Chapter I
Vector Analysis
1.1 Vector Algebra

It is well-known that any vector can be written as

\[\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} \]

Vectors obey the following algebraic rules:

(i) \[\vec{A} \pm \vec{B} = (A_x \pm B_x) \hat{i} + (A_y \pm B_y) \hat{j} + (A_z \pm B_z) \hat{k} \]

(ii) \[\vec{A} + \vec{B} = \vec{B} + \vec{A} \quad \text{Commutative} \]

(iii) \[(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C}) \quad \text{Associative} \]

(iv) \[\lambda \vec{A} = \lambda A_x \hat{i} + \lambda A_y \hat{j} + \lambda A_z \hat{k} \quad \lambda \text{ is a scalar} \]

(v) \[\vec{A} \cdot \vec{B} = AB \cos \theta = A_x B_x + A_y B_y + A_z B_z \]

(vi) \[\vec{A} \cdot \vec{A} = A^2 \]
The law of cosines

Let \(\vec{C} = \vec{A} - \vec{B} \) \implies

\[
\vec{C} \cdot \vec{C} = (\vec{A} - \vec{B}) \cdot (\vec{A} - \vec{B}) = \vec{A} \cdot \vec{A} - 2\vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{B}
\]

\[
C^2 = A^2 + B^2 - 2AB \cos \theta
\]

(iii) \(\vec{A} \times \vec{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} \)

(ix) \(\vec{A} \times \vec{B} = -\vec{B} \times \vec{A} \) not commutative

Triple Product

(i) \(\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{C} \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\vec{C} \times \vec{A}) \)

volume of parallelepiped

(ii) \(\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B} (\vec{A} \cdot \vec{C}) - \vec{C} (\vec{A} \cdot \vec{B}) \) bac – cab rule
The position vector of a point in 3-D is expressed in Cartesian coordinates as

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

The infinitesimal displacement vector is

$$d\vec{l} = dx\hat{i} + dy\hat{j} + dz\hat{k}$$

A source point r' is the point where an e. charge is located.

A field point r is the point at which you are calculating electric or magnetic filed.

The separation vector from the source point to the field point is defined as

$$d\vec{r} = \vec{r} - \vec{r}'$$
Differential Calculus

Ordinary Derivatives

It is known that \[df = \left(\frac{df}{dx} \right) dx \]
that is if \(x \) is changed by \(dx \), the function changes by \(df \) with \(\frac{df}{dx} \) is the proportionality factor.

In other words we say that the derivative is small if the function varies slowly with \(x \) and large if the function varies rapidly with \(x \).

Geometrically we say that \(\frac{df}{dx} \) is the slope of the graph \(f(x) \) vs. \(x \).

Gradient (Directional Derivative)

Let \(T \) be a scalar function of 3-variables, i.e., \(T = T(x, y, z) \) \(\Rightarrow \)

\[
dT = \left(\frac{\partial T}{\partial x} \right) dx + \left(\frac{\partial T}{\partial y} \right) dy + \left(\frac{\partial T}{\partial z} \right) dz \quad (1)
\]

This tells us how \(T \) varies as we go a small distance \((dx, dy, dz)\) away from the point \((x, y, z)\). Let us rewrite Eq. (1) as
\[
d T = \left\{ \left(\frac{\partial T}{\partial x} \right) \hat{i} + \left(\frac{\partial T}{\partial y} \right) \hat{j} + \left(\frac{\partial T}{\partial z} \right) \hat{k} \right\} \cdot \{dx \hat{i} + dy \hat{j} + dz \hat{k} \}
\]

or \(dT = \nabla T \cdot d\vec{l}\)

with \(\nabla T = \frac{\partial T}{\partial x} \hat{i} + \frac{\partial T}{\partial y} \hat{j} + \frac{\partial T}{\partial z} \hat{k}\)

is called the gradient of the function \(T\).

The symbol \(\nabla = \frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k}\) is called the del operator.

Like any vector the gradient has a magnitude and a direction. Now Eq. (3) can be written as

\[
d T = |\nabla T| |d\vec{l}| \cos \theta
\]

For fixed \(|d\vec{l}|\), \(dT\) is maximum when \(\theta = 0\), that is \(dT\) is maximum when we move in the same direction as \(|\nabla T|\).
The gradient ∇T points in the direction of maximum increase of the function T.

