1.9 Stability Theory

In this section we define the stable, unstable and center subspace, \(E^s \), \(E^u \) and \(E^c \) respectively, of a linear system

\[
\dot{x} = Ax.
\]

(1)

Recall that \(E^s \) and \(E^u \) were defined in Section 1.2 in the case when \(A \) had distinct eigenvalues. We also establish some important properties of these subspaces in this section.

Definition. (stable, unstable and center subspaces)

Let \(w_j = u_j + iv_j \) be a generalized eigenvector of the (real) matrix \(A \) corresponding to an eigenvalue \(\lambda_j = a_j + ib_j \). And let \(B = \{ u_1, \ldots, u_k, u_{k+1}, \ldots, u_m, v_m \} \) be a basis of \(\mathbb{R}^n \) (with \(n = 2m - k \)). as established by Theorems 1 and 2 and the Remark in Section 1.7. Then

\[
E^s = \text{Span}\{u_j, v_j \mid a_j < 0\}
\]

\[
E^c = \text{Span}\{u_j, v_j \mid a_j = 0\}
\]

and

\[
E^u = \text{Span}\{u_j, v_j \mid a_j > 0\};
\]

i.e., \(E^s \), \(E^c \) and \(E^u \) are the subspaces of \(\mathbb{R}^n \) spanned by the real and imaginary parts of the generalized eigenvectors \(w_j \) corresponding to eigenvalues \(\lambda_j \) with negative, zero and positive real parts respectively.

Example 1. Find the stable, unstable, and center subspaces of the linear system \(\dot{x} = Ax \) if

\[
A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.
\]

Solution: The eigenvalues of \(A \) are \(\lambda_1 = \lambda_2 = 0 \) with corresponding generalized eigenvectors \(u_1 = (0, 1)^T \) and \(u_2 = (1, 0)^T \). Thus \(E^c = \mathbb{R}^2 \). The solution of the system is given by

\[
x_1(t) = c_1, \quad x_2(t) = c_1t + c_2.
\]

The solutions with \(c_1 = 0 \) are bounded (points on the \(x_2 \)-axis) while the others solutions are not bounded.

Example 2. Find the stable, unstable, and center subspaces of the linear system \(\dot{x} = Ax \) if

\[
A = \begin{bmatrix} -2 & -1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.
\]

Solution: The eigenvalues of \(A \) are \(\lambda_1 = -2 + i \), \(\lambda_2 = -2 - i \) and \(\lambda_3 = 3 \) with corresponding eigenvectors

\[
w_1 = u_1 + iv_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + i \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
\]

and

\[
u_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.
\]

The stable subspace is \(E^s = \text{Span}\{u_1, v_1\} \); i.e., the \(x_1x_2 \) plane.
The unstable subspace is $E^u = \text{Span}\{u_2\}$; i.e., the x_3-axis. The solution is given by

$$x(t) = \begin{bmatrix} e^{-2t} \cos t & -e^{-2t} \sin t & 0 \\ e^{-2t} \sin t & e^{-2t} \cos t & 0 \\ 0 & 0 & e^{3t} \end{bmatrix} x_0.$$

Note that all solutions in E^s (i.e. with $x_3 = 0$) approach the equilibrium point $x = 0$ as $t \to \infty$ and all solutions in E^u approach the equilibrium point $x = 0$ as $t \to -\infty$.

Example 3. Find the stable, unstable, and center subspaces of the linear system $\dot{x} = Ax$ if

$$A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Solution: The eigenvalues of A are $\lambda_1 = i$, $\lambda_2 = -i$ and $\lambda_3 = 2$ with corresponding eigenvectors

$$w_1 = u_1 + iv_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + i \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

and

$$u_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

The center subspace is $E^c = \text{Span}\{u_1, v_1\}$; i.e., the x_1x_2 plane. The unstable subspace is $E^u = \text{Span}\{u_2\}$; i.e., the x_3-axis.

The solution is given by

$$x(t) = \begin{bmatrix} \cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & e^{2t} \end{bmatrix} x_0.$$

All solutions lie on the cylinder $x_1^2 + x_2^2 = c_1^2 + c_2^2.$

Note that all solutions in E^u approach the equilibrium point $x = 0$ as $t \to -\infty$ and all solutions in E^c are bounded if and if $x(0) \neq 0$, then they are bounded away from $x = 0$ for all t.

Flow of a system of differential equations

Consider the initial value problem

$$\dot{x} = Ax, \quad x(0) = x_0.$$

Its solution is given by $x(t) = e^{tA}x_0$. The mapping $e^{tA} : \mathbb{R}^n \to \mathbb{R}^n$ may be regarded as describing the motion of points $x_0 \in \mathbb{R}^n$ along the trajectories of (1).

