

Managing network
connectivity

0 Android broadcasts Intents that describe the changes in
network connectivity
0 3G, WiFi, etc.

0 There are APIs for controlling network settings and
connections

0 Android networking is handled by
ConnectivityManager (a network connectivity
service)
0 Monitor the state of network connections

0 Configure failover settings

0 Control network radios

Managing your WiFi

0 WifiManager: represents the Android WiFi
connectivity service

0 Configure WiFi network connections

0 Manage current WiFi connection

0 Scan for access points

0 Monitor changes in WiFi connectivities

Monitoring WiFi connectivity

0 Accessing the WiFi Manager

0 Monitoring and changing Wifi state

0 State: enabling, enabled, disabling, disabled, and
unknown

String service = Context.WIFI_SERVICE;

WifiManager wifi = (WifiManager) getSystemService(service);

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

<uses-permission android:name="android.permission.CHANGE_WIFI_STATE"/>

if (!wifi.isWifiEnabled())

if (wifi.getWifiState() != WifiManager.WIFI_STATE_ENABLING)

wifi.setWifiEnabled(true);

Monitoring WiFi connectivity

0 WifiManager broadcasts Intents whenever connectivity status changes
0 WIFI_STATE_CHANGED_ACTION

0 Wifi h/w status has changed: enabling, enabled, disabling, disabled, and unknown
0 EXTRA_WIFI_STATE, EXTRA_PREVIOUS_STATE

0 SUPPLICANT_CONNECTION_CHANGED_ACTION:
0 Whenever connection state with the active supplicant (access point) changes
0 Fired when a new conn is established, or existing conn is lost (EXTRA_NEW_STATE =

true/false)

0 NEWTWORK_STATE_CHANGED_ACTION:
0 Fired whenever wifi connectivity state changes
0 EXTRA_NETWORK_INFO: NetworkInfo obj for current network status
0 EXTRA_BSSID: BSSID of the access point that you’re connected to

0 RSSI_CHANGED_ACTION:
0 Monitor the signal strength of the connected WiFi network
0 EXTRA_NEW_RSSI: current signal strength

Monitoring active connection
details

0 Once you connected to an access point, use
getConnectionInfo of WifiManager to find info of that
connection

0 Returns “WifiInfo” object

WifiInfo info = wifi.getConnectionInfo();

if (info.getBSSID() != null) {

int strength = WifiManager.calculateSignalLevel(info.getRssi(), 5);

int speed = info.getLinkSpeed();

String units = WifiInfo.LINK_SPEED_UNITS;

String ssid = info.getSSID();

String cSummary = String.format("Connected to %s at %s%s. Strength

%s/5",

ssid, speed, units, strength);

}

Scanning hotspots
0 Use WifiManager to scan access points using startScan()

0 Android will broadcast scan results with an Intent of
“SCAN_RESULTS_AVAILABLE_ACTION”
// Register a broadcast receiver that listens for scan results.

registerReceiver(new BroadcastReceiver() {

@Override

public void onReceive(Context context, Intent intent) {

List<ScanResult> results = wifi.getScanResults();

ScanResult bestSignal = null;

for (ScanResult result : results) {

if (bestSignal == null ||

WifiManager.compareSignalLevel(bestSignal.level,result.level)<0)

bestSignal = result;

}

String toastText = String.format("%s networks found. %s is

the strongest.",

results.size(), bestSignal.SSID);

Toast.makeText(getApplicationContext(), toastText, Toast.LENGTH_LONG);

}

}, new IntentFilter(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));

// Initiate a scan.

wifi.startScan();

Creating a WiFi configuration

0 To connect to a WiFi network, a WiFi configuration must be
created and registered
0 Normally a user does this, but app can do this

0 Network configuration is stored as WifiConfiguration
object
0 SSID (service set ID, e.g., IPv4_KAIST)

0 BSSID (MAC addr of an AP)

0 networkId (unique ID that the supplicant uses to identify this
network configuration entry)

0 priority (priority of this access point)

0 status (current status: ENABLED, DISABLED, CURRENT)

Creating a WiFi configuration

WifiManager wifi = (WifiManager) getSystemService(Context.WIFI_SERVICE);

WifiConfiguration wc = new WifiConfiguration();

wc.SSID = "\"SSIDName\"";

wc.preSharedKey = "\"password\""; // it should be in double quote “password”

wc.hiddenSSID = true;

wc.status = WifiConfiguration.Status.ENABLED;