The magnitude $|\nabla T|$ gives the slope along this maximal direction.

∇T is directed normal to the level surface of T through the point being considered, i.e., ∇T is perpendicular to the surface $T=\text{constant}$.

Example Find the gradient of the position vector.

Solution In Cartesian coordinates the magnitude of the position vector is

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\nabla r = \frac{\partial r}{\partial x} \hat{i} + \frac{\partial r}{\partial y} \hat{j} + \frac{\partial r}{\partial z} \hat{k} = \frac{x}{r} \hat{i} + \frac{y}{r} \hat{j} + \frac{z}{r} \hat{k} = \vec{r} = \hat{r}$$

This means that the distance from the origin increases most rapidly in the radial direction.
Divergence

The divergence of a vector \vec{A} is defined as

$$\nabla \cdot \vec{A} = \left(\frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \right) \cdot (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

The divergence is a measure of how much the vector spreads out (diverge) from the point in question.

It is also defined as the net rate of flow per unit volume, i.e.,

$$\nabla \cdot \vec{A} = \text{the source density}$$

Example Find the divergence of the vectors \vec{r}, \hat{k}, and $z\hat{k}$

Solution: Since $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$

$$\nabla \cdot \vec{r} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3$$

$$\nabla \cdot \hat{k} = \frac{\partial 0}{\partial x} + \frac{\partial 0}{\partial y} + \frac{\partial 1}{\partial z} = 0$$

$$\nabla \cdot (z\hat{k}) = \frac{\partial 0}{\partial x} + \frac{\partial 0}{\partial y} + \frac{\partial z}{\partial z} = 1$$
The Curl

The curl of a vector \(\vec{A} \) is defined as

\[
\vec{\nabla} \times \vec{A} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_x & A_y & A_z \\
\end{vmatrix}
\]

The curl of a vector is a measure of how much the vector curl around the point in question.

Example Find the curl of the vectors \(\vec{A} = -y\hat{i} + x\hat{j} \) and \(\vec{B} = x\hat{j} \)

Solution:

\[
\vec{\nabla} \times \vec{A} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y & x & 0 \\
\end{vmatrix} = \left(\frac{\partial 0}{\partial y} - \frac{\partial x}{\partial z} \right)\hat{i} + \left(-\frac{\partial y}{\partial z} - \frac{\partial 0}{\partial x} \right)\hat{j} + \left(\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} \right)\hat{k} = 2\hat{k}
\]
The Del Operator

\[\vec{\nabla} \times \vec{B} = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \partial x & \partial y & \partial z \\ 0 & x & 0 \end{bmatrix} \left(\frac{\partial 0}{\partial y} - \frac{\partial x}{\partial z} \right) \hat{i} + \left(\frac{\partial 0}{\partial z} - \frac{\partial 0}{\partial y} \right) \hat{j} + \left(\frac{\partial x}{\partial z} + \frac{\partial 0}{\partial y} \right) \hat{k} = \hat{k} \]

The Del Operator Operations

(i) \[\vec{\nabla} \cdot \vec{\nabla} T = \nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \]

(ii) \[\vec{\nabla} \times \vec{\nabla} T = 0 \]

(iii) \[\vec{\nabla} \cdot \vec{\nabla} \times \vec{A} = 0 \]

(iv) \[\vec{\nabla} \times \vec{\nabla} \times \vec{A} = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A} \]
Integral Calculus

Line Integral

The line integral is expressed as

\[\int_{a}^{b} \mathbf{A} \cdot d\mathbf{l} \]

where \(\mathbf{A} \) is a vector function and \(d\mathbf{l} \) is an infinitesimal displacement vector along a path from point \(a \) to point \(b \).

If the path forms a closed loop, a circle is put on the integral sign, i.e.,

\[\oint \mathbf{A} \cdot d\mathbf{l} \]

If the line integral is independent on the path followed, the vector \(\mathbf{A} \) is called conservative.
Example Let \(\vec{A} = y^2 \hat{i} + 2x(y+1) \hat{j} \) find \(\int_a^b \vec{A} \cdot d\vec{l} \) from point \(a=(1,1,0) \) to point \(b=(2,2,0) \) along the solid path (path 1) and along the dashed path (path 2).