Definition. (Flow)

The set of mappings $e^{tA} : \mathbb{R}^n \to \mathbb{R}^n$ is called the flow of the linear system $\dot{x} = Ax$.

Definition. (Hyperbolic flow)

If all eigenvalues of the matrix A have nonzero real parts, then the flow $e^{tA} : \mathbb{R}^n \to \mathbb{R}^n$ is called a hyperbolic flow of the linear system $\dot{x} = Ax$ and the system is called a hyperbolic linear system.
Definition. (Invariant subspace)
A subspace $E \subset \mathbb{R}^n$ is said to be invariant with respect to the flow $e^{tA} : \mathbb{R}^n \to \mathbb{R}^n$ if

$$e^{tA}E \subset E$$

for all $t \in \mathbb{R}$.

We next show that the stable, unstable and center subspaces, E^s, E^u and E^c of the linear system $\dot{x} = Ax$ are invariant under the flow e^{At} of the linear system; i.e., any solution starting in E^s, E^u or E^c at time $t = 0$ remains in E^s, E^u or E^c respectively for all $t \in \mathbb{R}$.

Lemma. Let E be the generalized eigenspace of a matrix A corresponding to an eigenvalue λ. Then

$$AE \subset E.$$

Proof. $AE = \{Av : v \in E\}$. Let $\{v_1, ..., v_k\}$ be a basis of generalized eigenvectors for E. Then given $v \in E$,

$$v = \sum_{j=1}^{k} c_j v_j$$

and hence

$$Av = \sum_{j=1}^{k} c_j Av_j.$$

Now since each v_j is a generalized eigenvector, it satisfies

$$(A - \lambda I)^{k_j} v_j = 0$$

for some minimal k_j. Thus we have

$$(A - \lambda I)^{k_j} Av_j = (A - \lambda I)^{k_j} Av_j - \lambda(A - \lambda I)^{k_j} v_j$$

$$= (A - \lambda I)^{k_j} (A - \lambda I)v_j = 0.$$

So, it follows by induction that $Av_j \in E$ and since E is a subspace of \mathbb{R}^n, it follows that

$$Av = \sum_{j=1}^{k} c_j Av_j \in E.$$

Theorem 1. (E^s, E^u, and E^c are invariant)
Let A be a real $n \times n$ matrix. Then

$$\mathbb{R}^n = E^s \oplus E^u \oplus E^c,$$

where E^s, E^u, and E^c are the stable, unstable and center subspaces of the system $\dot{x} = Ax$ respectively; furthermore, E^s, E^u, and E^c are invariant with respect to the flow e^{At} of the system.

Proof. Let u_j, $j = 1, ..., k$, $w_j = u_j + iv_j$, $j = k + 1, \cdots m$ be generalized eigenvectors of A and let $B = \{u_1, ..., u_k, u_{k+1}, v_{k+1}, \cdots, u_m, v_m\}$ be a basis for \mathbb{R}^n. Then it follows from the definition of E^s, E^u, and E^c that $\mathbb{R}^n = E^s \oplus E^u \oplus E^c$.

3
If \(x_0 \in E^s \), then
\[
x_0 = \sum_{j=1}^{n_s} c_j V_j,
\]
where \(V_j = v_j \) or \(u_j \) and \(\{V_1, \ldots, V_{n_s}\} \subset B \) is a basis for \(E^s \). Then by the linearity of \(e^{At} \), it follows that
\[
e^{tA}x_0 = \sum_{j=1}^{n_s} c_j e^{tA}V_j.
\]
But
\[
e^{tA}V_j = \lim_{k \to \infty} \left[I + At + \cdots + \frac{A^k t^k}{k!} \right] V_j \in E^s
\]
since for \(j = 1, ..., n \), by the above lemma \(A^k V_j \in E^s \) and since \(E^s \) is complete. Thus, for all \(t \in \mathbb{R}^n \), \(e^{tA}x_0 \in E^s \) and therefore \(e^{tA}E^s \subset E^s \).

It can similarly be shown that \(E^u \) and \(E^c \) are invariant under the flow \(e^{tA} \).

