


Managing network 
connectivity

0 Android broadcasts Intents that describe the changes in 
network connectivity 
0 3G, WiFi, etc. 

0 There are APIs for controlling network settings and 
connections

0 Android networking is handled by 
ConnectivityManager (a network connectivity 
service)
0 Monitor the state of network connections

0 Configure failover settings

0 Control network radios



Managing your WiFi

0 WifiManager: represents the Android WiFi
connectivity service

0 Configure WiFi network connections

0 Manage current WiFi connection

0 Scan for access points

0 Monitor changes in WiFi connectivities



Monitoring WiFi connectivity

0 Accessing the WiFi Manager

0 Monitoring and changing Wifi state

0 State: enabling, enabled, disabling, disabled, and 
unknown

String service = Context.WIFI_SERVICE;

WifiManager wifi = (WifiManager) getSystemService(service); 

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

<uses-permission android:name="android.permission.CHANGE_WIFI_STATE"/>

if (!wifi.isWifiEnabled())

if (wifi.getWifiState() != WifiManager.WIFI_STATE_ENABLING)

wifi.setWifiEnabled(true);



Monitoring WiFi connectivity

0 WifiManager broadcasts Intents whenever connectivity status changes
0 WIFI_STATE_CHANGED_ACTION

0 Wifi h/w status has changed: enabling, enabled, disabling, disabled, and unknown
0 EXTRA_WIFI_STATE, EXTRA_PREVIOUS_STATE

0 SUPPLICANT_CONNECTION_CHANGED_ACTION:
0 Whenever connection state with the active supplicant (access point) changes
0 Fired when a new conn is established, or existing conn is lost (EXTRA_NEW_STATE = 

true/false)

0 NEWTWORK_STATE_CHANGED_ACTION:
0 Fired whenever wifi connectivity state changes
0 EXTRA_NETWORK_INFO: NetworkInfo obj for current network status
0 EXTRA_BSSID: BSSID of the access point that you’re connected to

0 RSSI_CHANGED_ACTION: 
0 Monitor the signal strength of the connected WiFi network
0 EXTRA_NEW_RSSI: current signal strength



Monitoring active connection 
details

0 Once you connected to an access point, use 
getConnectionInfo of WifiManager to find info of that 
connection

0 Returns “WifiInfo” object

WifiInfo info = wifi.getConnectionInfo();

if (info.getBSSID() != null) {

int strength = WifiManager.calculateSignalLevel(info.getRssi(), 5);

int speed = info.getLinkSpeed();

String units = WifiInfo.LINK_SPEED_UNITS;

String ssid = info.getSSID();

String cSummary = String.format("Connected to %s at %s%s. Strength 

%s/5",

ssid, speed, units, strength);

}



Scanning hotspots
0 Use WifiManager to scan access points using startScan() 

0 Android will broadcast scan results with an Intent of 
“SCAN_RESULTS_AVAILABLE_ACTION”  
// Register a broadcast receiver that listens for scan results.

registerReceiver(new BroadcastReceiver() {

@Override

public void onReceive(Context context, Intent intent) {

List<ScanResult> results = wifi.getScanResults();

ScanResult bestSignal = null;

for (ScanResult result : results) {

if (bestSignal == null ||

WifiManager.compareSignalLevel(bestSignal.level,result.level)<0)

bestSignal = result;

}

String toastText = String.format("%s networks found. %s is

the strongest.",

results.size(), bestSignal.SSID);

Toast.makeText(getApplicationContext(), toastText, Toast.LENGTH_LONG);

}

}, new IntentFilter(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));

// Initiate a scan.

wifi.startScan();



Creating a WiFi configuration

0 To connect to a WiFi network, a WiFi configuration must be 
created and registered
0 Normally a user does this, but app can do this

0 Network configuration is stored as WifiConfiguration
object
0 SSID (service set ID, e.g., IPv4_KAIST)

0 BSSID (MAC addr of an AP)

0 networkId (unique ID that the supplicant uses to identify this 
network configuration entry)

0 priority (priority of this access point)

0 status (current status: ENABLED, DISABLED, CURRENT)



Creating a WiFi configuration

WifiManager wifi = (WifiManager) getSystemService(Context.WIFI_SERVICE);

WifiConfiguration wc = new WifiConfiguration();

wc.SSID = "\"SSIDName\"";

wc.preSharedKey = "\"password\""; // it should be in double quote “password”

wc.hiddenSSID = true;

wc.status = WifiConfiguration.Status.ENABLED; 

