4500-H⁺ PH VALUE*(#(42)

4500-H⁺ A. Introduction

1. Principles

Measurement of pH is one of the most important and frequently used tests in water chemistry. Practically every phase of water supply and wastewater treatment, e.g., acid-base neutralization, water softening, precipitation, coagulation, disinfection, and corrosion control, is pH-dependent. pH is used in alkalinity and carbon dioxide measurements and many other acid-base equilibria. At a given temperature the intensity of the acidic or basic character of a solution is indicated by pH or hydrogen ion activity. Alkalinity and acidity are the acid- and base-neutralizing capacities of a water and usually are expressed as milligrams CaCO₃ per liter. Buffer capacity is the amount of strong acid or base, usually expressed in moles per liter, needed to change the pH value of a 1-L sample by 1 unit. pH as defined by Sorenson¹ is \(-\log [H^+] \); it is the “intensity” factor of acidity. Pure water is very slightly ionized and at equilibrium the ion product is

\[
[H^+][OH^-] = K_w
\]

\[
= 1.01 \times 10^{-14} \text{ at } 25°C
\]

and

\[
[H^+] = [OH^-]
\]

\[
= 1.005 \times 10^{-7}
\]

where:

\([H^+]\) = activity of hydrogen ions, moles/L,
\([OH^-]\) = activity of hydroxyl ions, moles/L, and
\(K_w\) = ion product of water.

Because of ionic interactions in all but very dilute solutions, it is necessary to use the “activity” of an ion and not its molar concentration. Use of the term pH assumes that the activity of the hydrogen ion, \(a_H^+\), is being considered. The approximate equivalence to molarity, \([H^+]\) can be presumed only in very dilute solutions (ionic strength <0.1).

A logarithmic scale is convenient for expressing a wide range of ionic activities. Equation 1
in logarithmic form and corrected to reflect activity is:

\[(-\log_{10} a_{H^+}) + (-\log_{10} a_{OH^-}) = 14 \]

or

\[\text{pH} + \text{pOH} = \text{pK}_w \]

where:

\[\text{pH} = \log_{10} a_{H^+} \]

\[\text{pOH} = \log_{10} a_{OH^-} \]

Equation 2 states that as pH increases pOH decreases correspondingly and vice versa because \(\text{pK}_w \) is constant for a given temperature. At 25°C, pH 7.0 is neutral, the activities of the hydrogen and hydroxyl ions are equal, and each corresponds to an approximate activity of \(10^{-7} \) moles/L. The neutral point is temperature-dependent and is pH 7.5 at 0°C and pH 6.5 at 60°C.

The pH value of a highly dilute solution is approximately the same as the negative common logarithm of the hydrogen ion concentration. Natural waters usually have pH values in the range of 4 to 9, and most are slightly basic because of the presence of bicarbonates and carbonates of the alkali and alkaline earth metals.

2. Reference

4500-H\(^+\) B. Electrometric Method

1. General Discussion
 a. Principle: The basic principle of electrometric pH measurement is determination of the activity of the hydrogen ions by potentiometric measurement using a standard hydrogen electrode and a reference electrode. The hydrogen electrode consists of a platinum electrode across which hydrogen gas is bubbled at a pressure of 101 kPa. Because of difficulty in its use and the potential for poisoning the hydrogen electrode, the glass electrode commonly is used. The electromotive force (emf) produced in the glass electrode system varies linearly with pH. This linear relationship is described by plotting the measured emf against the pH of different buffers. Sample pH is determined by extrapolation.

 Because single ion activities such as \(a_{H^+} \) cannot be measured, pH is defined operationally on a potentiometric scale. The pH measuring instrument is calibrated potentiometrically with an
indicating (glass) electrode and a reference electrode using National Institute of Standards and Technology (NIST) buffers having assigned values so that:

$$\text{pH}_B = -\log_{10} a_{H^+}$$

where:

$$\text{pH}_B = \text{assigned pH of NIST buffer.}$$

The operational pH scale is used to measure sample pH and is defined as:

$$\text{pH}_x = \text{pH}_B \pm \frac{F(E_x - E_s)}{2.303 \, RT}$$

where:

$$\text{pH}_x = \text{potentiometrically measured sample pH,}$$

$$F = \text{Faraday: } 9.649 \times 10^4 \text{ coulomb/mole,}$$

$$E_x = \text{sample emf, V,}$$

$$E_s = \text{buffer emf, V,}$$

$$R = \text{gas constant; } 8.314 \text{ joule/(mole °K), and}$$

$$T = \text{absolute temperature, °K.}$$

NOTE: Although the equation for pH\(_x\) appears in the literature with a plus sign, the sign of emf readings in millivolts for most pH meters manufactured in the U.S. is negative. The choice of negative sign is consistent with the IUPAC Stockholm convention concerning the sign of electrode potential.\(^1\),\(^2\)

The activity scale gives values that are higher than those on Sorenson’s scale by 0.04 units:

$$\text{pH (activity)} = \text{pH (Sorenson)} + 0.04$$

The equation for pH\(_x\) assumes that the emf of the cells containing the sample and buffer is due solely to hydrogen ion activity unaffected by sample composition. In practice, samples will have varying ionic species and ionic strengths, both affecting H\(^+\) activity. This imposes an experimental limitation on pH measurement; thus, to obtain meaningful results, the differences between \(E_x\) and \(E_s\) should be minimal. Samples must be dilute aqueous solutions of simple solutes (<0.2 M). (Choose buffers to bracket the sample.) Determination of pH cannot be made accurately in nonaqueous media, suspensions, colloids, or high-ionic-strength solutions.

\(b. \text{Interferences:}\) The glass electrode is relatively free from interference from color, turbidity, colloidal matter, oxidants, reductants, or high salinity, except for a sodium error at pH > 10.
Reduce this error by using special “low sodium error” electrodes.

pH measurements are affected by temperature in two ways: mechanical effects that are caused by changes in the properties of the electrodes and chemical effects caused by equilibrium changes. In the first instance, the Nernstian slope increases with increasing temperature and electrodes take time to achieve thermal equilibrium. This can cause long-term drift in pH. Because chemical equilibrium affects pH, standard pH buffers have a specified pH at indicated temperatures.

Always report temperature at which pH is measured.

2. Apparatus

a. pH meter consisting of potentiometer, a glass electrode, a reference electrode, and a temperature-compensating device. A circuit is completed through the potentiometer when the electrodes are immersed in the test solution. Many pH meters are capable of reading pH or millivolts and some have scale expansion that permits reading to 0.001 pH unit, but most instruments are not that precise.

For routine work use a pH meter accurate and reproducible to 0.1 pH unit with a range of 0 to 14 and equipped with a temperature-compensation adjustment.

Although manufacturers provide operating instructions, the use of different descriptive terms may be confusing. For most instruments, there are two controls: intercept (set buffer, asymmetry, standardize) and slope (temperature, offset); their functions are shown diagramatically in Figure 4500-H⁺:1 and Figure 4500-H⁻:2. The intercept control shifts the response curve laterally to pass through the isopotential point with no change in slope. This permits bringing the instrument on scale (0 mV) with a pH 7 buffer that has no change in potential with temperature.

The slope control rotates the emf/pH slope about the isopotential point (0 mV/pH 7). To adjust slope for temperature without disturbing the intercept, select a buffer that brackets the sample with pH 7 buffer and adjust slope control to pH of this buffer. The instrument will indicate correct millivolt change per unit pH at the test temperature.

b. Reference electrode consisting of a half cell that provides a constant electrode potential. Commonly used are calomel and silver: silver-chloride electrodes. Either is available with several types of liquid junctions.

The liquid junction of the reference electrode is critical because at this point the electrode forms a salt bridge with the sample or buffer and a liquid junction potential is generated that in turn affects the potential produced by the reference electrode. Reference electrode junctions may be annular ceramic, quartz, or asbestos fiber, or the sleeve type. The quartz type is most widely used. The asbestos fiber type is not recommended for strongly basic solutions. Follow the manufacturer’s recommendation on use and care of the reference electrode.

Refill nonsealed electrodes with the correct electrolyte to proper level and make sure junction is properly wetted.

c. Glass electrode: The sensor electrode is a bulb of special glass containing a fixed concentration of HCl or a buffered chloride solution in contact with an internal reference
Standard Methods for the Examination of Water and Wastewater

electrode. Upon immersion of a new electrode in a solution the outer bulb surface becomes hydrated and exchanges sodium ions for hydrogen ions to build up a surface layer of hydrogen ions. This, together with the repulsion of anions by fixed, negatively charged silicate sites, produces at the glass-solution interface a potential that is a function of hydrogen ion activity in solution.

Several types of glass electrodes are available. Combination electrodes incorporate the glass and reference electrodes into a single probe. Use a “low sodium error” electrode that can operate at high temperatures for measuring pH over 10 because standard glass electrodes yield erroneously low values. For measuring pH below 1 standard glass electrodes yield erroneously high values; use liquid membrane electrodes instead.

d. **Beakers**: Preferably use polyethylene or TFE* #(44) beakers.

e. **Stirrer**: Use either a magnetic, TFE-coated stirring bar or a mechanical stirrer with inert plastic-coated impeller.

f. **Flow chamber**: Use for continuous flow measurements or for poorly buffered solutions.

3. **Reagents**

a. **General preparation**: Calibrate the electrode system against standard buffer solutions of known pH. Because buffer solutions may deteriorate as a result of mold growth or contamination, prepare fresh as needed for accurate work by weighing the amounts of chemicals specified in Table 4500-H+:I, dissolving in distilled water at 25°C, and diluting to 1000 mL. This is particularly important for borate and carbonate buffers.

Boil and cool distilled water having a conductivity of less than 2 µhmhos/cm. To 50 mL add 1 drop of saturated KCl solution suitable for reference electrode use. If the pH of this test solution is between 6.0 and 7.0, use it to prepare all standard solutions.

Dry KH₂PO₄ at 110 to 130°C for 2 h before weighing but do not heat unstable hydrated potassium tetroxalate above 60°C nor dry the other specified buffer salts.

Although ACS-grade chemicals generally are satisfactory for preparing buffer solutions, use certified materials available from the National Institute of Standards and Technology when the greatest accuracy is required. For routine analysis, use commercially available buffer tablets, powders, or solutions of tested quality. In preparing buffer solutions from solid salts, insure complete solution.

As a rule, select and prepare buffer solutions classed as primary standards in Table 4500-H:+1; reserve secondary standards for extreme situations encountered in wastewater measurements. Consult Table 4500-H:+1I for accepted pH of standard buffer solutions at temperatures other than 25°C. In routine use, store buffer solutions and samples in polyethylene bottles. Replace buffer solutions every 4 weeks.

b. **Saturated potassium hydrogen tartrate solution**: Shake vigorously an excess (5 to 10 g) of finely crystalline KHC₄H₄O₆ with 100 to 300 mL distilled water at 25°C in a glass-stoppered bottle. Separate clear solution from undissolved material by decantation or filtration. Preserve for
2 months or more by adding one thymol crystal (8 mm diam) per 200 mL solution.

c. Saturated calcium hydroxide solution: Calcine a well-washed, low-alkali grade CaCO$_3$ in a platinum dish by igniting for 1 h at 1000°C. Cool, hydrate by slowly adding distilled water with stirring, and heat to boiling. Cool, filter, and collect solid Ca(OH)$_2$ on a fritted glass filter of medium porosity. Dry at 110°C, cool, and pulverize to uniformly fine granules. Vigorously shake an excess of fine granules with distilled water in a stoppered polyethylene bottle. Let temperature come to 25°C after mixing. Filter supernatant under suction through a sintered glass filter of medium porosity and use filtrate as the buffer solution. Discard buffer solution when atmospheric CO$_2$ causes turbidity to appear.

d. Auxiliary solutions: 0.1N NaOH, 0.1N HCl, 5N HCl (dilute five volumes 6N HCl with one volume distilled water), and acid potassium fluoride solution (dissolve 2 g KF in 2 mL conc H$_2$SO$_4$ and dilute to 100 mL with distilled water).