Solution:

\[
d\vec{l} = dx \hat{i} + dy \hat{j} + dz \hat{k} \quad \Rightarrow
\]

we have for the first path

\[
\int_a^b \vec{A} \cdot d\vec{l} = \int_a^b A_x dx + A_y dy + A_z dz
\]

\[
= \int_a^b y^2 dx + 2x(y+1) dy
\]

\[
= \int_a^c y^2 dx + \int_c^b 2x(y+1) dy
\]

Now along the path \(ac \ y=1 \), and along the path \(cb \ x=2 \). This leads to

\[
\int_a^b \vec{A} \cdot d\vec{l} = \int_1^2 dx + 4\int_1^2 (y+1) dy = 1 + 10 = 11
\]
For the second path we have \(x = y \) and this gives

\[
\int_{a}^{b} \mathbf{A} \cdot d\mathbf{l} = \int_{1}^{2} y^2 \, dx + \int_{1}^{2} 2x(y + 1) \, dy = \int_{1}^{2} x^2 \, dx + 2 \int_{1}^{2} (y^2 + y) \, dy = 10
\]

\[
= \int_{1}^{2} x^2 \, dx + 2 \int_{1}^{2} (y^2 + y) \, dy = 10
\]

Note that the two results are different, i.e., the vector is not conservative.

Surface Integral

The surface integral is expressed as

\[
\int_{S} \mathbf{A} \cdot d\mathbf{S}
\]

where \(\mathbf{A} \) is a vector function and \(d\mathbf{S} \) is an infinitesimal element of area.

Again if the surface is closed we put a circle on the integral sign, that is

\[
\oint \mathbf{A} \cdot d\mathbf{S}
\]

The direction of \(d\mathbf{S} \) is perpendicular to the surface and directed outward for closed surfaces and arbitrary for open surfaces.
Example: Let \(\mathbf{\vec{A}} = 2xz\mathbf{\hat{i}} + (x+2)\mathbf{\hat{j}} + y(z^2-3)\mathbf{\hat{k}} \)

Find \(\int \mathbf{\vec{A}} \cdot d\mathbf{\vec{S}} \) over the 5-sides of a cube of side 2, as shown in the figure (excluding the bottom).

Solution: For the top side \(d\mathbf{\vec{S}}_{\text{top}} = dydx\mathbf{\hat{k}} \) \(\Rightarrow \)

\[
\int_{\text{top}} A \cdot d\mathbf{\vec{S}} = \iint \mathbf{A} \cdot d\mathbf{\vec{S}} = \iint y(z^2-3)dx\,dy
\]

But on the top side \(z=2 \) \(\Rightarrow \) \(\int_{\text{top}} A \cdot d\mathbf{\vec{S}} = \int_0^2 dx \int_0^2 y\,dy = 4 \)

For the right side \(d\mathbf{\vec{S}}_{\text{right}} = dxdz\mathbf{\hat{j}} \) \(\Rightarrow \)

\[
\int_{\text{right}} A \cdot d\mathbf{\vec{S}} = \iint (x+2)dxdz = \int_0^2 (x+2)dx \int_0^2 dz = 12
\]

For the left side \(d\mathbf{\vec{S}}_{\text{left}} = -dxdz\mathbf{\hat{j}} \) \(\Rightarrow \)

\[
\int_{\text{left}} A \cdot d\mathbf{\vec{S}} = -\iint (x+2)dxdz = -\int_0^2 (x+2)dx \int_0^2 dz = -12
\]

For the front side \(d\mathbf{\vec{S}} = dzdy\mathbf{\hat{i}} \) \(\Rightarrow \)

\[
\int_{\text{front}} A \cdot d\mathbf{\vec{S}} = \iint 2xz\,dy\,dz
\]

But on the top side \(x=2 \) \(\Rightarrow \)

\[
\int_{\text{front}} A \cdot d\mathbf{\vec{S}} = 4\int_0^2 dy \int_0^2 z\,dz = 16
\]

For the back side \(d\mathbf{\vec{S}} = -dzdy\mathbf{\hat{i}} \) \(\Rightarrow \)

\[
\int_{\text{back}} A \cdot d\mathbf{\vec{S}} = -\iint 2xz\,dy\,dz
\]

But on the top side \(x=0 \) \(\Rightarrow \)

\[
\int_{\text{back}} A \cdot d\mathbf{\vec{S}} = 0
\]
Volume Integral
The volume integral is expressed as
\[\int_V T \, d\tau \]
where \(T \) is a vector function and \(d\tau \) is an infinitesimal element of volume.