// setting up WPA-PSK

wc.allowedGroupCiphers.set(WifiConfiguration.GroupCipher.TKIP);

wc.allowedGroupCiphers.set(WifiConfiguration.GroupCipher.CCMP);

wc.allowedKeyManagement.set(WifiConfiguration.KeyMgmt.WPA_PSK);

wc.allowedPairwiseCiphers.set(WifiConfiguration.PairwiseCipher.TKIP);

wc.allowedPairwiseCiphers.set(WifiConfiguration.PairwiseCipher.CCMP);

wc.allowedProtocols.set(WifiConfiguration.Protocol.RSN);

int res = wifi.addNetwork(wc); // the ID of the newly created network description

Log.d("WifiPreference", "add Network returned " + res);

boolean b = wifi.enableNetwork(res, true);

Log.d("WifiPreference", "enableNetwork returned " + b);

http://developer.android.com/reference/android/net/wifi/WifiConfiguration.html#preSharedKey

http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w

http://developer.android.com/reference/android/net/wifi/WifiConfiguration.html
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w

Managing WiFi configurations

Use WiFi Manager to manage the configured network
settings and control which networks to connect to

// Get a list of available configurations

List<WifiConfiguration> configurations = wifi.getConfiguredNetworks();

// Get the network ID for the first one.

if (configurations.size() > 0) {

int netID = configurations.get(0).networkId;

// Enable that network.

boolean disableAllOthers = true;

wifi.enableNetwork(netID, disableAllOtherstrue);

}

Power Management

Android supports its own Power Management (on top of
the standard Linux Power Management)

To make sure that CPU shouldn't consume power if no
applications or services require power

Android requires that applications and services request
CPU resources with "wake locks" through the Android
application framework and native Linux libraries.

If there are no active wake locks, Android will shut down
the CPU.

Power Management

WakeLock
Flag value CPU Screen Keyboard

PARTIAL_WAKE_LOCK On Off Off

SCREEN_DIM_WAKE_LOCK On Dim Off

SCREEN_BRIGHT_WAKE_LOCK On BRIGH
T

Off

FULL_WAKE_LOCK On Bright Bright

// Acquire handle to the PowerManager service

PowerManager pm = (PowerManager)mContext.getSystemService(

Context.POWER_SERVICE);

// Create a wake lock and specify the power management flags for

screen, timeout, etc.

PowerManager.WakeLock wl = pm.newWakeLock(

PowerManager.SCREEN_DIM_WAKE_LOCK |

PowerManager.ON_AFTER_RELEASE, TAG);

// Acquire wake lock

wl.acquire(); // ...

// Release wake lock

wl.release();

Wifi background data transfer
Background data transfer:
 Wifilock + Wakelock (partial)

// http://developer.android.com/reference/android/net/wifi/WifiManager.WifiLock.html

WifiManager.WifiLock wifiLock = null;

PowerManager.WakeLock wakeLock = null;

// acquire

if (wifiLock == null) {

WifiManager wifiManager = (WifiManager)

context.getSystemService(context.WIFI_SERVICE);

wifiLock = wifiManager.createWifiLock("wifilock");

wifiLock.setReferenceCounted(true);

wifiLock.acquire();

PowerManager powerManager = (PowerManager)

context.getSystemService(context.POWER_SERVICE);

wakeLock =

powerManager.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, "wakelock");

wakeLock.acquire();

}

// release

if (wifiLock != null) {

wifiLock.release();

wifiLock = null;

wakeLock.release();

wakeLock = null;

}

http://developer.android.com/reference/android/net/wifi/WifiManager.WifiLock.html

Background data transfer
 Setting > Accounts & sync settings > background data setting

 If this setting is off, an application cannot transfer data only when it is active and in
the foreground
 Services cannot transfer data (by definition)

 Use connectivity manager to check this:
 boolean backgroundEnabled = connectivity.getBackgroundDataSetting();

 App can listen to changes in the background data transfer preference:

registerReceiver(
new BroadcastReceiver() {

@Override
public void onReceive(Context context, Intent intent)
// do something..

},
new IntentFilter(ConnectivityManager.