// setting up WPA-PSK 

wc.allowedGroupCiphers.set(WifiConfiguration.GroupCipher.TKIP);

wc.allowedGroupCiphers.set(WifiConfiguration.GroupCipher.CCMP);

wc.allowedKeyManagement.set(WifiConfiguration.KeyMgmt.WPA_PSK);

wc.allowedPairwiseCiphers.set(WifiConfiguration.PairwiseCipher.TKIP);

wc.allowedPairwiseCiphers.set(WifiConfiguration.PairwiseCipher.CCMP);

wc.allowedProtocols.set(WifiConfiguration.Protocol.RSN);

int res = wifi.addNetwork(wc); // the ID of the newly created network description 

Log.d("WifiPreference", "add Network returned " + res );

boolean b = wifi.enableNetwork(res, true); 

Log.d("WifiPreference", "enableNetwork returned " + b );

http://developer.android.com/reference/android/net/wifi/WifiConfiguration.html#preSharedKey

http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w

http://developer.android.com/reference/android/net/wifi/WifiConfiguration.html
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w
http://stackoverflow.com/questions/2140133/how-and-what-to-set-to-android-wificonfiguration-presharedkey-to-connect-to-the-w


Managing WiFi configurations

Use WiFi Manager to manage the configured network 
settings and control which networks to connect to

// Get a list of available configurations

List<WifiConfiguration> configurations = wifi.getConfiguredNetworks();

// Get the network ID for the first one.

if (configurations.size() > 0) {

int netID = configurations.get(0).networkId;

// Enable that network.

boolean disableAllOthers = true;

wifi.enableNetwork(netID, disableAllOtherstrue);

}



Power Management

Android supports its own Power Management (on top of 
the standard Linux Power Management) 

To make sure that CPU shouldn't consume power if no 
applications or services require power 

Android requires that applications and services request 
CPU resources with "wake locks" through the Android 
application framework and native Linux libraries. 

If there are no active wake locks, Android will shut down 
the CPU. 



Power Management



WakeLock
Flag value CPU Screen Keyboard

PARTIAL_WAKE_LOCK On Off Off

SCREEN_DIM_WAKE_LOCK On Dim Off

SCREEN_BRIGHT_WAKE_LOCK On BRIGH
T

Off

FULL_WAKE_LOCK On Bright Bright

// Acquire handle to the PowerManager service 

PowerManager pm = (PowerManager)mContext.getSystemService( 

Context.POWER_SERVICE); 

// Create a wake lock and specify the power management flags for 

screen, timeout, etc.

PowerManager.WakeLock wl = pm.newWakeLock( 

PowerManager.SCREEN_DIM_WAKE_LOCK | 

PowerManager.ON_AFTER_RELEASE, TAG); 

// Acquire wake lock

wl.acquire(); // ... 

// Release wake lock

wl.release();



Wifi background data transfer
Background data transfer:
 Wifilock + Wakelock (partial)

// http://developer.android.com/reference/android/net/wifi/WifiManager.WifiLock.html

WifiManager.WifiLock wifiLock = null;

PowerManager.WakeLock wakeLock = null;

// acquire

if (wifiLock == null) {

WifiManager wifiManager = (WifiManager) 

context.getSystemService(context.WIFI_SERVICE);

wifiLock = wifiManager.createWifiLock("wifilock");

wifiLock.setReferenceCounted(true);

wifiLock.acquire();

PowerManager powerManager = (PowerManager) 

context.getSystemService(context.POWER_SERVICE);

wakeLock = 

powerManager.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, "wakelock");

wakeLock.acquire();

} 

// release

if (wifiLock != null) {

wifiLock.release();

wifiLock = null;

wakeLock.release();

wakeLock = null;

}

http://developer.android.com/reference/android/net/wifi/WifiManager.WifiLock.html


Background data transfer
 Setting > Accounts & sync settings > background data setting

 If this setting is off, an application cannot transfer data only when it is active and in 
the foreground 
 Services cannot transfer data (by definition)

 Use connectivity manager to check this:
 boolean backgroundEnabled = connectivity.getBackgroundDataSetting();

 App can listen to changes in the background data transfer preference:

registerReceiver(
new BroadcastReceiver() {

@Override
public void onReceive(Context context, Intent intent)
// do something..

}, 
new IntentFilter(ConnectivityManager.

