neq \|x\|^2 \).

Therefore, if \(\sum_{k} |<x,e_k>|^2 = \|x\|^2 \) for all \(x \in H \), then M is total in H. Conversely, suppose that M is total in H. Let \(x \) be any element in H. and arrange all its nonzero Fourier coefficients in a sequence \(<x,e_1>, <x,e_2>, \ldots \) or written in some definite order if there are only finitely many of them.

Define \(y \) by \(y = \sum_{k} <x,e_k>e_k \) ……………………………………… (1)

Since M is orthonormal then for every \(e_j \) occurring in (1) we have, \(<x,y,e_j> = <x,e_j> - <y,e_j> = <x,e_j> - \sum_{k} <x,e_k> <e_k,e_j> = <x,e_j> - <y,e_j> = 0 \). But for all \(v \in M \) not contained in (1) we have \(<x,v> = 0 \).

So that \(<x-y,v> = <x,v> - \sum_{k} <x,e_k> <e_k,v> = 0 \). Hence \(x-y \perp M \).

However, M is total in H then by Lemma3.3-7 \(M^\perp = \{0\} \) and so \(x-y = 0 \), that is \(x = y \). Therefore, \(\|x\|^2 = <y,y> = <\sum_{k} <x,e_k>e_k, \sum_{m} <x,e_m>e_m> = \sum_{k} \sum_{m} <x,e_k><x,e_m><e_k,e_m> = \sum_{k} |<x,e_k>|^2 \).
3.6-4 **Theorem.** Let H be a Hilbert space. Then

a) If H is separable, then every orthonormal set in H is countable.

b) If H contains an orthonormal sequence which is total in H, then H is separable.

Proof. a) Let H be separable, B any dense set in H and M any orthonormal set. Since M is orthonormal then for any $x, y \in M$ with $x \neq y$ we have, $\| x - y \|^2 = \langle x - y, x - y \rangle = \langle x, x \rangle + \langle y, y \rangle = 2$. Hence spherical neighborhoods N_x of x and N_y of y of radius $\frac{\sqrt{2}}{2}$ are disjoint (why?). Since B is dense in H then for any $x \in M$, $N_x \cap B \neq \emptyset$. Hence there is $a \in N_x \cap B$ and $b \in N_y \cap B$. Therefore, $a \neq b$. If M is uncountable then we have unaccountably many pair wise disjoint spherical neighborhoods, so that B would be uncountable. Since B was any dense set this makes that H would not contain a countable dense set which contradicts the separability of H. Therefore, M must be countable.

b) Let (e_m) be a total orthonormal sequence in H and $A = \{ \sum_{k=1}^{n} \gamma^{(n)}_{k} e_k : \gamma^{(n)}_{k} = a^{(n)}_{k} + i b^{(n)}_{k}, a^{(n)}_{k}, b^{(n)}_{k} \in \mathbb{Q}, n \in \mathbb{N} \}$. ($b^{(n)}_{k} = 0$ when H is real). A is countable (how?). We show that A is dense in H. Let x be any fixed element in H. Since (e_m) is total in H, then $\overline{\text{span}(e_m)} = H$. Then for every $\varepsilon > 0$ there is $w \in \text{span}(e_m)$ such that $\| x - w \| < \frac{\varepsilon}{2}$. Hence $w \in Y_n = \text{span}\{ e_1, e_2, \ldots, e_n \}$ for some n. By Lemma 3.3-2 there is $y \in Y_n$ such that $x - y \perp Y_n$ and $\| x - y \| \leq \| x - w \| < \frac{\varepsilon}{2}$. By (8a&b) in 3.4[see the text book] y can be written as $y = \sum_{k=1}^{n} \langle x, e_k \rangle e_k$. Then $\| x - \sum_{k=1}^{n} \langle x, e_k \rangle e_k \| < \frac{\varepsilon}{2}$. Since Q is dense in R then for any $\langle x, e_k \rangle$ there is $\gamma^{(n)}_{k} = a^{(n)}_{k} + i b^{(n)}_{k}, a^{(n)}_{k}, b^{(n)}_{k} \in \mathbb{Q}$ such that $\| \sum_{k=1}^{n} [\langle x, e_k \rangle - \gamma^{(n)}_{k}] e_k \| < \frac{\varepsilon}{2}$. Hence there is $v = \sum_{k=1}^{n} \gamma^{(n)}_{k} e_k \in A$ that satisfies $\| x - v \| = \| x - \sum_{k=1}^{n} \gamma^{(n)}_{k} e_k \| \leq \| x - \sum_{k=1}^{n} \langle x, e_k \rangle e_k \| + \| \sum_{k=1}^{n} \langle x, e_k \rangle e_k - \sum_{k=1}^{n} \gamma^{(n)}_{k} e_k \| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Hence $v \in B(x; \varepsilon) \cap A$. Thus A is dense in H.
3.6-5 Theorem. Two Hilbert spaces H and \tilde{H} both real or both complex are isomorphic if and only if they have the same Hilbert dimension.