4. Procedure

a. Instrument calibration: In each case follow manufacturer’s instructions for pH meter and for storage and preparation of electrodes for use. Recommended solutions for short-term storage of electrodes vary with type of electrode and manufacturer, but generally have a conductivity greater than 4000 µmhos/cm. Tap water is a better substitute than distilled water, but pH 4 buffer is best for the single glass electrode and saturated KCl is preferred for a calomel and Ag/AgCl reference electrode. Saturated KC$_2$ is the preferred solution for a combination electrode. Keep electrodes wet by returning them to storage solution whenever pH meter is not in use.

Before use, remove electrodes from storage solution, rinse, blot dry with a soft tissue, place in initial buffer solution, and set the isopotential point (¶ 2a above). Select a second buffer within 2 pH units of sample pH and bring sample and buffer to same temperature, which may be the room temperature, a fixed temperature such as 25°C, or the temperature of a fresh sample. Remove electrodes from first buffer, rinse thoroughly with distilled water, blot dry, and immerse in second buffer. Record temperature of measurement and adjust temperature dial on meter so that meter indicates pH value of buffer at test temperature (this is a slope adjustment).

Use the pH value listed in the tables for the buffer used at the test temperature. Remove electrodes from second buffer, rinse thoroughly with distilled water and dry electrodes as indicated above. Immerse in a third buffer below pH 10, approximately 3 pH units different from the second; the reading should be within 0.1 unit for the pH of the third buffer. If the meter response shows a difference greater than 0.1 pH unit from expected value, look for trouble with the electrodes or potentiometer (see ¶ 5a and ¶ 5b below).

The purpose of standardization is to adjust the response of the glass electrode to the instrument. When only occasional pH measurements are made standardize instrument before each measurement. When frequent measurements are made and the instrument is stable, standardize less frequently. If sample pH values vary widely, standardize for each sample with a buffer having a pH within 1 to 2 pH units of the sample.
b. Sample analysis: Establish equilibrium between electrodes and sample by stirring sample to insure homogeneity; stir gently to minimize carbon dioxide entrainment. For buffered samples or those of high ionic strength, condition electrodes after cleaning by dipping them into sample for 1 min. Blot dry, immerse in a fresh portion of the same sample, and read pH.

With dilute, poorly buffered solutions, equilibrate electrodes by immersing in three or four successive portions of sample. Take a fresh sample to measure pH.

5. Trouble Shooting

a. Potentiometer: To locate trouble source disconnect electrodes and, using a short-circuit strap, connect reference electrode terminal to glass electrode terminal. Observe change in pH when instrument calibration knob is adjusted. If potentiometer is operating properly, it will respond rapidly and evenly to changes in calibration over a wide scale range. A faulty potentiometer will fail to respond, will react erratically, or will show a drift upon adjustment. Switch to the millivolt scale on which the meter should read zero. If inexperienced, do not attempt potentiometer repair other than maintenance as described in instrument manual.

b. Electrodes: If potentiometer is functioning properly, look for the instrument fault in the electrode pair. Substitute one electrode at a time and cross-check with two buffers that are about 4 pH units apart. A deviation greater than 0.1 pH unit indicates a faulty electrode. Glass electrodes fail because of scratches, deterioration, or accumulation of debris on the glass surface. Rejuvenate electrode by alternately immersing it three times each in 0.1N HCl and 0.1N NaOH. If this fails, immerse tip in KF solution for 30 s. After rejuvenation, soak in pH 7.0 buffer overnight. Rinse and store in pH 7.0 buffer. Rinse again with distilled water before use. Protein coatings can be removed by soaking glass electrodes in a 10% pepsin solution adjusted to pH 1 to 2.

To check reference electrode, oppose the emf of a questionable reference electrode against another one of the same type that is known to be good. Using an adapter, plug good reference electrode into glass electrode jack of potentiometer; then plug questioned electrode into reference electrode jack. Set meter to read millivolts and take readings with both electrodes immersed in the same electrolyte (KCl) solution and then in the same buffer solution. The millivolt readings should be 0 ± 5 mV for both solutions. If different electrodes are used, i.e., silver: silver-chloride against calomel or vice versa, the reading will be 44 ± 5 mV for a good reference electrode.

Reference electrode troubles generally are traceable to a clogged junction. Interruption of the continuous trickle of electrolyte through the junction causes increase in response time and drift in reading. Clear a clogged junction by applying suction to the tip or by boiling tip in distilled water until the electrolyte flows freely when suction is applied to tip or pressure is applied to the fill hole. Replaceable junctions are available commercially.

6. Precision and Bias

By careful use of a laboratory pH meter with good electrodes, a precision of ±0.02 pH unit and an accuracy of ±0.05 pH unit can be achieved. However, ±0.1 pH unit represents the limit of
accuracy under normal conditions, especially for measurement of water and poorly buffered solutions. For this reason, report pH values to the nearest 0.1 pH unit. A synthetic sample of a Clark and Lubs buffer solution of pH 7.3 was analyzed electrometrically by 30 laboratories with a standard deviation of ±0.13 pH unit.

7. References

8. Bibliography

1. Uses and Forms
Elemental iodine is not a natural constituent of natural waters. Iodine may be added to potable and swimming pool waters as a disinfectant. For wastewaters, iodine has had limited application. Use of iodine generally is restricted to personal or remote water supplies where ease of application, storage stability, and an inertness toward organic matter are important considerations. Some swimming pool waters are treated with iodine to lessen eye burn among swimmers and to provide a stable disinfectant residual less affected by adverse environmental conditions.

Iodine is applied in the elemental form or produced in situ by the simultaneous addition of an iodide salt and a suitable oxidant. In the latter case, an excess of iodide may be maintained to serve as a reservoir for iodine production; the determination of iodide is desirable for disinfectant control (see Iodide, Section 4500-I).

Elemental I\(_2\) can undergo hydrolysis to form hypoiodous acid (HOI), which can dissociate to form hypoiodite (OI\(^-\)) under strongly basic conditions. Hypoiodous acid/hypoiodite ion may further disproportionate to form iodate. In the presence of excess iodide, iodine may react with iodide to form tri-iodide ion (I\(_3^-\)). The rate and the extent to which these reactions may occur depend on pH and the concentration of iodide in the solution. Basic conditions favor formation of hypoiodite and iodate. Acidic conditions and the presence of iodide favor formation of iodine and tri-iodide ion. Thus, the relative concentrations of these iodine species in the resulting solution can be quite variable. Hypoiodous acid/hypoiodite also can act as an iodinating agent, reacting with organic compounds to form iodinated organic compounds. Elemental I\(_2\), hypoiodous acid, hypoiodite ion, and tri-iodide ion are considered active iodine. There is no generally accepted method for the determination of each of these species individually. Most analytical methods use the oxidizing power of all forms of active iodine for its determination and the results usually are expressed as an equivalent concentration of elemental iodine. The effects of iodate or dissolved organic iodine on these methods have not been thoroughly investigated.

2. Selection of Method
For potable and swimming pool waters treated with elemental iodine, both the amperometric titration and leuco crystal violet colorimetric methods give acceptable results. However, oxidized forms of manganese interfere with the leuco crystal violet method. Where the iodide and chloride ion concentrations are above 50 mg/L and 200 mg/L, respectively, interference in color production may occur in the leuco crystal violet method and the amperometric method is
of 400 to 700 nm. This method is an extension of 2120C. Tristimulus values may be calculated from transmittance measurements, preferably by using the weighted ordinate method or by the selected ordinate method. The method has been described by Allen et al., who include work sheets and worked examples.

5. References

6. Bibliography

2130 TURBIDITY*#(15)

2130 A. Introduction

1. Sources and Significance

Clarity of water is important in producing products destined for human consumption and in many manufacturing operations. Beverage producers, food processors, and potable water treatment plants drawing from a surface water source commonly rely on fluid-particle separation processes such as sedimentation and filtration to increase clarity and insure an acceptable product. The clarity of a natural body of water is an important determinant of its condition and productivity.

Turbidity in water is caused by suspended and colloidal matter such as clay, silt, finely divided organic and inorganic matter, and plankton and other microscopic organisms. Turbidity is an expression of the optical property that causes light to be scattered and absorbed rather than transmitted with no change in direction or flux level through the sample. Correlation of turbidity with the weight or particle number concentration of suspended matter is difficult because the size, shape, and refractive index of the particles affect the light-scattering properties of the suspension. When present in significant concentrations, particles consisting of light-absorbing
materials such as activated carbon cause a negative interference. In low concentrations these particles tend to have a positive influence because they contribute to turbidity. The presence of dissolved, color-causing substances that absorb light may cause a negative interference. Some commercial instruments may have the capability of either correcting for a slight color interference or optically blanking out the color effect.

2. Selection of Method

Historically, the standard method for determination of turbidity has been based on the Jackson candle turbidimeter; however, the lowest turbidity value that can be measured directly on this device is 25 Jackson Turbidity Units (JTU). Because turbidities of water treated by conventional fluid-particle separation processes usually fall within the range of 0 to 1 unit, indirect secondary methods were developed to estimate turbidity. Electronic nephelometers are the preferred instruments for turbidity measurement.

Most commercial turbidimeters designed for measuring low turbidities give comparatively good indications of the intensity of light scattered in one particular direction, predominantly at right angles to the incident light. Turbidimeters with scattered-light detectors located at 90° to the incident beam are called nephelometers. Nephelometers are relatively unaffected by small differences in design parameters and therefore are specified as the standard instrument for measurement of low turbidities. Instruments of different make and model may vary in response. However, interinstrument variation may be effectively negligible if good measurement techniques are used and the characteristics of the particles in the measured suspensions are similar. Poor measurement technique can have a greater effect on measurement error than small differences in instrument design. Turbidimeters of nonstandard design, such as forward-scattering devices, may be more sensitive than nephelometers to the presence of larger particles. While it may not be appropriate to compare their output with that of instruments of standard design, they still may be useful for process monitoring.

An additional cause of discrepancies in turbidity analysis is the use of suspensions of different types of particulate matter for instrument calibration. Like water samples, prepared suspensions have different optical properties depending on the particle size distributions, shapes, and refractive indices. A standard reference suspension having reproducible light-scattering properties is specified for nephelometer calibration.

Its precision, sensitivity, and applicability over a wide turbidity range make the nephelometric method preferable to visual methods. Report nephelometric measurement results as nephelometric turbidity units (NTU).

3. Storage of Sample

Determine turbidity as soon as possible after the sample is taken. Gently agitate all samples before examination to ensure a representative measurement. Sample preservation is not practical; begin analysis promptly. Refrigerate or cool to 4°C, to minimize microbiological decomposition of solids, if storage is required. For best results, measure turbidity immediately without altering the original sample conditions such as temperature or pH.
2130 B. Nephelometric Method

1. General Discussion
 a. Principle: This method is based on a comparison of the intensity of light scattered by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the same conditions. The higher the intensity of scattered light, the higher the turbidity. Formazin polymer is used as the primary standard reference suspension. The turbidity of a specified concentration of formazin suspension is defined as 4000 NTU.

 b. Interference: Turbidity can be determined for any water sample that is free of debris and rapidly settling coarse sediment. Dirty glassware and the presence of air bubbles give false results. “True color,” i.e., water color due to dissolved substances that absorb light, causes measured turbidities to be low. This effect usually is not significant in treated water.

2. Apparatus
 a. Laboratory or process nephelometer consisting of a light source for illuminating the sample and one or more photoelectric detectors with a readout device to indicate intensity of light scattered at 90° to the path of incident light. Use an instrument designed to minimize stray light reaching the detector in the absence of turbidity and to be free from significant drift after a short warmup period. The sensitivity of the instrument should permit detecting turbidity differences of 0.02 NTU or less in the lowest range in waters having a turbidity of less than 1 NTU. Several ranges may be necessary to obtain both adequate coverage and sufficient sensitivity for low turbidities. Differences in instrument design will cause differences in measured values for turbidity even though the same suspension is used for calibration. To minimize such differences, observe the following design criteria:

 1) Light source—Tungsten-filament lamp operated at a color temperature between 2200 and 3000°K.