ACTION_BACKGROUND_DATA_SERVICE_CHANGED)

 ); 



Start WiFi
 New App called WiFiFun

 Include permissions: access_wifi_state, change_wifi_state, access_network_state, 
change_network_state, write_settings, write_secure_settings, change_wifi_multicast

 Include member variable

 WifiManager wifiManager;

 In onCreate, add

 wifiManager = (WifiManager) getSystemService(Context.WIFI_SERVICE);

 Start wifi, add



Scanning for access points

 Approach: start wifi scanning, get results in broadcast receiver

 At the end of onCreate, addd

 Register to receive broadcast about scanning results

 Add member variable to WiFiFun

 IntentFilter filter;

 At the end of onCreate, add

 filter = new IntentFilter();

 filter.addAction(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION);

 registerReceiver(wifiEventReceiver, filter);

 Make broadcast receiver.



 Somewhere in WifiFun, add member variable

 private BroadcastReceiver wifiEventReceiver = new BroadcastReceiver() {}; 

 // let eclipse add unimplemented methods

 In public void onReceive(Context arg0, Intent intent) {, add

 Run

 Try adding wifiManager. startScan ()  to end of BroadcastReceiver .onReceive

 Notice that signal strength varies. 



Scanning for access points
Clean up BroadcastReceiver: unregister on pause, and regfister on 

resume. Be careful to not register twice
 Add member variable to WiFiFun



Connect to access point
 Add button

 Connect to udel wifi

 In onCreate, add
 Button wifiConnect = (Button)findViewById(R.id.WifiConnect);
 wifiConnect.setOnClickListener(new View.OnClickListener() {});
0 // let eclipse add onClick

 In onClick add
0 Add new network to current list of networks

 Two things
0 This might not connect, e.g., maybe udel is out of range
0 Perhaps we should not add udel to the list of networks



Add BroadcastReceiver
 In onCreate, when the intentFilter is being made, add

 filter.addAction(WifiManager.SUPPLICANT_CONNECTION_CHANGE_ACTION);

 filter.addAction(WifiManager.SUPPLICANT_STATE_CHANGED_ACTION);

 filter.addAction(WifiManager.NETWORK_IDS_CHANGED_ACTION);

 filter.addAction(WifiManager.NETWORK_STATE_CHANGED_ACTION);

 filter.addAction(WifiManager.WIFI_STATE_CHANGED_ACTION);

 In the BroadcastReceiver, add



 Add function





NETWORK_STATE_CHANGED_AC
TION



Get current connection info

Add button: Get Current
In onCreate, add



Connect to ad hoc network

Android does not support ad hoc networking

Only rooted phones can connect

Add BusyBox from market place

We need a new wpa_supplicant.conf
Wifi hardward <-> driver (.ko) <-> wpa_supplicant <-> 

(wpa_cli) <-> android system+api

Make new app

Add button
Connect to ad hoc

Disconnect from ad hoc



steps

Move wpa_supplicant to correct directory

Change permissions of wpa_supplicant

Disable dhcp

Set ip address etc

Turn off wifi
 (Perhap we could only restart wpa_supplicant)

Set static ip

Turn on wifi

Check status

Set routing table

Try ping



Make ip from mac

It would be better to embed the whole mac in an ipv6 address…



Set static ip address

 Ad hoc mode needs a static ip address, since dhcp is most likely not available

 Here we get the mac address and build an IP address in subnet 192.168/16 from the MAC

 Dns is open-dns



steps
 Move wpa_supplicant to correct directory

 Change permissions of wpa_supplicant

 Disable dhcp

 Set ip address etc

 Turn off wifi

 (Perhap we could only restart wpa_supplicant)

 Set ip

 Trick: we want to set ip after wifi is off, which occurs well after we issue the command to turn off wifi

 Approach: 

 Add member variable int adHocState = 0;

 When getting into ad hoc mode

 After turning off wifi, adHocState = 1;

 After turning on wifi, adHocState = 2;

 When getting out of ad hoc mode

 After turning off wifi, adHocState = 3;

 After turning on wifi, adHocState = 0;

 Check for wifi state changes

 If state change and adHocState==1, then set ip, adHocState =2, turn on wifi

 If state change and adHocState==3, then clear static ip, adHocState =0, turn on wifi

 Turn on wifi

 Check status

 Try ping

 multi-hop Ad hoc networking - next week



 Add member variable int adHocState = 0;

 private BroadcastReceiver wifiEventReceiver = new BroadcastReceiver() {



Make button: Connect from ad hoc



Make button: disconnect from ad hoc