The Fundamental Theorem of Calculus

\[\int_a^b \frac{df}{dx} \, dx = f(b) - f(a) \]

The Fundamental Theorem of Gradient

where \(T = T(x,y,z) \) be a scalar function of three variables, then

\[\int_a^b (\nabla T) \cdot d\vec{l} = T(b) - T(a) \]

Since the right side of the last equation depends only on the end points and not on the path followed we conclude that
Corollary 1: \(\int_a^b (\nabla T) \cdot d\vec{l} \) is independent on the path followed from \(a \) to \(b \).

Corollary 2 \[\int \nabla T \cdot d\vec{l} = 0 \]

Example: Let \(T = xy^2 \)

Check the fundamental theorem of gradient by taking two paths from point \(a (0,0,0) \) to point \(b (2,1,0) \).

Solution: The first path is 2-steps: step (i) along the \(x \)-axis and then up step (ii).

Now \(d\vec{l} = dx\hat{i} + dy\hat{j} + dz\hat{k} \) and \(\nabla T = y^2\hat{i} + 2xy\hat{j} \)

For the 1\(^{st} \) path
\[\int_a^b (\nabla T) \cdot d\vec{l} = \int_{(i)} \nabla T \cdot dx\hat{i} + \int_{(ii)} \nabla T \cdot dy\hat{j} \]
\[= \int_0^2 y^2 \, dx + \int_0^1 2xy \, dy \]

But for step (i) \(y=0 \), and for step (ii) \(x=2 \) \(\Rightarrow \int_a^b (\nabla T) \cdot d\vec{l} = 0 + 2 = 2 \)

For the 2\(^{nd} \) path \(y = \frac{1}{2}x \) \(\Rightarrow dy = \frac{1}{2} \, dx \)

\[\int_a^b (\nabla T) \cdot d\vec{l} = \int_{(iii)} y^2 \, dx + 2xy \, dy = \int_0^1 \frac{1}{4} x^2 \, dx + \frac{1}{2} x^2 \, dx = \int_0^2 \frac{3}{4} x^2 \, dx = 2 \]
The Fundamental Theorem of Divergence

\[\int_v \nabla \cdot \mathbf{A} \, d\tau = \int_S \mathbf{A} \cdot d\mathbf{S} \]

It states that the integral of a divergence over a volume is equal to the value of the function at the boundary.

In another world, the divergence theorem states that the outward flux of a vector field through a surface is equal to the triple integral of the divergence on the region inside the surface.

Example: Check the divergence theorem using the vector

\[\mathbf{A} = y^2 \hat{i} + (2xy + z^2) \hat{j} + 2yz \hat{k} \]

Over the unit cube situated at the origin.

Solution:

\[\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = 2x + 2y \quad \Rightarrow \]

\[\int_v \nabla \cdot \mathbf{A} \, d\tau = \iiint_{000} (2x + 2y) \, dxdydz = 2 \]
To find $\int_S \vec{A} \cdot d\vec{S}$ we have to calculate the integral over all the faces:

$$\int_{top} \vec{A} \cdot d\vec{S} = \iint S 2yz \, dx \, dy$$

But for the top side $z=1$, so we have

$$\int_{top} \vec{A} \cdot d\vec{S} = \int_0^1 2 \, dx \int_0^1 y \, dy = 1$$

$$\int_{bottom} \vec{A} \cdot d\vec{S} = -\iint S 2yz \, dx \, dy$$

But for the top side $z=0$, so we have $\int_{bottom} \vec{A} \cdot d\vec{S} = 0$

$$\int_{right} \vec{A} \cdot d\vec{S} = \iint (2xy + z^2) \, dx \, dz$$

But for the right side $y=1$, so we have $\int_{right} \vec{A} \cdot d\vec{S} = \int_0^1 (2x) \, dx + \int_0^1 z^2 \, dz = \frac{4}{3}$
\[\int_{left} \vec{A} \cdot d\vec{S} = - \iint (2xy + z^2) \, dx\, dz \]

