Prime, Primary and Primal submodules

Definition A proper ideal P of a ring R is a prime ideal if for any $a, b \in R$, $ab \not\in P$ implies that either $a \in P$ or $b \in P$.

Example Let p be a prime number. Then, in the ring of integers \mathbb{Z}, the ideal $p\mathbb{Z}$ is prime.

Proposition A proper ideal P of a ring R is prime if and only if for any ideals A, B in R, $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$.

Proof.

Corollary Let P be a prime ideal of a ring R and suppose that A, B are ideals in R. If $A \cap B \subseteq P$, then either $A \subseteq P$ or $B \subseteq P$.

Proof.
Definition. Let \(I \) be an ideal in a ring \(R \). The radical of \(I \), denoted \(\sqrt{I} \), is the ideal \(\sqrt{I} = \bigcap P \), where the intersection runs over all prime ideals of \(R \) containing \(I \).

Proposition If \(I \) is an ideal in a ring \(R \), then

\[
\sqrt{I} = \{ r \in R \mid r^n \in I, \text{ for some integer } n > 0 \}.
\]

Example Let \(X \) be a set and \(R \) be the ring \((P(X), \Delta, \cap) \), where \(P(X) \) is the power set of \(X \) and the operation \(\Delta \) is defined by \(A \Delta B = (A - B) \cup (B - A) \). Since for every \(r \in R \) and every positive integer \(n \), \(r^n = r \), then \(\sqrt{I} = I \) for every ideal \(I \) of \(R \).

Definition A proper ideal \(Q \) of a ring \(R \) is a primary ideal if for any \(a, b \in R, ab \in Q \) and \(a \notin Q \) implies that \(b^n \in Q \) for some positive integer \(n \).
It is clear directly from the definitions that every prime ideal is primary, but the following example shows that the converse is false.

Example In the ring of integers \mathbb{Z}, the ideal $4\mathbb{Z}$ is primary but it is not prime.

Proposition If Q is a primary ideal in a ring R. Then \sqrt{Q} is a prime ideal.

Proof. Since Q is a proper ideal in R, then $1 \notin Q$ and hence $1 \notin \sqrt{Q}$ showing \sqrt{Q} is proper ideal in R. Let $ab \in \sqrt{Q}$ and $a \notin \sqrt{Q}$, then $(ab)^n \in Q$ for some positive integer n, and hence $a^n b^n \in Q$. Since $a \notin \sqrt{Q}$, $a^n \notin Q$. Since Q is primary, there is a positive integer k such that $(b^n)^k \in Q$, whence $b \in \sqrt{Q}$. Therefore \sqrt{Q} is a prime ideal.
Definition. Let M be an R–module. A proper submodule N of M is said to be a prime submodule if $rm \in N$ for $r \in R$ and $m \in M$ implies that either $m \in N$ or $rM \subseteq N$.

Definition. Let M be an R–module. A proper submodule N of M is said to be a primary submodule if $rm \in N$ for $r \in R$ and $m \in M$ implies that either $m \in N$ or $r^n M \subseteq N$ for some positive integer n.

Remark. Consider the ring R as an R–module and let Q be a primary ideal (and hence a submodule) of R. If $rm \in Q$ with $r \in R$ and $m \notin Q$, then $r^n \in Q$ for some a positive integer n. Since Q is an ideal, this implies $r^n R \subseteq Q$. Hence Q is primary submodule of the module R. Conversely every primary submodule of R is a primary ideal.
Similarly, an ideal P of the ring R is prime ideal if and only it is prime submodule of the module R.

It is clear directly from the definitions that every prime submodule is primary, but the converse is false.

Definition
Let N be a submodule of an R–module M. The residual of N by M, denoted $(N : M)$, is the ideal $(N : M) = \{ r \in R \mid rM \subseteq N \}$.

Proposition
If L and N are submodules of an R–module M, then $(L \cap N : M) = (L : M) \cap (N : M)$.

Proposition
If N is a prime submodule of an R–module M, then $(N : M)$ is prime ideal in R.

Proof. $(N : M)$ is a proper ideal, since $1 \notin (N : M)$. Let $ab \in (N : M)$, and $b \notin (N : M)$. Then $bM \nsubseteq N$, that is there exists $m \in M$ with $bm \notin N$. But $a(bm) = (ab)m \in N$ and N is prime, therefore $aM \subseteq N$, thus $a \in (N : M)$.
Proposition. If N is a primary submodule of an R–module M, then $(N : M)$ is primary ideal in R, and hence $\sqrt{(N : M)}$ is prime ideal in R.