 2) Distance traversed by incident light and scattered light within the sample tube—Total not to exceed 10 cm.

 3) Angle of light acceptance by detector—Centered at 90° to the incident light path and not to exceed ±30° from 90°. The detector and filter system, if used, shall have a spectral peak response between 400 and 600 nm.

 b. Sample cells: Use sample cells or tubes of clear, colorless glass or plastic. Keep cells scrupulously clean, both inside and out, and discard if scratched or etched. Never handle them where the instrument’s light beam will strike them. Use tubes with sufficient extra length, or with a protective case, so that they may be handled properly. Fill cells with samples and standards that have been agitated thoroughly and allow sufficient time for bubbles to escape.

 Clean sample cells by thorough washing with laboratory soap inside and out followed by multiple rinses with distilled or deionized water; let cells air-dry. Handle sample cells only by
the top to avoid dirt and fingerprints within the light path.

Cells may be coated on the outside with a thin layer of silicone oil to mask minor imperfections and scratches that may contribute to stray light. Use silicone oil with the same refractive index as glass. Avoid excess oil because it may attract dirt and contaminate the sample compartment of the instrument. Using a soft, lint-free cloth, spread the oil uniformly and wipe off excess. The cell should appear to be nearly dry with little or no visible oil.

Because small differences between sample cells significantly impact measurement, use either matched pairs of cells or the same cell for both standardization and sample measurement.

3. Reagents

 a. Dilution water: High-purity water will cause some light scattering, which is detected by nephelometers as turbidity. To obtain low-turbidity water for dilutions, nominal value 0.02 NTU, pass laboratory reagent-grade water through a filter with pore size sufficiently small to remove essentially all particles larger than 0.1 μm;*#(17) the usual membrane filter used for bacteriological examinations is not satisfactory. Rinse collecting flask at least twice with filtered water and discard the next 200 mL.

 Some commercial bottled demineralized waters have a low turbidity. These may be used when filtration is impractical or a good grade of water is not available to filter in the laboratory. Check turbidity of bottled water to make sure it is lower than the level that can be achieved in the laboratory.

 b. Stock primary standard formazin suspension:

 1) Solution I—Dissolve 1.000 g hydrazine sulfate, (NH₂)₂H₂SO₄, in distilled water and dilute to 100 mL in a volumetric flask. CAUTION: Hydrazine sulfate is a carcinogen; avoid inhalation, ingestion, and skin contact. Formazin suspensions can contain residual hydrazine sulfate.

 2) Solution II—Dissolve 10.00 g hexamethylenetetramine, (CH₂)₆N₄, in distilled water and dilute to 100 mL in a volumetric flask.

 3) In a flask, mix 5.0 mL Solution I and 5.0 mL Solution II. Let stand for 24 h at 25 ± 3°C. This results in a 4000-NTU suspension. Transfer stock suspension to an amber glass or other UV-light-blocking bottle for storage. Make dilutions from this stock suspension. The stock suspension is stable for up to 1 year when properly stored.

 c. Dilute turbidity suspensions: Dilute 4000 NTU primary standard suspension with high-quality dilution water. Prepare immediately before use and discard after use.

 d. Secondary standards: Secondary standards are standards that the manufacturer (or an independent testing organization) has certified will give instrument calibration results equivalent (within certain limits) to the results obtained when the instrument is calibrated with the primary standard, i.e., user-prepared formazin. Various secondary standards are available including: commercial stock suspensions of 4000 NTU formazin, commercial suspensions of microspheres of styrene-divinylbenzene copolymer,†#(18) and items supplied by instrument manufacturers,

© Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation
such as sealed sample cells filled with latex suspension or with metal oxide particles in a polymer gel. The U.S. Environmental Protection Agency designates user-prepared formazin, commercial stock formazin suspensions, and commercial styrene-divinylbenzene suspensions as “primary standards,” and reserves the term “secondary standard” for the sealed standards mentioned above.

Secondary standards made with suspensions of microspheres of styrene-divinylbenzene copolymer typically are as stable as concentrated formazin and are much more stable than diluted formazin. These suspensions can be instrument-specific; therefore, use only suspensions formulated for the type of nephelometer being used. Secondary standards provided by the instrument manufacturer (sometimes called “permanent” standards) may be necessary to standardize some instruments before each reading and in other instruments only as a calibration check to determine when calibration with the primary standard is necessary.

All secondary standards, even so-called “permanent” standards, change with time. Replace them when their age exceeds the shelf life. Deterioration can be detected by measuring the turbidity of the standard after calibrating the instrument with a fresh formazin or microsphere suspension. If there is any doubt about the integrity or turbidity value of any secondary standard, check instrument calibration first with another secondary standard and then, if necessary, with user-prepared formazin. Most secondary standards have been carefully prepared by their manufacturer and should, if properly used, give good agreement with formazin. Prepare formazin primary standard only as a last resort. Proper application of secondary standards is specific for each make and model of nephelometer. Not all secondary standards have to be discarded when comparison with a primary standard shows that their turbidity value has changed. In some cases, the secondary standard should be simply relabeled with the new turbidity value. Always follow the manufacturer’s directions.

4. Procedure

a. General measurement techniques: Proper measurement techniques are important in minimizing the effects of instrument variables as well as stray light and air bubbles. Regardless of the instrument used, the measurement will be more accurate, precise, and repeatable if close attention is paid to proper measurement techniques.

Measure turbidity immediately to prevent temperature changes and particle flocculation and sedimentation from changing sample characteristics. If flocculation is apparent, break up aggregates by agitation. Avoid dilution whenever possible. Particles suspended in the original sample may dissolve or otherwise change characteristics when the temperature changes or when the sample is diluted.

Remove air or other entrained gases in the sample before measurement. Preferably, degas even if no bubbles are visible. Degas by applying a partial vacuum, adding a nonfoaming-type surfactant, using an ultrasonic bath, or applying heat. In some cases, two or more of these techniques may be combined for more effective bubble removal. For example, it may be necessary to combine addition of a surfactant with use of an ultrasonic bath for some severe
conditions. Any of these techniques, if misapplied, can alter sample turbidity; use with care. If
degassing cannot be applied, bubble formation will be minimized if the samples are maintained
at the temperature and pressure of the water before sampling.

Do not remove air bubbles by letting sample stand for a period of time because during
standing, turbidity-causing particulates may settle and sample temperature may change. Both of
these conditions alter sample turbidity, resulting in a nonrepresentative measurement.

Condensation may occur on the outside surface of a sample cell when a cold sample is being
measured in a warm, humid environment. This interferes with turbidity measurement. Remove
all moisture from the outside of the sample cell before placing the cell in the instrument. If
fogging recurs, let sample warm slightly by letting it stand at room temperature or by partially
immersing it in a warm water bath for a short time. Make sure samples are again well mixed.

b. Nephelometer calibration: Follow the manufacturer’s operating instructions. Run at least
one standard in each instrument range to be used. Make certain the nephelometer gives stable
readings in all sensitivity ranges used. Follow techniques outlined in ¶s 2b and 4a for care and
handling of sample cells, degassing, and dealing with condensation.

c. Measurement of turbidity: Gently agitate sample. Wait until air bubbles disappear and
pour sample into cell. When possible, pour well-mixed sample into cell and immerse it in an
ultrasonic bath for 1 to 2 s or apply vacuum degassing, causing complete
bubble release. Read
turbidity directly from instrument display.

d. Calibration of continuous turbidity monitors: Calibrate continuous turbidity monitors for
low turbidities by determining turbidity of the water flowing out of them, using a
laboratory-model nephelometer, or calibrate the instruments according to manufacturer’s
instructions with formazin primary standard or appropriate secondary standard.

5. Interpretation of Results

Report turbidity readings as follows:

<table>
<thead>
<tr>
<th>Turbidity Range (NTU)</th>
<th>Report to the Nearest NTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1.0</td>
<td>0.05</td>
</tr>
<tr>
<td>1–10</td>
<td>0.1</td>
</tr>
<tr>
<td>10–40</td>
<td>1</td>
</tr>
<tr>
<td>40–100</td>
<td>5</td>
</tr>
<tr>
<td>100–400</td>
<td>10</td>
</tr>
<tr>
<td>400–1000</td>
<td>50</td>
</tr>
<tr>
<td>>1000</td>
<td>100</td>
</tr>
</tbody>
</table>

When comparing water treatment efficiencies, do not estimate turbidity more closely than
specified above. Uncertainties and discrepancies in turbidity measurements make it unlikely that
results can be duplicated to greater precision than specified.

6. Reference

7. Bibliography

1. Discussion

Odor, like taste, depends on contact of a stimulating substance with the appropriate human receptor cell. The stimuli are chemical in nature and the term “chemical senses” often is applied to odor and taste. Water is a neutral medium, always present on or at the receptors that perceive sensory response. In its pure form, water is odor-free. Man and other animals can avoid many potentially toxic foods and waters because of adverse sensory response. These senses often provide the first warning of potential hazards in the environment.

Odor is recognized¹ as a quality factor affecting acceptability of drinking water (and foods prepared with it), tainting of fish and other aquatic organisms, and esthetics of recreational waters. Most organic and some inorganic chemicals contribute taste or odor. These chemicals
Standard Methods for the Examination of Water and Wastewater

may originate from municipal and industrial waste discharges, from natural sources such as decomposition of vegetable matter, or from associated microbial activity, and from disinfectants or their products.

The potential for impairment of the sensory quality of water has increased as a result of expansion in the variety and quantity of waste materials, demand for water disposal of captured air pollutants, and increased reuse of available water supplies by a growing population. Domestic consumers and process industries such as food, beverage, and pharmaceutical manufacturers require water essentially free of tastes and odors.

Some substances, such as certain inorganic salts, produce taste without odor and are evaluated by taste testing (Section 2160). Many other sensations ascribed to the sense of taste actually are odors, even though the sensation is not noticed until the material is taken into the mouth. Because some odorous materials are detectable when present in only a few nanograms per liter, it is usually impractical and often impossible to isolate and identify the odor-producing chemical. The human nose is the practical odor-testing device used in this method. Odor tests are performed to provide qualitative descriptions and approximate quantitative measurements of odor intensity. The method for intensity measurement presented here is the threshold odor test, based on a method of limits. This procedure, while not universally preferred, has definite strengths.

Sensory tests are useful as a check on the quality of raw and finished water and for control of odor through the treatment process. They can assess the effectiveness of different treatments and provide a means of tracing the source of contamination.

Section 6040B provides an analytical procedure for quantifying several organic odor-producing compounds including geosmin and methylisoborneol.