Proof. Suppose that H is isomorphic with \tilde{H}, then there is a bijective linear mapping $T : H \to \tilde{H}$ that satisfies $<Tx, Ty> = <x, y>$ for all $x, y \in H$. Hence orthonormal elements in H have orthonormal images under T. However, T is bijective then T maps every total orthonormal set in H onto a total orthonormal set in \tilde{H} (how?) Therefore, H and \tilde{H} have the same Hilbert dimension.

Conversely, suppose that H and \tilde{H} have the same Hilbert dimension. The case that $H = \{0\}$ and $\tilde{H} = \{0\}$ is trivial. Let $H \neq \{0\}$, then $\tilde{H} \neq \{0\}$ and any total, orthonormal sets M in H and \tilde{M} in \tilde{H} have the same cardinality. So we can index them by the same index set $\{k\}$ and write $M = (e_k)$ and $\tilde{M} = (\tilde{e}_k)$. Now define $T : H \to \tilde{H}$ by $Tx = \sum_{k} <x, e_k> \tilde{e}_k$. This is well defined, because for all $x \in H$ we have $x = \sum_{k} <x, e_k> e_k$ and by Bessel’s inequality

$$\sum_{k} |<x, e_k>|^2$$

converges. Then by Theorem 3.5-2 $\sum_{k} <x, e_k> \tilde{e}_k$ converges so that $Tx \in \tilde{H}$. Let $x = \sum_{k} <x, e_k> e_k$ and $y = \sum_{k} <y, e_k> e_k$ be any elements in H and α any scalar, $T(\alpha x + y) = \sum_{k} <\alpha x + y, e_k> \tilde{e}_k = \alpha \sum_{k} <x, e_k> \tilde{e}_k + \sum_{k} <y, e_k> \tilde{e}_k$

$= \alpha Tx + Ty$. Hence T is linear. Since (\tilde{e}_k) is orthonormal then $<Tx, Tx> = \sum_{k} <x, e_k> e_k \sum_{k} <x, e_k> e_k = \sum_{k} <x, e_k> <e_k, e_m> <\tilde{e}_k, \tilde{e}_m> = \sum_{k} |<x, e_k>|^2 = \|x\|^2$. For any $x, y \in H$ (if H is real), $<Tx, Ty> = \frac{1}{2} (\|Tx + Ty\|^2 - \|Tx - Ty\|^2) = \frac{1}{2} (\|T(x + y)\|^2 - \|T(x - y)\|^2) = \frac{1}{2} (\|x + y\|^2 - \|x - y\|^2) = <x, y>$. Similarly for the complex case. Hence T preserves the inner product which implies that T is 1-1. Given any $\tilde{x} = \sum_{k} \alpha_k \tilde{e}_k \in \tilde{H}$.

By Bessel’s inequality $\sum_{k} |\alpha_k|^2$ converges (how?) and so $\sum_{k} \alpha_k e_k$ is a finite sum or a series which converges to $x \in H$ by Theorem 3.5-2, and $\alpha_k = <x, e_k>$ by the same theorem. Hence $\tilde{x} = \sum_{k} <x, e_k> \tilde{e}_k = Tx$. Thus T is onto.

Therefore, T is an isomorphism, so H and \tilde{H} are isomorphic.
3.8 Representation of Functionals on Hilbert Spaces

3.8-1 Riesz’s Theorem. Every bounded linear functional \(f \) on a Hilbert space \(H \) can be represented in terms of inner product, namely, \(f(x) = \langle x, z \rangle \), where \(z \) depends on \(f \) and is uniquely determined by \(f \) with norm \(\| z \| = \| f \| \).