But for the left side \(y=0 \), so we have
\[\int_{left} \vec{A} \cdot d\vec{S} = - \int_{0}^{1} z^2 \, dz = -\frac{1}{3} \]

\[\int_{front} \vec{A} \cdot d\vec{S} = \iint y^2 \, dy\, dz = \int_{0}^{1} y^2 \, dy \int_{0}^{1} dz = \frac{1}{3} \]

\[\int_{back} \vec{A} \cdot d\vec{S} = - \iint y^2 \, dy\, dz = \int_{0}^{1} y^2 \, dy \int_{0}^{1} dz = -\frac{1}{3} \]

\[\oint \vec{A} \cdot d\vec{S} = 1 + 0 + \frac{4}{3} - \frac{1}{3} + \frac{1}{3} - \frac{1}{3} = 2 \]

Stokes' Theorem

\[\oint_{S} (\nabla \times \vec{A}) \cdot d\vec{S} = \oint_{C} \vec{A} \cdot d\vec{l} \]

Since the boundary line for any closed surface shrink down to a point, then
\[\oint_{S} (\nabla \times \vec{A}) \cdot d\vec{S} = 0 \]
Example: Check the Stokes' theorem using the vector

\[A = \left(2x z + 3y^2 \right) \hat{j} + 4yz^2 \hat{k} \]

Over the square surface shown.

Solution: \[\nabla \times A = \left(4z^2 - 2x \right) \hat{i} + 2z \hat{k} \]

\[d\vec{S} = dydz \hat{i} \]

\[\oint (\nabla \times A) \cdot d\vec{S} = \int_{0}^{1} \int_{0}^{2} \left(4z^2 - 2x \right) dydz. \]

But on the surface \(x=0 \), so we have

\[\oint (\nabla \times A) \cdot d\vec{S} = \int_{0}^{1} \int_{0}^{2} 4z^2 dydz = \frac{4}{3} \]
\[\int \vec{A} \cdot d\vec{l} = \int_{\text{bottom}} \vec{A} \cdot dy\hat{j} + \int_{\text{right}} \vec{A} \cdot dz\hat{k} + \int_{\text{top}} \vec{A} \cdot (-dy\hat{j}) + \int_{\text{left}} \vec{A} \cdot (-dz\hat{k}) \]

Along the bottom side \(x=z=0 \), so we have

\[\int_{\text{bottom}} \vec{A} \cdot dy\hat{j} = \int_{0}^{1} (2xz + 3y^2) dy = 1 \]

Along the top side \(x=0, z=1 \) so we have

\[-\int_{\text{top}} \vec{A} \cdot dy\hat{j} = -\int_{0}^{1} (2xz + 3y^2) dy = -1 \]

Along the right side \(x=0, y=1 \) so we have

\[\int_{\text{right}} \vec{A} \cdot dz\hat{k} = \int_{0}^{1} (4yz^2) dz = \frac{4}{3} \]

Along the left side \(x=0, y=0 \) so we have

\[\int_{\text{left}} \vec{A} \cdot dz\hat{k} = -\int_{0}^{1} (4yz^2) dz = 0 \]

\[\int \vec{A} \cdot d\vec{l} = 1 + \frac{4}{3} - 1 + 0 = \frac{4}{3} \]
Integration by Parts

It is known that \(\frac{d}{dx}(fg) = f \frac{dg}{dx} + g \frac{df}{dx} \)

Integrating both sides we get \(\int_{a}^{b} \frac{d}{dx}(fg) \, dx = \int_{a}^{b} f \frac{dg}{dx} \, dx + \int_{a}^{b} g \frac{df}{dx} \, dx \)

Using the fundamental theorem of calculus we get

\(\int_{a}^{b} f \frac{dg}{dx} \, dx = fg \bigg|_{a}^{b} - \int_{a}^{b} g \frac{df}{dx} \, dx \)

Example: Evaluate the integral \(\int_{0}^{\infty} xe^{-x} \, dx \)

Solution: It is known that \(\int_{0}^{\infty} xe^{-x} \, dx = \int_{0}^{\infty} x \frac{d}{dx} \left(-e^{-x}\right) \, dx \quad \Rightarrow \quad \int_{0}^{\infty} xe^{-x} \, dx = \left[-e^{-x}\right]_{0}^{\infty} = 1 \)
Curvilinear Coordinates

Spherical coordinates \((r, \theta, \phi)\)