Example 1. Consider the linear system \(\dot{x} = Ax \) where
\[
A = \begin{bmatrix}
-2 & -1 & 0 \\
1 & -2 & 0 \\
0 & 0 & 3
\end{bmatrix}.
\]

Solution: The eigenvalues of \(A \) are \(\lambda_1 = -2 + i \), \(\lambda_2 = -2 - i \) and \(\lambda_3 = 3 \) with corresponding eigenvectors
\[
w_1 = u_1 + iv_1 = \begin{bmatrix} 0 \\ 1 + i \\ 0 \end{bmatrix}
\]
and
\[
u_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.
\]
The stable subspace is \(E^s = \text{Span}\{u_1, v_1\} \); i.e., the \(x_1x_2 \) plane.
The unstable subspace is \(E^u = \text{Span}\{u_2\} \); i.e., the \(x_3 \)-axis.
The solution is given by
\[
x(t) = \begin{bmatrix}
e^{-2t} \cos t & -e^{-2t} \sin t & 0 \\
e^{-2t} \sin t & e^{-2t} \cos t & 0 \\
0 & 0 & e^{3t}
\end{bmatrix} x_0.
\]

If \(x_0 \in E^s \), then \(x_0 = \begin{bmatrix} c_1 \\ c_2 \\ 0 \end{bmatrix} \) and hence the solution
\[
x(t) = e^{tA}x_0 = \begin{bmatrix} c_1 e^{-2t} \cos t - c_2 e^{-2t} \sin t \\
c_1 e^{-2t} \sin t + c_2 e^{-2t} \cos t \\
0 \end{bmatrix} \in E^s.
\]
Similarly, if \(x_0 = \begin{bmatrix} 0 \\ 0 \\ c \end{bmatrix} \in E^u \), then
\[
x(t) = e^{tA}x_0 = \begin{bmatrix} 0 \\ 0 \\ ce^{3t} \end{bmatrix} \in E^u.
Definition. (Sinks and sources) If all of the eigenvalues of A have negative (positive) real parts, the origin is called a sink (source) for the linear system $\dot{x} = Ax$.

Example 1. Consider the linear system $\dot{x} = Ax$ if

$$A = \begin{bmatrix} -2 & -1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}.$$

Solution: The eigenvalues of A are $\lambda_1 = -2 + i$, $\lambda_2 = -2 - i$ and $\lambda_3 = -3$ with corresponding eigenvectors

$$w_1 = u_1 + iv_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + i \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

and

$$u_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

$E^s = \mathbb{R}^3$ and the origin is a sink for this example.

Theorem 2. The following statements are equivalent:

(a) For all $x_0 \in \mathbb{R}^n$, $\lim_{t \to \infty} e^{tA}x_0 = 0$ and for $x_0 \neq 0$, $\lim_{t \to -\infty} |e^{tA}x_0| = \infty$.

(b) All eigenvalues of A have negative real parts.

(c) There are positive constants a, c, m and M such that for all $x_0 \in \mathbb{R}^n$

$$|e^{tA}x_0| \leq Me^{-ct}|x_0| \quad \text{for} \quad t \geq 0$$

and

$$|e^{tA}x_0| \geq me^{-at}|x_0| \quad \text{for} \quad t \leq 0.$$

Proof. Each coordinate in the solution $x(t)$ of the initial value problem

$$\dot{x} = Ax, \quad x(0) = x_0$$

is a linear combination of functions of the form

$$t^ke^{at} \cos(bt) \quad \text{or} \quad t^ke^{at} \sin(bt),$$

where $\lambda = a + ib$ is an eigenvalue of the matrix A and $0 < k < n - 1$.

Theorem 3. The following statements are equivalent:

(a) For all $x_0 \in \mathbb{R}^n$, $\lim_{t \to -\infty} e^{tA}x_0 = 0$ and for $x_0 \neq 0$, $\lim_{t \to \infty} |e^{tA}x_0| = \infty$.

(b) All eigenvalues of A have positive real parts.

(c) There are positive constants a, c, m and M such that for all $x_0 \in \mathbb{R}^n$

$$|e^{tA}x_0| \leq Me^{ct}|x_0| \quad \text{for} \quad t \leq 0$$

and

$$|e^{tA}x_0| \geq me^{at}|x_0| \quad \text{for} \quad t \geq 0.$$
Corollary.

(a) If \(x_0 \in E^s \), then \(e^{tA} x_0 \in E^s \) for all \(t \in \mathbb{R} \) and
\[
\lim_{t \to \infty} e^{tA} x_0 = 0.
\]

(a) If \(x_0 \in E^u \), then \(e^{tA} x_0 \in E^u \) for all \(t \in \mathbb{R} \) and
\[
\lim_{t \to -\infty} e^{tA} x_0 = 0.
\]

Thus, we see that all solutions of \(\dot{x} = Ax \) which start in the stable space \(E^s \) remain in \(E^s \) for all \(t \) and approach the origin exponentially fast as \(t \to \infty \); and all solutions of (which start in the unstable manifold \(E^u \) remain in \(E^u \) for all \(t \) and approach the origin exponentially fast as \(t \to -\infty \).