Proof. The case \(f = 0 \) is a trivial case (why?). Let \(f \neq 0 \). Then \(N(f) \neq H \). However, \(N(f) \) is a closed subspace of \(H \), then by Theorem 3.3-4 \(H = N(f) \oplus N(f)^\perp \). Hence \(N(f)^\perp \neq \{0\} \). Let \(z_0 \neq 0 \) and \(z_0 \in N(f)^\perp \). Set \(v = \frac{f(z_0)}{\langle z_0, z_0 \rangle} \). Then \(f(v) = \frac{f(z_0)}{\langle z_0, z_0 \rangle} \langle z_0, v \rangle = \frac{f(z_0)}{\langle z_0, z_0 \rangle} \langle z_0, v \rangle = 0 \), hence \(v \in N(f) \). Hence \(\langle v, z_0 \rangle = 0 \). To prove the uniqueness of \(z \). Suppose that there are \(z_1 \) and \(z_2 \) such that \(f(x) = \langle x, z_1 \rangle = \langle x, z_2 \rangle \) for all \(x \in H \). Then \(\langle x, z_1 - z_2 \rangle = 0 \) for all \(x \in H \), and for \(x = z_1 - z_2 \) we have \(\langle z_1 - z_2, z_1 - z_2 \rangle = 0 \). Hence \(z_1 = z_2 \) and the uniqueness is proved.

3.8-2 Lemma. If \(\langle v_1, w \rangle = \langle v_2, w \rangle \) for all \(w \) in an inner product space \(X \), then \(v_1 = v_2 \). In particular \(\langle v_1, w \rangle = 0 \) for all \(w \in X \) implies that \(v_1 = 0 \).

Proof. Left to the reader.

3.8-3 Definition. Let \(X \) and \(Y \) be vector spaces over a field \(k \). A sesquilinear form (sesquilinear functional) \(h \) on \(X \times Y \) is a mapping \(h : X \times Y \rightarrow k \) such that for all \(x, x_1, x_2 \in X \), \(y, y_1, y_2 \in Y \) and all scalars \(\alpha, \beta \) it satisfies,

a) \(h(x_1 + x_2, y) = h(x_1, y) + h(x_2, y) \)

b) \(h(x, y_1 + y_2) = h(x, y_1) + h(x, y_2) \)

c) \(h(\alpha x, y) = \alpha h(x, y) \)

d) \(h(x, \beta y) = \bar{\beta} h(x, y) \)

Notes.

1) If \(k = R \), then \(h \) above is bilinear.

2) If \(X \) and \(Y \) are normed spaces and there is \(c > 0 \) such that for all \(x \in X \), and all \(y \in Y \), \(|h(x, y)| \leq c \| x \| \| y \| \), then \(h \) is bounded, and the number \(\| h \| = \sup \{ \frac{|h(x, y)|}{\| x \| \| y \|} : x \in X \setminus \{0\} \text{ and } y \in Y \setminus \{0\} \} = \sup \{ h(x, y) : \| x \| = \| y \| = 1 \} \) is called the norm of \(h \), then \(|h(x, y)| \leq \| h \| \| x \| \| y \| \) for all \(x, y \).

3) The inner product is sesquilinear and bounded (how?)
3.8-4 Theorem (Riesz's Representation). Let H_1 and H_2 be Hilbert spaces over a field k and $h : H_1 \times H_2 \to k$ a bounded sesquilinear form. Then h has a representation $h(x, y) = \langle Sx, y \rangle$ where $S : H_1 \to H_2$ is a bounded linear operator. Moreover, S is uniquely determined by h and has the norm $\| S \| = \| h \|$.

Proof. Consider $h(x, y)$ which is linear in y. Now for any fixed $x \in H_1$, we apply Theorem 3.8-1 to get a unique $z \in H_2$ that depends on $x \in H_1$ such that $h(x, y) = \langle y, z \rangle$ for all $y \in H_2$. Hence $S : H_1 \to H_2$ given by $Sx = z$ is an operator and $h(x, y) = \langle Sx, y \rangle$.

For all $x_1, x_2 \in H_1$, $y \in H_2$ and all scalars α,

$\langle \alpha x_1 + x_2, y \rangle = \alpha \langle x_1, y \rangle + \langle x_2, y \rangle = \alpha \langle Sx_1, y \rangle + \langle Sx_2, y \rangle = \alpha \langle Sx_1 + Sx_2, y \rangle$. Then by Lemma 3.8-2, $S(\alpha x_1 + x_2) = \alpha Sx_1 + Sx_2$, so S is linear. If $S = 0$ then it is bounded. If $S \neq 0$ then

$\| S \| = \sup \{ \| Sx \| : x \in H_1 \setminus \{0\} \} = \| S \|$. Hence S is bounded and $\| h \| \geq \| S \|$.