Definition. Let M be an R–module and N a submodule of M. For any $a \in R$, the submodule $\{m \in M \mid am \in N\}$ is denoted by $a^{-1}N$. Analogously for a subset A of R, $A^{-1}N = \{m \in M \mid Am \subseteq N\}$.

Remark. (i) $N \subseteq a^{-1}N$.

(ii) The notation $a^{-1}N$ does not mean that a has an inverse in R, however if a has an inverse in R, then the submodules $(a^{-1})N = \{a^{-1}m \mid m \in N\}$ and $a^{-1}N = \{m \in M \mid am \in N\}$ are the same.
Proof. (i) follows from definition of $a^{-1}N$. (ii) Let $m \in a^{-1}N$, then $am \in N$, hence $m = a^{-1}(am) \in (a^{-1})N$, therefore $a^{-1}N \subseteq (a^{-1})N$. On other hand if $m \in (a^{-1})N$, then $m = a^{-1}n$ for some $n \in N$. Now $am = a(a^{-1}n) = n \in N$, so $m \in a^{-1}N$, therefore $(a^{-1})N \subseteq a^{-1}N$.

Definition. Let M be an R–module and N a submodule of M. The element $a \in R$ is (left) prime to N if $a^{-1}N = N$, i.e. if $am \in N$ ($m \in M$) implies $m \in N$.

A is not (left) prime to N if $a^{-1}N \neq N$, i.e. there exists an element $m \in M - N$ with $am \in N$.

A subset A of R is not prime to N if for any $a \in A$, a is not prime to N. In this case we say that A is pointwise not prime to N.

The subset A of R is uniformly not prime to N, if there exists an element $u \in M - N$ with $Au \subseteq N$, i.e. A is uniformly not prime to N if and only if $A^{-1}N \neq N$.
Example. Consider the submodule $6\mathbb{Z}$ in the \mathbb{Z}-module \mathbb{Z}. 5 is prime to $6\mathbb{Z}$ while 2 is not prime to $6\mathbb{Z}$, the set $\{2, 3\}$ is pointwise not prime to $6\mathbb{Z}$, and the set $\{2, 4, 6, \ldots\}$ is uniformly not prime to $6\mathbb{Z}$.

Proposition. Let N be a proper submodule of an R-module M. Then the ideal $(N : M)$ is uniformly not prime to N.

Proof. By the definition of $(N : M)$, we have $(N : M)M \subseteq N$, and hence $(N : M)u \subseteq N$ for any $u \in M - N$.

Definition. Let M be an R-module and N a submodule of M. The adjoint of N is the set of all elements of R that are not prime to N and denoted by $\text{adj}(N)$.

On other words, $\text{adj}(N) = \{r \in R \mid rm \in N \text{ for some } m \in M - N\}$.
Example \quad In \ Z\textendash \text{module } \mathbb{Z}, \text{ adj}(6\mathbb{Z}) \text{ is the set } 2\mathbb{Z} \cup 3\mathbb{Z} \text{ and } \text{adj}(4\mathbb{Z}) \text{ is the ideal } 2\mathbb{Z}.

Proposition \quad Let \ N be a proper submodule of an \ R\textendash \text{module } \ M, \text{ then }

\[(N : M) \subseteq \sqrt{(N : M)} \subseteq \text{adj}(N) \]

Proof. \ (N : M) \subseteq \sqrt{(N : M)} \text{ follows from Definition }, \text{ so the proof reduces to proving that } \sqrt{(N : M)} \subseteq \text{adj}(N). \text{ Let } r \in \sqrt{(N : M)}, \text{ then } r^nM \subseteq N \text{ for some positive integer } n. \text{ Pick } m \in M \setminus N, \text{ then } r^n m \in N. \text{ If we choose } n_0 \text{ be the smallest positive integer with } r^{n_0} m \in N, \text{ we have } r(r^{n_0-1} m) \in N \text{ while } r^{n_0-1} m \notin N, \text{ Thus } r \in \text{adj}(N).

Definition \quad Let \ M be an \ R\textendash \text{module. A proper submodule } \ N \text{ of } \ M \text{ is said to be primal if } \text{adj}(N) \text{ forms an ideal of } R. \text{ In this case the adjoint of } \ N \text{ will also be called the adjoint ideal of } \ N.
Remark. Consider the ring R as an R–module. An ideal I of R is a primal ideal if and only if it is a primal submodule of R.