- **\(r\):** is the distance from the origin (from 0 to \(\infty\))
- **\(\theta\):** the polar angle, is the angle between \(r\) and the \(z\)-axis (from 0 to \(\pi\))
- **\(\phi\):** the azimuthal angle is the angle between the projection of \(r\) to the \(x-y\) plane and the \(x\)-axis (from 0 to \(2\pi\))

The relation between the Cartesian coordinates and the spherical coordinates can be written as

\[
\begin{align*}
x &= r \sin \theta \cos \phi \\
y &= r \sin \theta \sin \phi \\
z &= r \sin \cos \theta
\end{align*}
\]

The unit vectors associated with the spherical coordinates are related to the corresponding unit vectors in the Cartesian coordinates as

\[
\begin{align*}
\hat{r} &= \sin \theta \cos \phi \hat{i} + \sin \theta \sin \phi \hat{j} + \cos \theta \hat{k} \\
\hat{\theta} &= \cos \theta \cos \phi \hat{i} + \cos \theta \sin \phi \hat{j} - \sin \theta \hat{k} \\
\hat{\phi} &= -\sin \phi \hat{i} + \cos \phi \hat{j}
\end{align*}
\]
The infinitesimal displacement vector in spherical coordinates is expressed as

$$d\mathbf{l} = dr \hat{r} + r d\theta \hat{\theta} + r \sin \theta d\phi \hat{\phi}$$

The volume element is expressed as

$$dV = dV_r d\theta d\phi = r^2 \sin \theta d\theta d\phi dr$$

For the surface elements we have

- $$d\mathbf{S}_1 = dl_r dl_\theta d\phi = r d\theta dr \hat{\phi} \quad \phi \text{ is constant}$$
- $$d\mathbf{S}_2 = dl_r dl_\phi d\theta = r \sin \theta d\phi dr \hat{\theta} \quad \theta \text{ is constant}$$
- $$d\mathbf{S}_3 = dl_\theta dl_\phi \hat{r} = r^2 \sin \theta d\theta d\phi \hat{r} \quad r \text{ is constant}$$

To find the volume of a sphere of radius R we have

$$V = \int dV = \int_0^R \int_0^\pi \int_0^{2\pi} r^2 \sin \theta dr d\theta d\phi = \frac{4}{3} \pi R^3$$
To find the gradient in spherical coordinates let \(T=T(r, \theta, \phi) \) so

\[
\mathbf{d}T = \mathbf{\nabla} T \cdot \mathbf{d}\mathbf{l} = (\mathbf{\nabla} T)_r \mathbf{\hat{r}} \, dr + (\mathbf{\nabla} T)_\theta r \, d\theta + (\mathbf{\nabla} T)_\phi r \sin \theta \, d\phi
\]

(1)

\[
dT = \left(\frac{\partial T}{\partial r} \right) dr + \left(\frac{\partial T}{\partial \theta} \right) d\theta + \left(\frac{\partial T}{\partial \phi} \right) d\phi
\]

(2)

Equating the above two equations we get

\[
(\mathbf{\nabla} T)_r = \frac{\partial T}{\partial r} \mathbf{\hat{r}} \quad (\mathbf{\nabla} T)_\theta = \frac{1}{r} \frac{\partial T}{\partial \theta} \mathbf{\hat{r}} \quad (\mathbf{\nabla} T)_\phi = \frac{1}{r \sin \theta} \frac{\partial T}{\partial \phi} \mathbf{\hat{r}}
\]

or

\[
\mathbf{\nabla} T = \frac{\partial T}{\partial r} \mathbf{\hat{r}} + \frac{1}{r} \frac{\partial T}{\partial \theta} \mathbf{\hat{r}} + \frac{1}{r \sin \theta} \frac{\partial T}{\partial \phi} \mathbf{\hat{r}} \quad \Rightarrow
\]

\[
\mathbf{\nabla} = \frac{\partial}{\partial r} \mathbf{\hat{r}} + \frac{1}{r} \frac{\partial}{\partial \theta} \mathbf{\hat{r}} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \mathbf{\hat{r}}
\]

Similarly, one can find the divergence and the curl in spherical coordinates.
\[\nabla \cdot \vec{A} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 A_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta A_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi} \]

\[\nabla \times \vec{A} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{r} & r \hat{\theta} & r \sin \theta \hat{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_r & r A_\theta & r \sin \theta A_\phi \end{vmatrix} \]