But, $\| h \| = \sup \{ \| h(x, y) \| : x \in H_1 \setminus \{0\} \} \leq \sup \{ \| Sx \| \| y \| \| : x \in H_1 \setminus \{0\} \} = \| S \|$. Therefore, $\| h \| = \| S \|$. To prove the uniqueness, suppose that there is a linear operator $T : H_1 \to H_2$ such that $h(x, y) = \langle Sx, y \rangle = \langle Tx, y \rangle$ for all $x \in H_1$ and $y \in H_2$. Then by Lemma 3.8-2 $Sx = Tx$ for all $x \in H_1$. This proves the uniqueness of S.

3.9 Hilbert adjoint operator

3.9-1 Definition. Let H_1 and H_2 be two Hilbert spaces and $T:H_1 \to H_2$ a bounded linear operator. The Hilbert adjoint operator T^* of T is the operator $T^*:H_2 \to H_1$ such that for all $x \in H_1$ and all $y \in H_2$, $\langle Tx, y \rangle = \langle x, T^*y \rangle$.

3.9-2 Theorem. The Hilbert adjoint operator T^* of T in Definition 3.9 exists, is unique, is linear and is bounded with norm $\| T^* \| = \| T \|$.

Proof. Consider $h(y, x) = \langle y, Tx \rangle$ which defines a sesquilinear form on $H_2 \times H_1$ (The details is left to the reader). By Schwarz inequality, $| h(y, x) | = | \langle y, Tx \rangle | \leq \| y \| \| Tx \| \| T \|$, this implies that h is bounded and $\| h \| \leq \| T \|$. But $\| h \| = \text{sup} \{ \frac{| h(y, x) |}{\| y \| \| x \|} : y \in H_2 \setminus \{0\} \& x \in H_1 \setminus \{0\} \}$. Therefore, $\| h \| = \| T \|$. Since h is a bounded sesquilinear form then by Theorem 3.8 there exists a bounded linear operator call it T^* that is uniquely determined by h and $h(y, x) = \langle T^*y, x \rangle$, $x > \| T^* \| = \| h \|$. Hence $\| T^* \| = \| T \|$. However, $h(y, x) = \langle y, Tx \rangle$, then $\langle y, Tx \rangle = \langle T^*y, x \rangle$ and so $\langle Tx, y \rangle = \langle x, T^*y \rangle$.

3.9-3 Lemma. Let X and Y be inner product spaces and $Q:X \to Y$ a bounded linear operator. Then

a) $Q = 0$ if and only if $\langle Qx, y \rangle = 0$ for all $x \in X$ and all $y \in Y$.
b) If $Q:X \to Y$, X is complex and $\langle Qx, x \rangle = 0$ for all $x \in X$, then $Q = 0$.

Proof. a) Left to the reader.
b) From assumption, $\langle Qv, v \rangle = 0$ for all $v = \alpha x + y \in X$; that is $0 = \langle Q(\alpha x + y), \alpha x + y \rangle = |\alpha|^2 \langle Qx, x \rangle + \langle Qy, y \rangle + \overline{\alpha} \langle Qy, x \rangle + \overline{\alpha} \langle Qx, y \rangle$. Put $\alpha = 1$ and then $\alpha = i$ to get $\langle Qx, y \rangle + \langle Qy, x \rangle = 0$ and $\langle Qx, x \rangle = - \langle Qy, y \rangle$, respectively. By addition, $\langle Qx, y \rangle = 0$ and so $Q = 0$ follows from a) •

Remark. If X is real then b) above need not holds. To see this consider the mapping $Q: \mathbb{R}^2 \to \mathbb{R}^2$ given by $Q(\alpha, \beta) = (\beta, -\alpha)$. It is clear that for any $x = (\alpha, \beta) \in \mathbb{R}^2$, $\langle Qx, x \rangle = (\beta, -\alpha)(\alpha, \beta) = 0$, but $Q \neq 0$ •

3.9-4 Theorem. Let H_1 and H_2 be Hilbert spaces, $S, T:H_1 \to H_2$ bounded linear operators and α any scalar. Then we have, a) $T^*y, x = \langle y, Tx \rangle$ for all $x \in H_1$ and $y \in H_2$.

b) $(S + T)^* = S^* + T^*$ and $(\alpha T)^* = \overline{\alpha} T^*$.

c) $(T^*)^* = T$, and in the case $H_1 = H_2$, $(ST)^* = T^*S^*$.

d) $\| T^*T \| = \| TT^* \| = \| T \|^2$. e) $T^*T = 0$ if and only if $T = 0$.