Example. In the ring \mathbb{Z}, the ideal $4\mathbb{Z}$ is primal, and the ideal $6\mathbb{Z}$ is not primal.

Proposition. Let M be an R–module. If N is a primal submodule of M, then $\text{adj}(N)$ is a prime ideal of R.

Proof. Since $1 \notin \text{adj}(N)$, $\text{adj}(N)$ is a proper ideal. Let $ab \in \text{adj}(N)$ with $a \notin \text{adj}(N)$, there exists $m \in M - N$ with $abm \in N$, so $bm \in N$ implies that $b \in \text{adj}(N)$.

Remark. Let N be a submodule of an R–module M. If $r \in R$ and $a \in \text{adj}(N)$, then there exists $m \in M - N$ with $am \in N$, and hence $ram \in N$ while $m \notin N$ and, as a consequence, $ra \in \text{adj}(N)$. Thus to prove $\text{adj}(N)$ is an ideal we only prove $\text{adj}(N)$ is closed under the addition.
Proposition. Let N be a submodule of an R–module M. If $\text{adj}(N)$ is uniformly not prime to N, then $\text{adj}(N)$ is an ideal of R, and as a consequence, N is primal.

Proof. Let $a, b \in \text{adj}(N)$, since $\text{adj}(N)$ is uniformly not prime to N, then there exists an element $u \in M - N$ with $\text{adj}(N)u \subseteq N$. Thus au and bu are in N, and hence $(a + b)u \in N$ showing $a + b \in \text{adj}(N)$.

Definition. Let M be an R–module. A proper submodule N of M is said to be uniformly primal if $\text{adj}(N)$ is uniformly not prime to N.

Definition. Let R be a ring. An ideal I of R is uniformly primal ideal if it is uniformly primal submodule of the R–module R.

Proposition. Let N be a proper submodule of an R–module M. If $\text{adj}(N)$ is a principle ideal of R generated by a, then N is uniformly primal.
Proof. By assumption $\text{adj}(N) = Ra$, then a is not prime to N, so there exists an element $u \in M - N$ with $au \in N$, thus $\text{adj}(N)u = Rau \subseteq N$, and as a consequence, $\text{adj}(N)$ is uniformly not prime to N, and N is uniformly primal.

Corollary Let R be a principal ideal ring, and M an R–module. Then every primal submodule is uniformly primal.

Example Consider the ring \mathbb{Z}, the ideal $4\mathbb{Z}$ is uniformly primal ideal, since $\text{adj}(4\mathbb{Z}) = 2\mathbb{Z}$ is principle ideal of \mathbb{Z}.

Definition Let M be an R–module. A proper submodule N of M is said to be irreducible if N is not the intersection of two submodules of M that properly contain it.
Definition. Let M be an R–module. A proper submodule N of M is said to be completely irreducible (or strongly irreducible) if for any family $\{N_\alpha\}_{\alpha \in \Delta}$ of submodules of M with $N = \bigcap_{\alpha \in \Delta} N_\alpha$, $N = N_\beta$ for some $\beta \in \Delta$. On other words, N is not the intersection of any collection of submodules of M each properly containing N.

Clearly completely irreducible submodules of M are irreducible, but not conversely: the zero ideal of the ring \mathbb{Z} is irreducible but not completely irreducible.

Proposition. (Irreducible \Rightarrow Primal)

Let M be an R–module. If N is an irreducible submodule of M, then N is primal.

Proof. Let $a, b \in \text{adj}(N)$, then there exists m_1 and m_2 in $M - N$ such that $am_1 \in N$ and $bm_2 \in N$. Since each of $N + Rm_1$ and $N + Rm_2$ properly contains N, and N is...
irreducible, then \(N \subsetneq (N + Rm_1) \cap (N + Rm_2) \), thus there is \(m \in (N + Rm_1) \cap (N + Rm_2) \) with \(m \notin N \). However \(am \in a(N + Rm_1) = aN + aRm_1 = aN + Ram_1 \subseteq N \), similarly \(bm \in N \). So that \((a + b)m = am + bm \in N \) while \(m \notin N \). Thus \(a + b \in \text{adj}(N) \).

The next example shows that a primal submodule need not be irreducible.

Example Consider the ring \(\mathbb{Z}[x] \), the ring of polynomials with coefficients in \(\mathbb{Z} \), the ideal \(\langle 4, 2x, x^2 \rangle \) is primal with \(\langle 2, x \rangle \) as adjoint ideal, but it is not irreducible, since \(\langle 4, 2x, x^2 \rangle = \langle 4, x \rangle \cap \langle 2, x^2 \rangle \).

