Chapter 8: FET Amplifiers
Introduction

FETs provide:

- Excellent voltage gain
- High input impedance
- Low-power consumption
- Good frequency range
FET Small-Signal Model

Transconductance

The relationship of a change in I_D to the corresponding change in V_{GS} is called *transconductance*. Transconductance is denoted g_m and given by:

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$
Graphical Determination of g_m

\[g_m = \frac{\Delta I_D}{\Delta V_{GS}} \quad (= \text{Slope at } Q\text{-point}) \]

Diagram showing the graphical determination of g_m with points V_P, I_D, I_{DSS}, and Q-Point.
Mathematical Definitions of g_m

\[
g_m = \frac{\Delta I_D}{\Delta V_{GS}}
\]

\[
g_m = \frac{2I_{DSS}}{|V_P|} \left[1 - \frac{V_{GS}}{V_P} \right]
\]

Where $V_{GS} = 0$V

\[
g_{m0} = \frac{2I_{DSS}}{|V_P|}
\]

\[
g_m = g_{m0} \left[1 - \frac{V_{GS}}{V_P} \right]
\]

Where \(1 - \frac{V_{GS}}{V_P} = \sqrt{\frac{I_D}{I_{DSS}}} \)

\[
g_m = g_{m0} \left(1 - \frac{V_{GS}}{V_P} \right) = g_{m0} \sqrt{\frac{I_D}{I_{DSS}}}
\]
FET Impedance

Input impedance:

\[Z_i = \infty \Omega \]

Output Impedance:

\[Z_o = r_d = \frac{1}{y_{os}} \]

where:

\[r_d = \frac{\Delta V_{DS}}{\Delta I_D} \bigg|_{V_{GS} = \text{constant}} \]

\[y_{os} = \text{admittance parameter listed on FET specification sheets.} \]
FET AC Equivalent Circuit
Common-Source (CS) Fixed-Bias Circuit

The input is on the gate and the output is on the drain.

There is a 180° phase shift between input and output.
Calculations

Input impedance:

\[Z_i = R_G \]

Output impedance:

\[Z_o = R_D \parallel r_d \]

\[Z_o \approx R_D \quad \text{if} \quad r_d \geq 10R_D \]

Voltage gain:

\[A_v = \frac{V_o}{V_i} = -g_m (r_d \parallel R_D) \]

\[A_v = \frac{V_o}{V_i} = -g_m R_D \quad \text{if} \quad r_d \geq 10R_D \]
Common-Source (CS) Self-Bias Circuit

This is a common-source amplifier configuration, so the input is on the gate and the output is on the drain.

There is a 180° phase shift between input and output.
Calculations

Input impedance:

\[Z_i = R_G \]

Output impedance:

\[Z_o = r_d \parallel R_D \]
\[Z_o \approx R_D \quad \text{if } r_d \geq 10R_D \]

Voltage gain:

\[A_v = -g_m (r_d \parallel R_D) \]
\[A_v = -g_m R_D \quad \text{if } r_d \geq 10R_D \]
Common-Source (CS) Self-Bias Circuit

Removing C_s affects the gain of the circuit.
Calculations

Input impedance:

\[Z_i = R_G \]

Output impedance:

\[Z_o \approx R_D \quad | \quad r_d \geq 10R_D \]

Voltage gain:

\[A_V = \frac{V_o}{V_i} = -\frac{g_m R_D}{1 + g_m R_S + \frac{R_D + R_S}{r_d}} \]

\[A_V = \frac{V_o}{V_i} = -\frac{g_m R_D}{1 + g_m R_S} \quad | \quad r_d \geq 10(R_D + R_S) \]
Common-Source (CS) Voltage-Divider Bias

This is a common-source amplifier configuration, so the input is on the gate and the output is on the drain.
Impedances

Input impedance:

\[Z_i = R_1 \parallel R_2 \]

Output impedance:

\[Z_o = r_d \parallel R_D \]

\[Z_o \approx R_D \quad r_d \geq 10R_D \]

Voltage gain:

\[A_v = -g_m \left(r_d \parallel R_D \right) \]

\[A_v = -g_m R_D \quad r_d \geq 10R_D \]
Source Follower (Common-Drain) Circuit

In a common-drain amplifier configuration, the input is on the gate, but the output is from the source.