Proof. We prove d) and left the proof of the other parts to the reader. First note that $T^*T:H_1 \to H_1$ but $TT^*:H_2 \to H_2$. Then $\| Tx \|^2 = \langle Tx, Tx \rangle = \langle T^*Tx, x \rangle \leq \| T^*Tx \| \| x \| \leq \| T^*T \| \| x \|$. Then $\| T \|^2 = \sup \{ \| Tx \|^2 : \| x \| = 1, x \in H_1 \} \leq \| T^*T \| \leq \| T^*T \| \| T \| = \| T \|^2$. Hence $\| T^*T \| = \| T \|^2$. Replacing T by T^* to get $\| T^*T^* \| = \| T \|^2$. However, $\| T^*T \| \leq \| TT^* \|$ and $\| T \|^2 = \| T \|^2$. Therefore, $\| T^*T \| = \| TT^* \| = \| T \|^2$ •

3.10 Self-adjoint, Unitary and Normal Operators

3.10-1 Definition. A bounded linear operator $T : H \to H$ on a Hilbert space H is said to be 1) self-adjoint or Hermitian if $T^* = T$. 2) Unitary if T is bijective and $T^* = T^{-1}$. 3) Normal if $TT^* = T^*T$.

3.10-2 Remark. a) If T is self-adjoint then $\langle Tx, y \rangle = \langle x, Ty \rangle$ for all x and y. b) If T is self-adjoint or unitary then T is normal. c) Normal operators need not be self-adjoint or unitary. To see this consider the identity operator $I : H \to H$ on a Hilbert space H. It is easy to see that $T = 2iI$ is normal but it is neither self-adjoint nor unitary.

3.10-3 Theorem. Let $T : H \to H$ be a bounded linear operator on a Hilbert space H. Then a) If T is self-adjoint then $\langle Tx, x \rangle$ is real for all $x \in H$. b) If H is complex and $\langle Tx, x \rangle$ is real for all $x \in H$ then T is self-adjoint.

Proof. a) Suppose that T is self-adjoint. Then for all $x \in H$,
$$\langle Tx, x \rangle = \langle x, Tx \rangle = \langle Tx, x \rangle.$$ Hence $\langle Tx, x \rangle$ is real.

b) Suppose that H is complex and $\langle Tx, x \rangle$ is real for all $x \in H$. Then
$$\langle Tx, x \rangle = \overline{\langle Tx, x \rangle} = \langle x, T^*x \rangle = \langle T^*x, x \rangle,$$ and $0 = \langle Tx, x \rangle - \langle T^*x, x \rangle = \langle (T-T^*)x, x \rangle$. Then by Lemma 3.9-3(b) $T-T^* = 0$. Hence T is self-adjoint.

3.10-4 Theorem. The product of two bounded self-adjoint linear operators S and T on a Hilbert space H is self-adjoint if and only if $ST = TS$.

Proof. Left to the reader.

3.10-5 Theorem. Let (T_n) be a sequence of bounded self-adjoint linear operators $T_n : H \to H$ on a Hilbert space H. Suppose that $T_n \to T$, that is $\| T_n - T \| \to 0$, where this norm is the norm on the space $B(H, H)$. Then T is a bounded self-adjoint linear operator on H.

Proof. Left to the reader.

3.10-6 Theorem. Let the operators $U, V : H \to H$ be unitary on a Hilbert space H. Then:

a) U is isometric, thus $\| Ux \| = \| x \|$ for all $x \in H$.

b) $\| U \| = 1$, provided that $H \neq \{0\}$. c) U^{-1} and UV are unitary.

d) U is normal. Furthermore,

c) A bounded linear operator T on a complex Hilbert space H is unitary if and only if T is isometric and onto.

Proof. Left to the reader.

3.10-7 Remark. Isometric operators need not be unitary.

Proof. Consider the bounded linear operator $T: \ell^2 \to \ell^2$ given by $T(\xi_1, \xi_2, \ldots) = (0, \xi_1, \xi_2, \ldots)$. It is easy to see that T is an isometric, but T is not onto, where there is $(\xi_1, \xi_2, \ldots) \in \ell^2$ and $\xi_1 \neq 0$ but there is no $x \in \ell^2$ with $Tx = (\xi_1, \xi_2, \ldots)$. Hence we have an isometric which is not unitary.