Proposition (Completely Irreducible \(\Rightarrow \) Uniformly Primal)

Let \(M \) be an \(R \)-module. If \(N \) is a completely irreducible submodule of \(M \), then \(N \) is uniformly primal.
Remark. The previous example shows that a uniformly primal submodule need not be completely irreducible.

Proposition ()** Let N be a proper submodule of an R-module M. Then N is a prime submodule of M if and only if $\text{adj}(N) = (N : M)$.

Proof. Suppose N is a prime submodule of M. Since $(N : M) \subseteq \sqrt{(N : M)} \subseteq \text{adj}(N)$

it suffices to show that $\text{adj}(N) \subseteq (N : M)$. Let $r \in \text{adj}(N)$, then there exists $m \in M - N$ with $rm \in N$, since N is prime, then $rM \subseteq N$, and hence $r \in (N : M)$.

Conversely, assume \(\operatorname{adj}(N) = (N : M) \), and let \(rm \in N \) where \(r \in R \) and \(m \in M - N \). Then \(r \) is not prime to \(N \), therefore \(r \in \operatorname{adj}(N) = (N : M) \). Thus \(rM \subseteq N \), and \(N \) is prime.

Corollary \((\text{Prime} \Rightarrow \text{Uniformly Primal})\)

Let \(M \) be an \(R \)-module. If \(N \) is a prime submodule of \(M \), then \(N \) is uniformly primal.

Proof: By Propositions (\(\ast \)) and (\(\ast \ast \))

Proposition \(N \) be a proper submodule of an \(R \)-module \(M \). Then \(N \) is a primary submodule of \(M \) if and only if \(\operatorname{adj}(N) = \sqrt{(N : M)} \).
Proof. Suppose N is a primary submodule of M. It is sufficient to show that $\text{adj}(N) \subseteq \sqrt{(N : M)}$. Let $r \in \text{adj}(N)$, then there exists $m \in M - N$ with $rm \in N$, since N is primary, then $r^n M \subseteq N$ for some positive integer n, and hence $r \in \sqrt{(N : M)}$.

Conversely, assume $\text{adj}(N) = \sqrt{(N : M)}$, and let $rm \in N$ where $r \in R$ and $m \in M - N$. Then r is not prime to N, therefore $r \in \text{adj}(N) = \sqrt{(N : M)}$. Thus $r^k M \subseteq N$ for some positive integer k, and N is primary.

Corollary (Primary \Rightarrow Primal)

Let M be an R–module. If N is a primary submodule of M, then N is primal.

Proof. If N is a primary submodule of M, then by the previous proposition, $\text{adj}(N) = \sqrt{(N : M)}$ is an ideal in R, hence N is primal.

The next example shows: a primal submodule of a module M is not necessarily primary.

Example Consider the ring $F[x,y]$, the ring of polynomials in x and y over a field F. The ideal (x^2,xy) of $F[x,y]$ is primal with (x,y) as adjoint prime.
ideal, but it is not primary, for \(xy \in \langle x^2, xy \rangle \) and neither \(x \) nor any power of \(y \) belongs to \(\langle x^2, xy \rangle \).

Summary of
Relation between Submodules

- Completely Irreducible
- Irreducible
- Uniformly Primal
- Primal
- Prime
- Primary
Over Boolean rings we prove the following new result: prime, primary and primal submodules are the same.

First we give the definition of a Boolean ring.

Definition A Boolean ring is a ring R in which every element is idempotent, that is, $x^2 = x$ for all $x \in R$.

Proposition Let R be a Boolean ring and M be an R-module. Then every primal submodule of M is prime.

Proof. Let N be a primal submodule of M. It suffices to show that $adj(N) \subseteq (N : M)$. Let $a \in adj(N)$, then $1 - a \notin adj(N)$, for otherwise, $1 = (1 - a) + a \in adj(N)$ which is a contradiction. That is $1 - a$ is prime to N, hence for all $m \in M$, $(1 - a)am = 0 \in N$ implies $am \in N$. Therefore $a \in (N : M)$.

Corollary. Let R be a Boolean ring and M be an R-module. Then every primary submodule of M is prime.

Corollary. Every primal ideal of a Boolean ring is prime.

Corollary. Every primary ideal of a Boolean ring is prime.