2. References

3. Bibliography

2150 B. Threshold Odor Test

1. General Discussion

 a. Principle: Determine the threshold odor by diluting a sample with odor-free water until the least definitely perceptible odor is achieved. There is no absolute threshold odor concentration, because of inherent variation in individual olfactory capability. A given person varies in sensitivity over time. Day-to-day and within-day differences occur. Furthermore, responses vary as a result of the characteristic, as well as concentration, of odorant. The number of persons selected to measure threshold odor will depend on the objective of the tests, economics, and available personnel. Larger-sized panels are needed for sensory testing when the results must represent the population as a whole or when great precision is desired. Under such circumstances, panels of no fewer than five persons, and preferably ten or more, are recommended. Measurement of threshold levels by one person is often a necessity at water treatment plants. Interpretation of the single tester result requires knowledge of the relative acuity of that person. Some investigators have used specific odorants, such as m-cresol or n-butanol, to calibrate a tester’s response. Others have used the University of Pennsylvania Smell Identification Test to assess an individual’s ability to identify odors correctly.

 b. Application: This threshold method is applicable to samples ranging from nearly odorless natural waters to industrial wastes with threshold numbers in the thousands. There are no intrinsic difficulties with the highly odorous samples because they are reduced in concentration proportionately before being presented to the test observers.
c. **Qualitative descriptions:** A fully acceptable system for characterizing odor has not been developed despite efforts over more than a century. Nevertheless, Section 2170 (Flavor Profile Analysis) specifies a set of 23 odor reference standards that may be used if qualitative descriptions are important. These descriptors can be used with the Threshold Odor Test to standardize methods for sensory analysis.

d. **Sampling and storage:** Collect samples for odor testing in glass bottles with glass or TFE-lined closures. Complete tests as soon as possible after sample collection. If storage is necessary, collect at least 500 mL of sample in a bottle filled to the top; refrigerate, making sure that no extraneous odors can be drawn into the sample as it cools. Do not use plastic containers.

e. **Dechlorination:** Most tap waters and some wastewaters are chlorinated. Often it is desirable to determine the odor of the chlorinated sample as well as that of the same sample after dechlorination. Dechlorinate with thiosulfate in exact stoichiometric quantity as described under Nitrogen (Ammonia), Section 4500-NH₃.

f. **Temperature:** Threshold odor values vary with temperature. For most tap waters and raw water sources, a sample temperature of 60°C will permit detection of odors that otherwise might be missed; 60°C is the standard temperature for hot threshold odor tests. For some purposes—because the odor is too fleeting or there is excessive heat sensation—the hot odor test may not be applicable; where experience shows that a lower temperature is needed, use a standard test temperature of 40°C. For special purposes, other temperatures may be used. *Report temperature at which observations are made.*

2. **Apparatus**

To assure reliable threshold measurements, use odor-free glassware. Clean glassware shortly before use with nonodorous soap and acid cleaning solution and rinse with odor-free water. Reserve this glassware exclusively for threshold testing. Do not use rubber, cork, or plastic stoppers. Do not use narrow-mouth vessels.

a. **Sample bottles,** glass-stoppered or with TFE-lined closures.

b. **Constant-temperature bath:** A water bath or electric hot plate capable of temperature control of ± 1°C for odor tests at elevated temperatures. The bath must not contribute any odor to the odor flasks.

c. **Odor flasks:** Glass-stoppered, 500-mL (ST 32) erlenmeyer flasks, to hold sample dilutions during testing.

d. **Pipets:**

1) **Transfer and volumetric pipets or graduated cylinders:** 200-, 100-, 50-, and 25-mL.

2) **Measuring pipets:** 10-mL, graduated in tenths.

e. **Thermometer:** Zero to 110°C, chemical or metal-stem dial type.

3. **Odor-Free Water**

a. **Sources:** Prepare odor-free water by passing distilled, deionized, or tap water through
activated carbon. If product water is not odor-free, rebuild or purify the system. In all cases verify quality of product water daily.

b. Odor-free-water generator (Figure 2150:1):#(20) Make the PVC generator from a 2-ft length of 4-in. PVC pipe approved for use for drinking water purposes (e.g., Schedule 80, or National Water Council-approved in U.K.). Thread pipe end to accept threaded caps. Have a small threaded nipple in the cap center for water inlet or outlet. To retain the activated carbon, place coarse glass wool in top and bottom of generator. Regulate water flow to generator by a needle valve and a pressure regulator to provide the minimum pressure for the desired flow. Use activated carbon of approximately 12 to 40 mesh grain size.†#(21)

c. Generator operation: Pass tap or purified water through odor-free-water generator at rate of 100 mL/min. When generator is started, flush to remove carbon fines and discard product, or pre-rinse carbon.

Check quality of water obtained from the odor-free-water generator daily at 40 and 60°C before use. The life of the carbon will vary with the condition and amount of water filtered. Subtle odors of biological origin often are found if moist carbon filters stand idle between test periods. Detection of odor in the water coming through the carbon indicates that a change of carbon is needed.

4. Procedure

a. Precautions: Carefully select by preliminary tests the persons to make taste or odor tests. Although extreme sensitivity is not required, exclude insensitive persons and concentrate on observers who have a sincere interest in the test. Avoid extraneous odor stimuli such as those caused by smoking and eating before the test or those contributed by scented soaps, perfumes, and shaving lotions. Insure that the tester is free from colds or allergies that affect odor response. Limit frequency of tests to a number below the fatigue level by frequent rests in an odor-free atmosphere. Keep room in which tests are conducted free from distractions, drafts, and odor.

For precise work use a panel of five or more testers. Do not allow persons making odor measurements to prepare samples or to know dilution concentrations being evaluated. Familiarize testers with the procedure before they participate in a panel test. Present most dilute sample first to avoid tiring the senses with the concentrated sample. Keep temperature of samples during testing within 1°C of the specified temperature.

Because many raw and waste waters are colored or have decided turbidity that may bias results, use opaque or darkly colored odor flasks, such as red actinic erlenmeyer flasks.

b. Characterization: As part of the threshold test or as a separate test, direct each observer to describe the characteristic sample odor using odor reference standards (see Section 2170). Compile the consensus that may appear among testers and that affords a clue to the origin of the odorous component. The value of the characterization test increases as observers become more experienced with a particular category of odor, e.g., earthy, musty, chlorine.
c. Threshold measurement:‡§(22) The “threshold odor number,” designated by the abbreviation TON, is the greatest dilution of sample with odor-free water yielding a definitely perceptible odor. Bring total volume of sample and odor-free water to 200 mL in each test. Follow dilutions and record corresponding TON presented in Table 2150:1. These numbers have been computed thus:

\[
\text{TON} = \frac{A + B}{A}
\]

where:

- \(A \) = mL sample and
- \(B \) = mL odor-free water.

1) Place proper volume of odor-free water in the flask first, add sample to water (avoiding contact of pipet or sample with lip or neck of flask), mix by swirling, and proceed as follows:

Determine approximate range of the threshold number by adding 200 mL, 50 mL, 12 mL, and 2.8 mL sample to separate 500-mL glass-stoppered erlenmeyer flasks containing odor-free water to make a total volume of 200 mL. Use a separate flask containing only odor-free water as reference for comparison. Heat dilutions and reference to desired test temperature.

2) Shake flask containing odor-free water, remove stopper, and sniff vapors. Test sample containing least amount of odor-bearing water in the same way. If odor can be detected in this dilution, prepare more dilute samples as described in ¶ 5) below. If odor cannot be detected in first dilution, repeat above procedure using sample containing next higher concentration of odor-bearing water, and continue this process until odor is detected clearly.

3) Based on results obtained in the preliminary test, prepare a set of dilutions using Table 2150:II as a guide. Prepare the five dilutions shown on the appropriate line and the three next most concentrated on the next line in Table 2150:II. For example, if odor was first noted in the flask containing 50 mL sample in the preliminary test, prepare flasks containing 50, 35, 25, 17, 12, 8.3, 5.7, and 4.0 mL sample, each diluted to 200 mL with odor-free water. This array is necessary to challenge the range of sensitivities of the entire panel of testers.

Insert two or more blanks in the series near the expected threshold, but avoid any repeated pattern. Do not let tester know which dilutions are odorous and which are blanks. Instruct tester to smell each flask in sequence, beginning with the least concentrated sample, until odor is detected with certainty.

4) Record observations by indicating whether odor is noted in each test flask. For example:

<table>
<thead>
<tr>
<th>mL Sample Diluted to 200 mL</th>
<th>12</th>
<th>0</th>
<th>17</th>
<th>25</th>
<th>0</th>
<th>35</th>
<th>50</th>
</tr>
</thead>
</table>

© Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation
5) If the sample being tested requires more dilution than is provided by Table 2150:II, prepare an intermediate dilution consisting of 20 mL sample diluted to 200 mL with odor-free water. Use this dilution for the threshold determination. Multiply TON obtained by 10 to correct for the intermediate dilution. In rare cases more than one tenfold intermediate dilution step may be required.

5. Calculation

The threshold odor number is the dilution ratio at which odor is just detectable. In the example above, 4c4), the first detectable odor occurred when 25 mL sample was diluted to 200 mL. Thus the threshold is 200 divided by 25, or 8. Table 2150:1 lists the threshold numbers corresponding to common dilutions.

The smallest TON that can be observed is 1, as in the case where the odor flask contains 200 mL undiluted sample. If no odor is detected at this concentration, report “No odor observed” instead of a threshold number. (In special applications, fractional threshold numbers have been calculated.6)

Anomalous responses sometimes occur; a low concentration may be called positive and a higher concentration in the series may be called negative. In such a case, designate the threshold as the point after which no further anomalies occur. For instance:

Increasing Concentration →

Response − − + − + + + +

↓

Threshold

where:
− signifies negative response and
+ signifies positive response.

Occasionally a flask contains residual odor or is contaminated inadvertently. For precise testing repeat entire threshold odor test to determine if the last flask marked “−” was actually a mislabelled blank of odor-free water or if the previous “+” was a contaminated sample.

Use appropriate statistical methods to calculate the most probable average threshold from large numbers of panel results. For most purposes, express the threshold of a group as the
6. Interpretation of Results

A threshold number is not a precise value. In the case of the single observer it represents a judgment at the time of testing. Panel results are more meaningful because individual differences have less influence on the result. One or two observers can develop useful data if comparison with larger panels has been made to check their sensitivity. Do not make comparisons of data from time to time or place to place unless all test conditions have been standardized carefully and there is some basis for comparison of observed intensities.

7. References

8. Bibliography

Standard Methods for the Examination of Water and Wastewater

The threshold odor test. 1963. *Taste Odor Control J.* 29:Nos. 6, 7, 8 (June, July, Aug.).

2160 TASTE*#(23)

2160 A. Introduction

1. General Discussion

Taste refers only to gustatory sensations called bitter, salty, sour, and sweet that result from chemical stimulation of sensory nerve endings located in the papillae of the tongue and soft palate. Flavor refers to a complex of gustatory, olfactory, and trigeminal sensations resulting from chemical stimulation of sensory nerve endings located in the tongue, nasal cavity, and oral cavity.¹ Water samples taken into the mouth for sensory analysis always produce a flavor, although taste, odor, or mouth-feel may predominate, depending on the chemical substances present. Methods for sensory analysis presented herein require that the sample be taken into the mouth, that is, be tasted, but technically the sensory analysis requires evaluation of the complex sensation called flavor. As used here, taste refers to a method of sensory analysis in which

© Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation
samples are taken into the mouth but the resultant evaluations pertain to flavor.

Three methods have been developed for the sensory evaluation of water samples taken into the mouth: the flavor threshold test (FTT), the flavor rating assessment (FRA), and the flavor profile analysis (FPA) (Section 2170). The FTT is the oldest. It has been used extensively and is particularly useful for determining if the overall flavor of a sample of finished water is detectably different from a defined standard. The FRA is especially valuable for determining if a sample of finished water is acceptable for daily consumption, and the FPA is most useful for identifying and characterizing individual flavors in a water sample.

Make flavor tests only on samples known to be safe for ingestion. Do not use samples that may be contaminated with bacteria, viruses, parasites, or hazardous chemicals, that contain dechlorinating agents such as sodium arsenite or that are derived from an unesthetic source. Do not make flavor tests on wastewaters or similar untreated effluents. Observe all sanitary and esthetic precautions with regard to apparatus and containers contacting the sample. Properly clean and sterilize containers before using them. Conduct analyses in a laboratory free from interfering background odors and if possible provide non-odorous carbon-filtered air at constant temperature and humidity. Use the procedure described in Section 2150 with respect to taste- and odor-free water to prepare dilution water and reference samples.

2. References

2160 B. Flavor Threshold Test (FTT)

1. General Discussion

Use the FTT to measure detectable flavor quantitatively. More precisely, use the method to compare the sample flavor objectively with that of specified reference water used as diluent.

The flavor threshold number (FTN) is the greatest dilution of sample with reference water yielding a definitely perceptible difference. The FTN is computed as follows:

\[
FTN = \frac{A + B}{A}
\]
where:
\[
A = \text{sample volume, mL, and} \\
B = \text{reference water (diluent) volume, mL.}
\]

Table 2160:I gives the FTNs corresponding to various dilutions.