The Laplacian is defined as

\[\nabla^2 T = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2} \]
Cylindrical coordinates \((\rho, \theta, \phi)\)

\(\rho\) : is the distance from the \(z\)-axis (from 0 to \(\infty\))

\(\phi\) : the azimuthal angle is the angle between \(\rho\) and the \(x\)-axis (from 0 to \(2\pi\))

\(z\) : the distance from the \(x-y\) plane (from \(-\infty\) to \(\infty\))

The relation between the Cartesian coordinates and the cylindrical coordinates can be written as

\[x = \rho \cos \phi \quad y = \rho \sin \phi \quad z = z \]

The unit vectors associated with the cylindrical coordinates are related to the corresponding unit vectors in the Cartesian coordinates as

\[\hat{\rho} = \cos \phi \hat{i} + \sin \phi \hat{j} \]
\[\hat{\phi} = -\sin \phi \hat{i} + \cos \phi \hat{j} \]
\[\hat{z} = \hat{k} \]
The infinitesimal displacement vector in cylindrical coordinates is expressed as

\[d\vec{l} = d\rho \hat{\rho} + \rho d\phi \hat{\phi} + dz \hat{z} \]

The volume element is expressed as

\[d\tau = dl_\rho dl_\phi dl_z = \rho d\rho d\phi dz \]

For the surface elements we have

\[d\vec{S}_1 = dl_\rho dl_\phi \hat{z} = \rho d\rho d\phi \hat{z} \quad \text{z is constant} \]

\[d\vec{S}_2 = dl_r dl_z \hat{\phi} = d\rho dz \hat{\phi} \quad \phi \text{ is constant} \]

\[d\vec{S}_3 = dl_\phi dl_z \hat{\rho} = \rho d\phi dz \hat{\rho} \quad \rho \text{ is constant} \]
The Del

\[\vec{\nabla} = \frac{\partial}{\partial \rho} \hat{\rho} + \frac{1}{\rho} \frac{\partial}{\partial \phi} \hat{\phi} + \frac{\partial}{\partial z} \hat{z} \]

The Divergence

\[\vec{\nabla} \cdot \vec{A} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_\rho) + \frac{1}{\rho} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z} \]

The Curl

\[\vec{\nabla} \times \vec{A} = \frac{1}{\rho} \begin{vmatrix} \hat{\rho} & \rho \hat{\phi} & \rho \sin \theta \hat{\phi} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_\rho & \rho A_\phi & A_z \end{vmatrix} \]

The Laplacian

\[\nabla^2 T = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial T}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2} \]
The Dirac Delta Function

Consider the function \(\vec{A} = \frac{1}{r^2} \hat{r} \)

Now \(\vec{\nabla} \cdot \vec{A} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{1}{r^2} \right) = 0 \)

and \(\int_S \vec{A} \cdot d\vec{S} = \int_0^\pi \int_0^{2\pi} \left(\frac{1}{r^2} \hat{r} \right) \cdot \left(r^2 \sin \theta \ d\theta \ d\phi \hat{r} \right) = \int_0^\pi \int_0^{2\pi} \left(\sin \theta \ d\theta \ d\phi \right) = 4\pi \)

But from the divergence theorem we know that \(\int_v \vec{\nabla} \cdot \vec{A} \ d\tau = \int_S \vec{A} \cdot d\vec{S} \)

Her we have a contradiction. The problem is the point \(r=0 \), where the vector blows up.

Her we have a contradiction. The problem is the point \(r=0 \), where the vector blows up. So we write

\[\vec{\nabla} \cdot \frac{\hat{r}}{r^2} = 4\pi \delta^3(r) \]
Where $\delta(x)$ is called the Dirac delta function with the following properties:

$$
\delta(x-a) = \begin{cases}
0 & x \neq a \\
\infty & x = a
\end{cases}
$$

$$
\int_{-\infty}^{\infty} \delta(x-a) \, dx = 1
$$

$$
\int_{-\infty}^{\infty} F(x) \delta(x-a) \, dx = F(a)
$$

$$
\delta^{3}(r) = \delta(x) \delta(y) \delta(z)
$$

Using these properties we have

$$
\int_{v} \vec{\nabla} \cdot \vec{A} \, d\tau = \int_{v} 4\pi \delta^{3}(r) \, d\tau = 4\pi
$$

As expected