ACTION_BACKGROUND_DATA_SERVICE_CHANGED)

);

Start WiFi
 New App called WiFiFun

 Include permissions: access_wifi_state, change_wifi_state, access_network_state,
change_network_state, write_settings, write_secure_settings, change_wifi_multicast

 Include member variable

 WifiManager wifiManager;

 In onCreate, add

 wifiManager = (WifiManager) getSystemService(Context.WIFI_SERVICE);

 Start wifi, add

Scanning for access points

 Approach: start wifi scanning, get results in broadcast receiver

 At the end of onCreate, addd

 Register to receive broadcast about scanning results

 Add member variable to WiFiFun

 IntentFilter filter;

 At the end of onCreate, add

 filter = new IntentFilter();

 filter.addAction(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION);

 registerReceiver(wifiEventReceiver, filter);

 Make broadcast receiver.

 Somewhere in WifiFun, add member variable

 private BroadcastReceiver wifiEventReceiver = new BroadcastReceiver() {};

 // let eclipse add unimplemented methods

 In public void onReceive(Context arg0, Intent intent) {, add

 Run

 Try adding wifiManager. startScan () to end of BroadcastReceiver .onReceive

 Notice that signal strength varies.

Scanning for access points
Clean up BroadcastReceiver: unregister on pause, and regfister on

resume. Be careful to not register twice
 Add member variable to WiFiFun

Connect to access point
 Add button

 Connect to udel wifi

 In onCreate, add
 Button wifiConnect = (Button)findViewById(R.id.WifiConnect);
 wifiConnect.setOnClickListener(new View.OnClickListener() {});
0 // let eclipse add onClick

 In onClick add
0 Add new network to current list of networks

 Two things
0 This might not connect, e.g., maybe udel is out of range
0 Perhaps we should not add udel to the list of networks

Add BroadcastReceiver
 In onCreate, when the intentFilter is being made, add

 filter.addAction(WifiManager.SUPPLICANT_CONNECTION_CHANGE_ACTION);

 filter.addAction(WifiManager.SUPPLICANT_STATE_CHANGED_ACTION);

 filter.addAction(WifiManager.NETWORK_IDS_CHANGED_ACTION);

 filter.addAction(WifiManager.NETWORK_STATE_CHANGED_ACTION);

 filter.addAction(WifiManager.WIFI_STATE_CHANGED_ACTION);

 In the BroadcastReceiver, add

 Add function

NETWORK_STATE_CHANGED_AC
TION

Get current connection info

Add button: Get Current
In onCreate, add

Connect to ad hoc network

Android does not support ad hoc networking

Only rooted phones can connect

Add BusyBox from market place

We need a new wpa_supplicant.conf
Wifi hardward <-> driver (.ko) <-> wpa_supplicant <->

(wpa_cli) <-> android system+api

Make new app

Add button
Connect to ad hoc

Disconnect from ad hoc

steps

Move wpa_supplicant to correct directory

Change permissions of wpa_supplicant

Disable dhcp

Set ip address etc

Turn off wifi
 (Perhap we could only restart wpa_supplicant)

Set static ip

Turn on wifi

Check status

Set routing table

Try ping

Make ip from mac

It would be better to embed the whole mac in an ipv6 address…

Set static ip address

 Ad hoc mode needs a static ip address, since dhcp is most likely not available

 Here we get the mac address and build an IP address in subnet 192.168/16 from the MAC

 Dns is open-dns

steps
 Move wpa_supplicant to correct directory

 Change permissions of wpa_supplicant

 Disable dhcp

 Set ip address etc

 Turn off wifi

 (Perhap we could only restart wpa_supplicant)

 Set ip

 Trick: we want to set ip after wifi is off, which occurs well after we issue the command to turn off wifi

 Approach:

 Add member variable int adHocState = 0;

 When getting into ad hoc mode

 After turning off wifi, adHocState = 1;

 After turning on wifi, adHocState = 2;

 When getting out of ad hoc mode

 After turning off wifi, adHocState = 3;

 After turning on wifi, adHocState = 0;

 Check for wifi state changes

 If state change and adHocState==1, then set ip, adHocState =2, turn on wifi

 If state change and adHocState==3, then clear static ip, adHocState =0, turn on wifi

 Turn on wifi

 Check status

 Try ping

 multi-hop Ad hoc networking - next week

 Add member variable int adHocState = 0;

 private BroadcastReceiver wifiEventReceiver = new BroadcastReceiver() {

Make button: Connect from ad hoc

Make button: disconnect from ad hoc