There is no phase shift between input and output.
Impedances

Input impedance:

\[Z_i = R_G \]

Output impedance:

\[Z_o = r_d \parallel R_S \parallel \left| \frac{1}{g_m} \right| \]

\[Z_o \cong R_S \parallel \left| \frac{1}{g_m} \right| r_d \geq 10R_S \]

Voltage gain:

\[A_v = \frac{V_o}{V_i} = \frac{g_m (r_d \parallel R_S)}{1 + g_m (r_d \parallel R_S)} \]

\[A_v = \frac{V_o}{V_i} = \frac{g_m R_S}{1 + g_m R_S} \quad r_d \geq 10 \]
Common-Gate (CG) Circuit

The input is on the source and the output is on the drain.

There is no phase shift between input and output.
Calculations

Input impedance:

\[Z_i = R_S \parallel \left[\frac{r_d + R_D}{1 + g_m r_d} \right] \]

\[Z_i \cong R_S \parallel \frac{1}{g_m} r_d \geq 10R_D \]

Output impedance:

\[Z_o = R_D \parallel r_d \]

\[Z_o \cong R_D \bigg| r_d \geq 10 \]

Voltage gain:

\[A_v = \frac{V_o}{V_i} = \left[g_m R_D + \frac{R_D}{r_d} \right] \left[1 + \frac{R_D}{r_d} \right] \]

\[A_v = g_m R_D \bigg| r_d \geq 10R_D \]
D-Type MOSFET AC Equivalent
E-Type MOSFET AC Equivalent

g_m and r_d can be found in the specification sheet for the FET.

$g_m = |y_{fs}|$, $r_d = \frac{1}{|y_{os}|}$
Common-Source Drain-Feedback

There is a 180° phase shift between input and output.
Calculations

Input impedance:

\[
Z_i = \frac{R_F + r_d \parallel R_D}{1 + g_m (r_d \parallel R_D)}
\]

\[
Z_i \approx \frac{R_F}{1 + g_m R_D} \quad R_F >> r_d \parallel R_D, r_d \geq 10R_D
\]

Output impedance:

\[
Z_o = R_F \parallel r_d \parallel R_D
\]

\[
Z_o \approx R_D \quad R_F >> r_d \parallel R_D, r_d \geq 10R_D
\]

Voltage gain:

\[
A_v = -g_m (R_F \parallel r_d \parallel R_D)
\]

\[
A_v \approx -g_m R_D \quad R_F >> r_d \parallel R_D, r_d \geq 10R_D
\]
Common-Source Voltage-Divider Bias
Calculations

Input impedance:

\[Z_i = R_1 \parallel R_2 \]

Output impedance:

\[Z_o = r_d \parallel R_D \]
\[Z_o \cong R_D \mid r_d \geq 10 \]

Voltage gain:

\[A_v = -g_m \left(r_d \parallel R_D \right) \]
\[A_v \cong -g_m R_D \mid r_d \geq 10R_D \]
Summary Table
Summary Table

Fixed-bias
[JFET or D-MOSFET]

Self-bias
Unbypassed R_S
[JFET or D-MOSFET]

Self-bias
bypassed R_S
[JFET or D-MOSFET]

Voltage-divider bias
[JFET or D-MOSFET]
Troubleshooting

Check the DC bias voltages:

If not correct check power supply, resistors, FET. Also check to ensure that the coupling capacitor between amplifier stages is OK.

Check the AC voltages:

If not correct check FET, capacitors and the loading effect of the next stage.
Practical Applications

Three-Channel Audio Mixer
Silent Switching
Phase Shift Networks
Motion Detection System