2. Procedure
 a. Panel selection: Carefully select by preliminary trials interested persons to make flavor tests. Exclude insensitive persons and insure that the testers are free from colds or allergies. Familiarize testers with the procedure before they participate in a panel test, but do not let them prepare samples or know dilution concentrations being evaluated. For precise work use a panel of five or more testers.

b. Taste characterization: Have each observer describe the characteristic sample flavor of the most concentrated sample. Compile the consensus that may appear among testers. The value of characterization increases as observers become more experienced with a particular flavor category such as chlorophenolic, grassy, or musty.

c. Preliminary test: To determine approximate range of the FTN, add 200-, 50-, 12-, and 4-mL sample portions to volumes of reference water (see Section 2150) designated in Table 2160:I in separate 300-mL glass beakers to make a total of 200 mL in each beaker, and mix gently with clean stirrer. Use separate beaker containing only reference water for comparison. Keep sample temperature during testing within 1°C of specified temperature. Present samples to each taster in a uniform manner, with the reference water presented first, followed by the most dilute sample. If a flavor can be detected in this dilution, prepare an intermediate sample by diluting 20 mL sample to 200 mL with reference water. Use this dilution for threshold determination and multiply FTN obtained by 10 to correct for intermediate dilution. In rare cases a higher intermediate dilution may be required. If no flavor is detected in the most dilute sample, repeat using the next concentration. Continue this process until flavor is detected clearly.

d. FTN determination: Based on results obtained in the preliminary test, prepare a set of dilutions using Table 2160:II as a guide. Prepare the seven dilutions shown on the appropriate line. This array is necessary to challenge the range of sensitivities of the entire panel of testers. If the sample being tested requires more dilution than is provided by Table 2160:II, make intermediate dilutions as directed in c above.

 Use a clean 50-mL beaker filled to the 25-mL level or use an ordinary restaurant-style drinking glass for each dilution and reference sample. Do not use glassware used in sensory testing for other analyses. Between tests, sanitize containers in an automatic dishwasher supplied with water at not less than 60°C.

 Maintain samples at 15± 1°C. However, if temperature of water in the distribution system is higher than 15°C, select an appropriate temperature. Specify temperature in reporting results.

 Present series of samples to each tester in order of increasing concentration. Pair each
sample with a known reference. Have tester taste sample by taking into the mouth whatever volume is comfortable, moving sample throughout the mouth, holding it for several seconds, and discharging it without swallowing. Have tester compare sample with reference and record whether a flavor or aftertaste is detectable. Insert two or more reference blanks in the series near the expected threshold, but avoid any repeated pattern. Do not let tester know which samples have flavor and which are blanks. Instruct tester to taste each sample in sequence, beginning with the least concentrated sample, until flavor is detected with certainty.

Record observations by indicating whether flavor is noted in each test beaker. For example:

<table>
<thead>
<tr>
<th>mL Sample</th>
<th>Diluted to</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Response</td>
<td>−</td>
</tr>
</tbody>
</table>

where:
− signifies negative response and
+ signifies positive response.

3. Calculation

The flavor threshold number is the dilution ratio at which flavor is just detectable. In the example above, the first detectable flavor occurred when 25 mL sample was diluted to 200 mL yielding a threshold number of 8 (Table 2160:I). Reference blanks do not influence calculation of the threshold.

The smallest FTN that can be observed is 1, where the beaker contains 200 mL undiluted sample. If no flavor is detected at this concentration, report “No flavor observed” instead of a threshold number.

Anomalous responses sometimes occur; a low concentration may be called positive and a higher concentration in the series may be called negative. In such cases, designate the threshold as that point after which no further anomalies occur. The following illustrates an approach to an anomalous series (responses to reference blanks are excluded): Response:

Increasing Concentration →

| Response | − | + | − | + | + | + |

↓

Threshold

Calculate mean and standard deviation of all FTNs if the distribution is reasonably symmetrical; otherwise, express the threshold of a group as the median or geometric mean of individual thresholds.
mg/min, required to obtain the target ozone residual after the desired ozonation time. See Section 2350E.5a to calculate dose. When reporting ozone requirement, also include target oxidant residual as well as other experimental characteristics listed in ¶ 5b above.

6. Precision and Bias

 See Section 2350B.6.

7. Bibliography

 See Section 4500-O₃.B.7 and Section 4500-O₃.B.8.

2510 CONDUCTIVITY*#(35)

2510 A. Introduction

Conductivity, \(k \), is a measure of the ability of an aqueous solution to carry an electric current. This ability depends on the presence of ions; on their total concentration, mobility, and valence; and on the temperature of measurement. Solutions of most inorganic compounds are relatively good conductors. Conversely, molecules of organic compounds that do not dissociate in aqueous solution conduct a current very poorly, if at all.

1. Definitions and Units of Expression

 Conductance, \(G \), is defined as the reciprocal of resistance, \(R \):

 \[
 G = \frac{1}{R}
 \]

 where the unit of \(R \) is ohm and \(G \) is ohm\(^{-1}\) (sometimes written mho). Conductance of a solution is measured between two spatially fixed and chemically inert electrodes. To avoid polarization at the electrode surfaces the conductance measurement is made with an alternating current signal.\(^1\) The conductance of a solution, \(G \), is directly proportional to the electrode surface area, \(A \), cm\(^2\), and inversely proportional to the distance between the electrodes, \(L \), cm. The constant of proportionality, \(k \), such that:

 \[
 G = k \left(\frac{A}{L} \right)
 \]
is called “conductivity” (preferred to “specific conductance”). It is a characteristic property of the solution between the electrodes. The units of \(k \) are 1/ohm-cm or mho per centimeter. Conductivity is customarily reported in micromhos per centimeter (µmho/cm).

In the International System of Units (SI) the reciprocal of the ohm is the siemens (S) and conductivity is reported as millisiemens per meter (mS/m); 1 mS/m = 10 µmhos/cm and 1 µS/cm = 1 µmho/cm. To report results in SI units of mS/m divide µmhos/cm by 10.

To compare conductivities, values of \(k \) are reported relative to electrodes with \(A = 1 \text{ cm}^2 \) and \(L = 1 \text{ cm} \). Absolute conductances, \(G_s \), of standard potassium chloride solutions between electrodes of precise geometry have been measured; the corresponding standard conductivities, \(k_s \), are shown in Table 2510:I.

The equivalent conductivity, \(\Lambda \), of a solution is the conductivity per unit of concentration. As the concentration is decreased toward zero, \(\Lambda \) approaches a constant, designated as \(\Lambda^\circ \). With \(k \) in units of micromhos per centimeter it is necessary to convert concentration to units of equivalents per cubic centimeter; therefore:

\[
\Lambda = 0.001 k / \text{concentration}
\]

where the units of \(\Lambda \), \(k \), and concentration are mho-cm²/equivalent, µmho/cm, and equivalent/L, respectively. Equivalent conductivity, \(\Lambda \), values for several concentrations of KCl are listed in Table 2510:I. In practice, solutions of KCl more dilute than 0.001 M will not maintain stable conductivities because of absorption of atmospheric \(\text{CO}_2 \). Protect these dilute solutions from the atmosphere.

2. Measurement

a. Instrumental measurements: In the laboratory, conductance, \(G_s \), (or resistance) of a standard KCl solution is measured and from the corresponding conductivity, \(k_s \), (Table 2510:I) a cell constant, \(C \), cm⁻¹, is calculated:

\[
C = \frac{k_s}{G_s}
\]

Most conductivity meters do not display the actual solution conductance, \(G \), or resistance, \(R \); rather, they generally have a dial that permits the user to adjust the internal cell constant to match the conductivity, \(k_s \), of a standard. Once the cell constant has been determined, or set, the conductivity of an unknown solution,

\[
k_u = CG_u
\]

will be displayed by the meter.
Standard Methods for the Examination of Water and Wastewater

Distilled water produced in a laboratory generally has a conductivity in the range 0.5 to 3 \(\mu \text{mhos/cm} \). The conductivity increases shortly after exposure to both air and the water container.

The conductivity of potable waters in the United States ranges generally from 50 to 1500 \(\mu \text{mhos/cm} \). The conductivity of domestic wastewaters may be near that of the local water supply, although some industrial wastes have conductivities above 10 000 \(\mu \text{mhos/cm} \). Conductivity instruments are used in pipelines, channels, flowing streams, and lakes and can be incorporated in multiple-parameter monitoring stations using recorders.

Most problems in obtaining good data with conductivity monitoring equipment are related to electrode fouling and to inadequate sample circulation. Conductivities greater than 10 000 to 50 000 \(\mu \text{mho/cm} \) or less than about 10 \(\mu \text{mho/cm} \) may be difficult to measure with usual measurement electronics and cell capacitance. Consult the instrument manufacturer’s manual or published references.1,5,6

Laboratory conductivity measurements are used to:

- Establish degree of mineralization to assess the effect of the total concentration of ions on chemical equilibria, physiological effect on plants or animals, corrosion rates, etc.
- Assess degree of mineralization of distilled and deionized water.
- Evaluate variations in dissolved mineral concentration of raw water or wastewater. Minor seasonal variations found in reservoir waters contrast sharply with the daily fluctuations in some polluted river waters. Wastewater containing significant trade wastes also may show a considerable daily variation.
- Estimate sample size to be used for common chemical determinations and to check results of a chemical analysis.
- Determine amount of ionic reagent needed in certain precipitation and neutralization reactions, the end point being denoted by a change in slope of the curve resulting from plotting conductivity against buret readings.
- Estimate total dissolved solids (mg/L) in a sample by multiplying conductivity (in micromhos per centimeter) by an empirical factor. This factor may vary from 0.55 to 0.9, depending on the soluble components of the water and on the temperature of measurement. Relatively high factors may be required for saline or boiler waters, whereas lower factors may apply where considerable hydroxide or free acid is present. Even though sample evaporation results in the change of bicarbonate to carbonate the empirical factor is derived for a comparatively constant water supply by dividing dissolved solids by conductivity.
- Approximate the milliequivalents per liter of either cations or anions in some waters by multiplying conductivity in units of micromhos per centimeter by 0.01.

b. Calculation of conductivity: For naturally occurring waters that contain mostly Ca\(^{2+}\), Mg\(^{2+}\), Na\(^+\), K\(^+\), HCO\(_3\)\(^-\), SO\(_4\)\(^{2-}\), and Cl\(^-\) and with TDS less than about 2500 mg/L, the following procedure can be used to calculate conductivity from measured ionic concentrations.7 The abbreviated water analysis in Table 2510:II illustrates the calculation procedure.
At infinite dilution the contribution to conductivity by different kinds of ions is additive. In general, the relative contribution of each cation and anion is calculated by multiplying equivalent conductances, λ^+_{i} and λ^-_{i}, mho-cm2/equivalent, by concentration in equivalents per liter and correcting units. Table 2510:III contains a short list of equivalent conductances for ions commonly found in natural waters. Trace concentrations of ions generally make negligible contribution to the overall conductivity. A temperature coefficient of 0.02/deg is applicable to all ions, except H^+ (0.0139/deg) and OH^- (0.018/deg).

At finite concentrations, as opposed to infinite dilution, conductivity per equivalent decreases with increasing concentration (see Table 2510:II). For solutions composed of one anion type and one cation type, e.g., KCl as in Table 2510:I, the decrease in conductivity per equivalent with concentration can be calculated, ±0.1%, using an ionic-strength-based theory of Onsager. When mixed salts are present, as is nearly always the case with natural and wastewaters, the theory is quite complicated. The following semiempirical procedure can be used to calculate conductivity for naturally occurring waters:

First, calculate infinite dilution conductivity (Table 2510:II, Column 4):

$$k^\circ = \sum |z_i| (\lambda^+_{i})(mM_i) + \sum |z_i| (\lambda^-_{i})(mM_i)$$

where:

$|z_i|$ = absolute value of the charge of the i-th ion,

mM_i = millimolar concentration of the i-th ion, and

λ^+_{i}, λ^-_{i} = equivalent conductance of the i-th ion.

If mM is used to express concentration, the product, $(\lambda^+_{i})(mM_i)$ or $(\lambda^-_{i})(mM_i)$, corrects the units from liters to cm3. In this case k° is 578.2 µmho/cm (Table 2510:II, Column 4).

Next, calculate ionic strength, IS in molar units:

$$IS = \frac{\sum z_i^2(mM_i)}{2000}$$

The ionic strength is 15.33/2000 = 0.00767 M (Table 2510:II, Column 5).

Calculate the monovalent ion activity coefficient, y, using the Davies equation for IS ≤ 0.5 M and for temperatures from 20 to 30°C:

$$y = 10^{-0.5[IS^{1/2}/(1 + IS^{1/2}) - 0.3IS]}$$

In the present example $IS = 0.00767$ M and $y = 0.91$.

Finally, obtain the calculated value of conductivity, k_{calc}, from:

© Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation

\[k_{\text{calc}} = k^c y^2 \]

In the example being considered, \(k_{\text{calc}} = 578.2 \times 0.91^2 = 478.8 \, \mu\text{mho/cm} \) versus the reported value as measured by the USGS of 477 \(\mu\text{mho/cm} \).

For 39 analyses of naturally occurring waters, calculations in this manner agreed with the measured values to within 2%.

3. References

2510 B. Laboratory Method

1. General Discussion
 See Section 2510A.

© Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation
2. Apparatus

 a. Self-contained conductivity instruments: Use an instrument capable of measuring conductivity with an error not exceeding 1% or 1 µmho/cm, whichever is greater.

 b. Thermometer, capable of being read to the nearest 0.1°C and covering the range 23 to 27°C. Many conductivity meters are equipped to read an automatic temperature sensor.

 c. Conductivity cell:

 1) Platinum-electrode type—Conductivity cells containing platinized electrodes are available in either pipet or immersion form. Cell choice depends on expected range of conductivity. Experimentally check instrument by comparing instrumental results with true conductivities of the KCl solutions listed in Table 2510:I. Clean new cells, not already coated and ready for use, with chromic-sulfuric acid cleaning mixture [see Section 2580B.3a2)] and platinize the electrodes before use. Subsequently, clean and replatinize them whenever the readings become erratic, when a sharp end point cannot be obtained, or when inspection shows that any platinum black has flaked off. To platinize, prepare a solution of 1 g chloroplatinic acid, H$_2$PtCl$_6$⋅6H$_2$O, and 12 mg lead acetate in 100 mL distilled water. A more concentrated solution reduces the time required to platinize electrodes and may be used when time is a factor, e.g., when the cell constant is 1.0/cm or more. Immerse electrodes in this solution and connect both to the negative terminal of a 1.5-V dry cell battery. Connect positive side of battery to a piece of platinum wire and dip wire into the solution. Use a current such that only a small quantity of gas is evolved. Continue electrolysis until both cell electrodes are coated with platinum black. Save platinizing solution for subsequent use. Rinse electrodes thoroughly and when not in use keep immersed in distilled water.

 2) Nonplatinum-electrode type—Use conductivity cells containing electrodes constructed from durable common metals (stainless steel among others) for continuous monitoring and field studies. Calibrate such cells by comparing sample conductivity with results obtained with a laboratory instrument. Use properly designed and mated cell and instrument to minimize errors in cell constant. Very long meter leads can affect performance of a conductivity meter. Under such circumstances, consult the manufacturer’s manual for appropriate correction factors if necessary.

3. Reagents

 a. Conductivity water: Any of several methods can be used to prepare reagent-grade water. The methods discussed in Section 1080 are recommended. The conductivity should be small compared to the value being measured.

 b. Standard potassium chloride solution, KCl, 0.0100M: Dissolve 745.6 mg anhydrous KCl in conductivity water and dilute to 1000 mL in a class A volumetric flask at 25°C and store in a CO$_2$-free atmosphere. This is the standard reference solution, which at 25°C has a conductivity of 1412 µmhos/cm. It is satisfactory for most samples when the cell has a constant between 1
and 2 cm\(^{-1}\). For other cell constants, use stronger or weaker KCl solutions listed in Table 2510-I. Care must be taken when using KCl solutions less than 0.001M, which can be unstable because of the influence of carbon dioxide on pure water. For low conductivity standards, Standard Reference Material 3190, with a certified conductivity of 25.0 µS/cm ± 0.3 µS/cm, may be obtained from NIST. Store in a glass-stoppered borosilicate glass bottle.

4. Procedure

a. Determination of cell constant: Rinse conductivity cell with at least three portions of 0.01M KCl solution. Adjust temperature of a fourth portion to 25.0 ± 0.1°C. If a conductivity meter displays resistance, \(R\), ohms, measure resistance of this portion and note temperature. Compute cell constant, \(C\):

\[
C, \text{ cm}^{-1} = (0.001412)(R_{\text{KCl}})[1 + 0.0191(t - 25)]
\]

where:

\(R_{\text{KCl}}\) = measured resistance, ohms, and

\(t\) = observed temperature, °C.

Conductivity meters often indicate conductivity directly. Commercial probes commonly contain a temperature sensor. With such instruments, rinse probe three times with 0.0100M KCl, as above. Adjust temperature compensation dial to 0.0191 C\(^{-1}\). With probe in standard KCl solution, adjust meter to read 1412 µmho/cm. This procedure automatically adjusts cell constant internal to the meter.

b. Conductivity measurement: Thoroughly rinse cell with one or more portions of sample. Adjust temperature of a final portion to about 25°C. Measure sample resistance or conductivity and note temperature to ±0.1°C.

5. Calculation

The temperature coefficient of most waters is only approximately the same as that of standard KCl solution; the more the temperature of measurement deviates from 25.0°C, the greater the uncertainty in applying the temperature correction. Report temperature-compensated conductivities as “\(\mu\text{mho/cm 25.0°C}\)”

a. When sample resistance is measured, conductivity at 25°C is:

\[
k = \frac{(1 000 000)(C)}{R_m[1 + 0.0191(t - 25)]}
\]

where:

\(k\) = conductivity, \(\mu\text{mhos/cm},

© Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation
Standard Methods for the Examination of Water and Wastewater

\[C = \text{cell constant, cm}^{-1}, \]
\[R_m = \text{measured resistance of sample, ohms, and} \]
\[t = \text{temperature of measurement}. \]

\(b. \) When sample conductivity is measured without internal temperature compensation conductivity at 25°C is:

\[
k, \mu\text{mho/cm} = \frac{(k_m)}{1 + 0.0191(t - 25)}
\]

where:
\(k_m = \text{measured conductivity in units of } \mu\text{mho/cm at } t^\circ\text{C, and other units are defined as above.} \)

For instruments with automatic temperature compensation and readout directly in \(\mu\text{mho/cm} \) or similar units, the readout automatically is corrected to 25.0°C. Report displayed conductivity in designated units.

6. **Precision and Bias**

The precision of commercial conductivity meters is commonly between 0.1 and 1.0%. Reproducibility of 1 to 2% is expected after an instrument has been calibrated with such data as is shown in Table 2510:I.

2520 **SALINITY***(36)

2520 A. **Introduction**

1. **General Discussion**

Salinity is an important unitless property of industrial and natural waters. It was originally conceived as a measure of the mass of dissolved salts in a given mass of solution. The experimental determination of the salt content by drying and weighing presents some difficulties due to the loss of some components. The only reliable way to determine the true or absolute salinity of a natural water is to make a complete chemical analysis. However, this method is time-consuming and cannot yield the precision necessary for accurate work. Thus, to determine salinity, one normally uses indirect methods involving the measurement of a physical property such as conductivity, density, sound speed, or refractive index. From an empirical relationship of salinity and the physical property determined for a standard solution it is possible...
dryness on a steam bath or in a drying oven. Stir sample with a magnetic stirrer during transfer. If necessary, add successive sample portions to the same dish after evaporation. When evaporating in a drying oven, lower temperature to approximately 2°C below boiling to prevent splattering. Dry evaporated sample for at least 1 h in an oven at 103 to 105°C, cool dish in desiccator to balance temperature, and weigh. Repeat cycle of drying, cooling, desiccating, and weighing until a constant weight is obtained, or until weight change is less than 4% of previous weight or 0.5 mg, whichever is less. When weighing dried sample, be alert to change in weight due to air exposure and/or sample degradation. Analyze at least 10% of all samples in duplicate. Duplicate determinations should agree within 5% of their average weight.

4. Calculation

\[
\text{mg total solids/L} = \frac{(A - B) \times 1000}{\text{sample volume, mL}}
\]

where:

\[
A = \text{weight of dried residue + dish, mg, and} \\
B = \text{weight of dish, mg.}
\]

5. Precision

Single-laboratory duplicate analyses of 41 samples of water and wastewater were made with a standard deviation of differences of 6.0 mg/L.

6. Bibliography

2540 C. Total Dissolved Solids Dried at 180°C

1. General Discussion

a. Principle: A well-mixed sample is filtered through a standard glass fiber filter, and the filtrate is evaporated to dryness in a weighed dish and dried to constant weight at 180°C. The increase in dish weight represents the total dissolved solids. This procedure may be used for drying at other temperatures.

The results may not agree with the theoretical value for solids calculated from chemical analysis of sample (see above). Approximate methods for correlating chemical analysis with dissolved solids are available.¹ The filtrate from the total suspended solids determination (Section 2540D) may be used for determination of total dissolved solids.

b. Interferences: See Section 2540A.2 and Section 2540B.1. Highly mineralized waters

© Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation
with a considerable calcium, magnesium, chloride, and/or sulfate content may be hygroscopic and require prolonged drying, proper desiccation, and rapid weighing. Samples high in bicarbonate require careful and possibly prolonged drying at 180°C to insure complete conversion of bicarbonate to carbonate. Because excessive residue in the dish may form a water-trapping crust, limit sample to no more than 200 mg residue.

2. Apparatus
 Apparatus listed in Section 2540B.2a - h is required, and in addition:
 b. Filtration apparatus: One of the following, suitable for the filter disk selected:
 1) Membrane filter funnel.
 2) Gooch crucible, 25-mL to 40-mL capacity, with Gooch crucible adapter.
 3) Filtration apparatus with reservoir and coarse (40- to 60-µm) fritted disk as filter support.#(48)†
 c. Suction flask, of sufficient capacity for sample size selected.
 d. Drying oven, for operation at 180 ± 2°C.

3. Procedure
 a. Preparation of glass-fiber filter disk: If pre-prepared glass fiber filter disks are used, eliminate this step. Insert disk with wrinkled side up into filtration apparatus. Apply vacuum and wash disk with three successive 20-mL volumes of reagent-grade water. Continue suction to remove all traces of water. Discard washings.
 b. Preparation of evaporating dish: If volatile solids are to be measured, ignite cleaned evaporating dish at 550°C for 1 h in a muffle furnace. If only total dissolved solids are to be measured, heat clean dish to 180 ± 2°C for 1 h in an oven. Store in desiccator until needed. Weigh immediately before use.
 c. Selection of filter and sample sizes: Choose sample volume to yield between 2.5 and 200 mg dried residue. If more than 10 min are required to complete filtration, increase filter size or decrease sample volume.
 d. Sample analysis: Stir sample with a magnetic stirrer and pipet a measured volume onto a glass-fiber filter with applied vacuum. Wash with three successive 10-mL volumes of reagent-grade water, allowing complete drainage between washings, and continue suction for about 3 min after filtration is complete. Transfer total filtrate (with washings) to a weighed evaporating dish and evaporate to dryness on a steam bath or in a drying oven. If necessary, add successive portions to the same dish after evaporation. Dry evaporated sample for at least 1 h in an oven at 180 ± 2°C, cool in a desiccator to balance temperature, and weigh. Repeat drying cycle of drying, cooling, desiccating, and weighing until a constant weight is obtained or until weight change is less than 4% of previous weight or 0.5 mg, whichever is less. Analyze at least 10% of all samples in duplicate. Duplicate determinations should agree within 5% of their
average weight. If volatile solids are to be determined, follow procedure in Section 2540E.

4. Calculation

\[
\text{mg total dissolved solids/L} = \frac{(A - B) \times 1000}{\text{sample volume, mL}}
\]

where:
\[A = \text{weight of dried residue + dish, mg, and}\]
\[B = \text{weight of dish, mg.}\]

5. Precision

Single-laboratory analyses of 77 samples of a known of 293 mg/L were made with a standard deviation of differences of 21.20 mg/L.

6. Reference

7. Bibliography

2540 D. Total Suspended Solids Dried at 103–105°C

1. General Discussion

 a. Principle: A well-mixed sample is filtered through a weighed standard glass-fiber filter and the residue retained on the filter is dried to a constant weight at 103 to 105°C. The increase in weight of the filter represents the total suspended solids. If the suspended material clogs the filter and prolongs filtration, it may be necessary to increase the diameter of the filter or decrease the sample volume. To obtain an estimate of total suspended solids, calculate the difference between total dissolved solids and total solids.

 b. Interferences: See Section 2540A.2 and Section 2540B.1. Exclude large floating particles or submerged agglomerates of nonhomogeneous materials from the sample if it is determined that their inclusion is not representative. Because excessive residue on the filter may form a
10. Bibliography

2310 ACIDITY*(28)

2310 A. Introduction

Acidity of a water is its quantitative capacity to react with a strong base to a designated pH. The measured value may vary significantly with the end-point pH used in the determination. Acidity is a measure of an aggregate property of water and can be interpreted in terms of specific substances only when the chemical composition of the sample is known. Strong mineral acids, weak acids such as carbonic and acetic, and hydrolyzing salts such as iron or aluminum sulfates may contribute to the measured acidity according to the method of determination.

Acids contribute to corrosiveness and influence chemical reaction rates, chemical speciation, and biological processes. The measurement also reflects a change in the quality of the source.
1. General Discussion

 a. Principle: Hydrogen ions present in a sample as a result of dissociation or hydrolysis of solutes react with additions of standard alkali. Acidity thus depends on the end-point pH or indicator used. The construction of a titration curve by recording sample pH after successive small measured additions of titrant permits identification of inflection points and buffering capacity, if any, and allows the acidity to be determined with respect to any pH of interest.

 In the titration of a single acidic species, as in the standardization of reagents, the most accurate end point is obtained from the inflection point of a titration curve. The inflection point is the pH at which curvature changes from convex to concave or vice versa.

 Because accurate identification of inflection points may be difficult or impossible in buffered or complex mixtures, the titration in such cases is carried to an arbitrary end-point pH based on practical considerations. For routine control titrations or rapid preliminary estimates of acidity, the color change of an indicator may be used for the end point. Samples of industrial wastes, acid mine drainage, or other solutions that contain appreciable amounts of hydrolyzable metal ions such as iron, aluminum, or manganese are treated with hydrogen peroxide to ensure oxidation of any reduced forms of polyvalent cations, and boiled to hasten hydrolysis. Acidity results may be highly variable if this procedure is not followed exactly.

 b. End points: Ideally the end point of the acidity titration should correspond to the stoichiometric equivalence point for neutralization of acids present. The pH at the equivalence point will depend on the sample, the choice among multiple inflection points, and the intended use of the data.

 Dissolved carbon dioxide (CO₂) usually is the major acidic component of unpolluted surface waters; handle samples from such sources carefully to minimize the loss of dissolved gases. In a sample containing only carbon dioxide-bicarbonates-carbonates, titration to pH 8.3 at 25°C corresponds to stoichiometric neutralization of carbonic acid to bicarbonate. Because the color change of phenolphthalein indicator is close to pH 8.3, this value generally is accepted as a standard end point for titration of total acidity, including CO₂ and most weak acids. Metacresol purple also has an end point at pH 8.3 and gives a sharper color change.

 For more complex mixtures or buffered solutions selection of an inflection point may be subjective. Consequently, use fixed end points of pH 3.7 and pH 8.3 for standard acidity determinations via a potentiometric titration in wastewaters and natural waters where the simple carbonate equilibria discussed above cannot be assumed. Bromphenol blue has a sharp color change at its end point of 3.7. The resulting titrations are identified, traditionally, as “methyl orange acidity” (pH 3.7) and “phenolphthalein” or total acidity (pH 8.3) regardless of the actual method of measurement.
Standard Methods for the Examination of Water and Wastewater

c. Interferences: Dissolved gases contributing to acidity or alkalinity, such as CO₂, hydrogen sulfide, or ammonia, may be lost or gained during sampling, storage, or titration. Minimize such effects by titrating to the end point promptly after opening sample container, avoiding vigorous shaking or mixing, protecting sample from the atmosphere during titration, and letting sample become no warmer than it was at collection.

In the potentiometric titration, oily matter, suspended solids, precipitates, or other waste matter may coat the glass electrode and cause a sluggish response. Difficulty from this source is likely to be revealed in an erratic titration curve. Do not remove interferences from sample because they may contribute to its acidity. Briefly pause between titrant additions to let electrode come to equilibrium or clean the electrodes occasionally.

In samples containing oxidizable or hydrolyzable ions such as ferrous or ferric iron, aluminum, and manganese, the reaction rates at room temperature may be slow enough to cause drifting end points.

Do not use indicator titrations with colored or turbid samples that may obscure the color change at the end point. Residual free available chlorine in the sample may bleach the indicator. Eliminate this source of interference by adding 1 drop of 0.1M sodium thiosulfate (Na₂S₂O₃).

d. Selection of procedure: Determine sample acidity from the volume of standard alkali required to titrate a portion to a pH of 8.3 (phenolphthalein acidity) or pH 3.7 (methyl orange acidity of wastewaters and grossly polluted waters). Titrate at room temperature using a properly calibrated pH meter, electrically operated titrator, or color indicators.

Use the hot peroxide procedure (¶4a) to pretreat samples known or suspected to contain hydrolyzable metal ions or reduced forms of polyvalent cation, such as iron pickle liquors, acid mine drainage, and other industrial wastes.

Color indicators may be used for routine and control titrations in the absence of interfering color and turbidity and for preliminary titrations to select sample size and strength of titrant (¶4b).

e. Sample size: The range of acidities found in wastewaters is so large that a single sample size and normality of base used as titrant cannot be specified. Use a sufficiently large volume of titrant (20 mL or more from a 50-mL buret) to obtain relatively good volumetric precision while keeping sample volume sufficiently small to permit sharp end points. For samples having acidities less than about 1000 mg as calcium carbonate (CaCO₃)/L, select a volume with less than 50 mg CaCO₃ equivalent acidity and titrate with 0.02N sodium hydroxide (NaOH). For acidities greater than about 1000 mg as CaCO₃/L, use a portion containing acidity equivalent to less than 250 mg CaCO₃ and titrate with 0.1N NaOH. If necessary, make a preliminary titration to determine optimum sample size and/or normality of titrant.

f. Sampling and storage: Collect samples in polyethylene or borosilicate glass bottles and store at a low temperature. Fill bottles completely and cap tightly. Because waste samples may be subject to microbial action and to loss or gain of CO₂ or other gases when exposed to air,
analyze samples without delay, preferably within 1 d. If biological activity is suspected analyze within 6 h. Avoid sample agitation and prolonged exposure to air.

2. Apparatus

 a. Electrometric titrator: Use any commercial pH meter or electrically operated titrator that uses a glass electrode and can be read to 0.05 pH unit. Standardize and calibrate according to the manufacturer’s instructions. Pay special attention to temperature compensation and electrode care. If automatic temperature compensation is not provided, titrate at 25 ± 5°C.

 b. Titration vessel: The size and form will depend on the electrodes and the sample size. Keep the free space above the sample as small as practicable, but allow room for titrant and full immersion of the indicating portions of electrodes. For conventional-sized electrodes, use a 200-mL, tall-form Berzelius beaker without a spout. Fit beaker with a stopper having three holes, to accommodate the two electrodes and the buret. With a miniature combination glass-reference electrode use a 125-mL or 250-mL erlenmeyer flask with a two-hole stopper.

 c. Magnetic stirrer.

 d. Pipets, volumetric.

 e. Flasks, volumetric, 1000-, 200-, 100-mL.

 f. Burets, borosilicate glass, 50-, 25-, 10-mL.

 g. Polyolefin bottle, 1-L.

3. Reagents

 a. Carbon dioxide-free water: Prepare all stock and standard solutions and dilution water for the standardization procedure with distilled or deionized water that has been freshly boiled for 15 min and cooled to room temperature. The final pH of the water should be ≥ 6.0 and its conductivity should be <2 µmhos/cm.

 b. Potassium hydrogen phthalate solution, approximately 0.05N: Crush 15 to 20 g primary standard KHC₈H₄O₄ to about 100 mesh and dry at 120°C for 2 h. Cool in a desiccator. Weigh 10.0 ± 0.5 g (to the nearest mg), transfer to a 1-L volumetric flask, and dilute to 1000 mL.

 c. Standard sodium hydroxide titrant, 0.1N: Prepare solution approximately 0.1N as indicated under Preparation of Desk Reagents (see inside front cover). Standardize by titrating 40.00 mL KHC₈H₄O₄ solution (¶ 3b), using a 25-mL buret. Titrate to the inflection point (¶ 1a), which should be close to pH 8.7. Calculate normality of NaOH:

 \[
 \text{Normality} = \frac{A \times B}{204.2 \times C}
 \]

 where:

 \[A = \text{g KHC₈H₄O₄ weighed into 1-L flask} \]

© Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation
Standard Methods for the Examination of Water and Wastewater

\[B = \text{mL KHC}_8\text{H}_4\text{O}_4 \text{ solution taken for titration, and} \]
\[C = \text{mL NaOH solution used.} \]

Use the measured normality in further calculations or adjust to 0.1000N; 1 mL = 5.00 mg CaCO₃.

d. **Standard sodium hydroxide titrant, 0.02N:** Dilute 200 mL 0.1N NaOH to 1000 mL and store in a polyolefin bottle protected from atmospheric CO₂ by a soda lime tube or tight cap. Standardize against KHC₈H₄O₄ as directed in ¶ 3c, using 15.00 mL KHC₈H₄O₄ solution and a 50-mL buret. Calculate normality as above (¶ 3c); 1 mL = 1.00 mg CaCO₃.

e. **Hydrogen peroxide, H₂O₂, 30%**.

f. **Bromphenol blue indicator solution**, pH 3.7 indicator: Dissolve 100 mg bromphenol blue, sodium salt, in 100 mL water.

g. **Metacresol purple indicator solution**, pH 8.3 indicator: Dissolve 100 mg metacresol purple in 100 mL water.

h. **Phenolphthalein indicator solution**, alcoholic, pH 8.3 indicator.

i. **Sodium thiosulfate, 0.1M:** Dissolve 25 g Na₂S₂O₃⋅5H₂O and dilute to 1000 mL with distilled water.

4. Procedure

If sample is free from hydrolyzable metal ions and reduced forms of polyvalent cations, proceed with analysis according to b, c, or d. If sample is known or suspected to contain such substances, pretreat according to a.

a. **Hot peroxide treatment:** Pipet a suitable sample (see ¶ 1e) into titration flasks. Measure pH. If pH is above 4.0 add 5-mL increments of 0.02N sulfuric acid (H₂SO₄) (Section 2320B.3c) to reduce pH to 4 or less. Remove electrodes. Add 5 drops 30% H₂O₂ and boil for 2 to 5 min. Cool to room temperature and titrate with standard alkali to pH 8.3 according to the procedure of 4d.

b. **Color change:** Select sample size and normality of titrant according to criteria of ¶ 1e. Adjust sample to room temperature, if necessary, and with a pipet discharge sample into an erlenmeyer flask, while keeping pipet tip near flask bottom. If free residual chlorine is present add 0.05 mL (1 drop) 0.1M Na₂S₂O₃ solution, or destroy with ultraviolet radiation. Add 0.2 mL (5 drops) indicator solution and titrate over a white surface to a persistent color change characteristic of the equivalence point. Commercial indicator solutions or solids designated for the appropriate pH range (3.7 or 8.3) may be used. Check color at end point by adding the same concentration of indicator used with sample to a buffer solution at the designated pH.

c. **Potentiometric titration curve:**

1) Rinse electrodes and titration vessel with distilled water and drain. Select sample size and
normality of titrant according to the criteria of ¶ 1e. Adjust sample to room temperature, if necessary, and with a pipet discharge sample while keeping pipet tip near the titration vessel bottom.

2) Measure sample pH. Add standard alkali in increments of 0.5 mL or less, such that a change of less than 0.2 pH units occurs per increment. After each addition, mix thoroughly but gently with a magnetic stirrer. Avoid splashing. Record pH when a constant reading is obtained. Continue adding titrant and measure pH until pH 9 is reached. Construct the titration curve by plotting observed pH values versus cumulative milliliters titrant added. A smooth curve showing one or more inflections should be obtained. A ragged or erratic curve may indicate that equilibrium was not reached between successive alkali additions. Determine acidity relative to a particular pH from the curve.

d. Potentiometric titration to pH 3.7 or 8.3: Prepare sample and titration assembly as specified in ¶ 4c1). Titrate to preselected end-point pH (¶ 1d) without recording intermediate pH values. As the end point is approached make smaller additions of alkali and be sure that pH equilibrium is reached before making the next addition.

5. Calculation

\[
\text{Acidity, as mg CaCO}_3/L = \frac{[(A \times B) - (C \times D)] \times 50000}{\text{mL sample}}
\]

where:

- \(A = \) mL NaOH titrant used,
- \(B = \) normality of NaOH,
- \(C = \) mL H\(_2\)SO\(_4\) used (¶ 4a), and
- \(D = \) normality of H\(_2\)SO\(_4\).

Report pH of the end point used, as follows: “The acidity to pH _____ = _______ mg CaCO\(_3\)/L.” If a negative value is obtained, report the value as negative. The absolute value of this negative value should be equivalent to the net alkalinity.

6. Precision and Bias

No general statement can be made about precision because of the great variation in sample characteristics. The precision of the titration is likely to be much greater than the uncertainties involved in sampling and sample handling before analysis.

Forty analysts in 17 laboratories analyzed synthetic water samples containing increments of bicarbonate equivalent to 20 mg CaCO\(_3\)/L. Titration according to the procedure of ¶ 4d gave a standard deviation of 1.8 mg CaCO\(_3\)/L, with negligible bias. Five laboratories analyzed two
samples containing sulfuric, acetic, and formic acids and aluminum chloride by the procedures of ¶s 4b and 4d. The mean acidity of one sample (to pH 3.7) was 487 mg CaCO$_3$/L, with a standard deviation of 11 mg/L. The bromphenol blue titration of the same sample was 90 mg/L greater, with a standard deviation of 110 mg/L. The other sample had a potentiometric titration of 547 mg/L, with a standard deviation of 54 mg/L, while the corresponding indicator result was 85 mg/L greater, with a standard deviation of 56 mg/L. The major difference between the samples was the substitution of ferric ammonium citrate, in the second sample, for part of the aluminum chloride.

7. Bibliography

2320 ALKALINITY*#(29)

2320 A. Introduction

1. Discussion

Alkalinity of a water is its acid-neutralizing capacity. It is the sum of all the titratable bases. The measured value may vary significantly with the end-point pH used. Alkalinity is a measure of an aggregate property of water and can be interpreted in terms of specific substances only when the chemical composition of the sample is known.

Alkalinity is significant in many uses and treatments of natural waters and wastewaters. Because the alkalinity of many surface waters is primarily a function of carbonate, bicarbonate, and hydroxide content, it is taken as an indication of the concentration of these constituents. The measured values also may include contributions from borates, phosphates, silicates, or other bases if these are present. Alkalinity in excess of alkaline earth metal concentrations is significant in determining the suitability of a water for irrigation. Alkalinity measurements are used in the interpretation and control of water and wastewater treatment processes. Raw domestic wastewater has an alkalinity less than, or only slightly greater than, that of the water supply. Properly operating anaerobic digesters typically have supernatant alkalinities in the range of 2000 to 4000 mg calcium carbonate (CaCO$_3$)/L.1
2. Reference

2320 B. Titration Method

1. General Discussion

a. Principle: Hydroxyl ions present in a sample as a result of dissociation or hydrolysis of solutes react with additions of standard acid. Alkalinity thus depends on the end-point pH used. For methods of determining inflection points from titration curves and the rationale for titrating to fixed pH end points, see Section 2310B.1a.

For samples of low alkalinity (less than 20 mg CaCO$_3$/L) use an extrapolation technique based on the near proportionality of concentration of hydrogen ions to excess of titrant beyond the equivalence point. The amount of standard acid required to reduce pH exactly 0.30 pH unit is measured carefully. Because this change in pH corresponds to an exact doubling of the hydrogen ion concentration, a simple extrapolation can be made to the equivalence point.1,2

b. End points: When alkalinity is due entirely to carbonate or bicarbonate content, the pH at the equivalence point of the titration is determined by the concentration of carbon dioxide (CO$_2$) at that stage. CO$_2$ concentration depends, in turn, on the total carbonate species originally present and any losses that may have occurred during titration. The pH values in Table 2320:I are suggested as the equivalence points for the corresponding alkalinity concentrations as milligrams CaCO$_3$ per liter. “Phenolphthalein alkalinity” is the term traditionally used for the quantity measured by titration to pH 8.3 irrespective of the colored indicator, if any, used in the determination. Phenolphthalein or metacresol purple may be used for alkalinity titration to pH 8.3. Bromcresol green or a mixed bromcresol green-methyl red indicator may be used for pH 4.5.

c. Interferences: Soaps, oily matter, suspended solids, or precipitates may coat the glass electrode and cause a sluggish response. Allow additional time between titrant additions to let electrode come to equilibrium or clean the electrodes occasionally. Do not filter, dilute, concentrate, or alter sample.

d. Selection of procedure: Determine sample alkalinity from volume of standard acid required to titrate a portion to a designated pH taken from ¶ 1b. Titrate at room temperature with a properly calibrated pH meter or electrically operated titrator, or use color indicators. If using color indicators, prepare and titrate an indicator blank.

Report alkalinity less than 20 mg CaCO$_3$/L only if it has been determined by the low-alkalinity method of ¶ 4d.

Construct a titration curve for standardization of reagents.
Color indicators may be used for routine and control titrations in the absence of interfering color and turbidity and for preliminary titrations to select sample size and strength of titrant (see below).

Sample size: See Section 2310B.1e for selection of size sample to be titrated and normality of titrant, substituting 0.02N or 0.1N sulfuric (H₂SO₄) or hydrochloric (HCl) acid for the standard alkali of that method. For the low-alkalinity method, titrate a 200-mL sample with 0.02N H₂SO₄ from a 10-mL buret.

Sampling and storage: See Section 2310B.1f.

2. Apparatus
 See Section 2310B.2.

3. Reagents

a. Sodium carbonate solution, approximately 0.05N: Dry 3 to 5 g primary standard Na₂CO₃ at 250°C for 4 h and cool in a desiccator. Weigh 2.5 ± 0.2 g (to the nearest mg), transfer to a 1-L volumetric flask, fill flask to the mark with distilled water, and dissolve and mix reagent. Do not keep longer than 1 week.

b. Standard sulfuric acid or hydrochloric acid, 0.1N: Prepare acid solution of approximate normality as indicated under Preparation of Desk Reagents. Standardize against 40.00 mL 0.05/N Na₂CO₃ solution, with about 60 mL water, in a beaker by titrating potentiometrically to pH of about 5. Lift out electrodes, rinse into the same beaker, and boil gently for 3 to 5 min under a watch glass cover. Cool to room temperature, rinse cover glass into beaker, and finish titrating to the pH inflection point. Calculate normality:

\[\text{Normality, } N = \frac{A \times B}{53.00 \times C} \]

where:
- \(A = \) g Na₂CO₃ weighed into 1-L flask,
- \(B = \) mL Na₂CO₃ solution taken for titration, and
- \(C = \) mL acid used.

Use measured normality in calculations or adjust to 0.1000N; 1 mL 0.1000N solution = 5.00 mg CaCO₃.

c. Standard sulfuric acid or hydrochloric acid, 0.02N: Dilute 200.00 mL 0.1000N standard acid to 1000 mL with distilled or deionized water. Standardize by potentiometric titration of
15.00 mL 0.05 N Na₂CO₃ according to the procedure of ¶ 3b; 1 mL = 1.00 mg CaCO₃.

d. Brom cresol green indicator solution, pH 4.5 indicator: Dissolve 100 mg brom cresol green, sodium salt, in 100 mL distilled water.

e. Mixed brom cresol green-methyl red indicator solution:³ Use either the aqueous or the alcoholic solution:
1) Dissolve 100 mg brom cresol green sodium salt and 20 mg methyl red sodium salt in 100 mL distilled water.
2) Dissolve 100 mg brom cresol green and 20 mg methyl red in 100 mL 95% ethyl alcohol or isopropyl alcohol.

f. Metacresol purple indicator solution, pH 8.3 indicator: Dissolve 100 mg metacresol purple in 100 mL water.

g. Phenolphthalein solution, alcoholic, pH 8.3 indicator.

h. Sodium thiosulfate, 0.1 N: See Section 2310B.3i.

4. Procedure
a. Color change: See Section 2310B.4b.

b. Potentiometric titration curve: Follow the procedure for determining acidity (Section 2310B.4c), substituting the appropriate normality of standard acid solution for standard NaOH, and continue titration to pH 4.5 or lower. Do not filter, dilute, concentrate, or alter the sample.

c. Potentiometric titration to preselected pH: Determine the appropriate end-point pH according to ¶ 1b. Prepare sample and titration assembly (Section 2310B.4c). Titrate to the end-point pH without recording intermediate pH values and without undue delay. As the end point is approached make smaller additions of acid and be sure that pH equilibrium is reached before adding more titrant.

d. Potentiometric titration of low alkalinity: For alkalinities less than 20 mg/L titrate 100 to 200 mL according to the procedure of ¶ 4c, above, using a 10-mL microburet and 0.02 N standard acid solution. Stop the titration at a pH in the range 4.3 to 4.7 and record volume and exact pH. Carefully add additional titrant to reduce the pH exactly 0.30 pH unit and again record volume.

5. Calculations
a. Potentiometric titration to end-point pH:

\[
\text{Alkalinity, mg CaCO}_3/\text{L} = \frac{A \times N \times 50000}{\text{mL sample}}
\]

where:
\[A = \text{mL standard acid used and}\]
Standard Methods for the Examination of Water and Wastewater

\[N = \text{normality of standard acid} \]

or

\[\text{Alkalinity, mg CaCO}_3/\text{L} = \frac{A \times t \times 1000}{\text{mL sample}} \]

where:

\[t = \text{titer of standard acid, mg CaCO}_3/\text{mL}. \]

Report pH of end point used as follows: “The alkalinity to pH _______ = _______ mg CaCO\textsubscript{3}/L” and indicate clearly if this pH corresponds to an inflection point of the titration curve.

\textit{b. Potentiometric titration of low alkalinity:}

Total alkalinity, mg CaCO\textsubscript{3}/L

\[= \frac{(2 \times B - C) \times N \times 50 \, 000}{\text{mL sample}} \]

where:

\[B = \text{mL titrant to first recorded pH}, \]
\[C = \text{total mL titrant to reach pH 0.3 unit lower, and} \]
\[N = \text{normality of acid}. \]

c. \textit{Calculation of alkalinity relationships:} The results obtained from the phenolphthalein and total alkalinity determinations offer a means for stoichiometric classification of the three principal forms of alkalinity present in many waters. The classification ascribes the entire alkalinity to bicarbonate, carbonate, and hydroxide, and assumes the absence of other (weak) inorganic or organic acids, such as silicic, phosphoric, and boric acids. It further presupposes the incompatibility of hydroxide and bicarbonate alkalinities. Because the calculations are made on a stoichiometric basis, ion concentrations in the strictest sense are not represented in the results, which may differ significantly from actual concentrations especially at pH > 10. According to this scheme:

1) Carbonate (CO\textsubscript{3}2–) alkalinity is present when phenolphthalein alkalinity is not zero but is less than total alkalinity.

2) Hydroxide (OH–) alkalinity is present if phenolphthalein alkalinity is more than half the total alkalinity.

3) Bicarbonate (HCO\textsubscript{3}–) alkalinity is present if phenolphthalein alkalinity is less than half the