A bidirectional radio-over-fiber system using differential phase-shift keying signals for downstream and remodulated OOK for upstream

Fady I. El-Nahal

Electrical Engineering Department, Islamic University of Gaza, Palestine

ARTICLE INFO

Article history:
Received 14 September 2012
Accepted 28 January 2013

Keywords:
Differential phase-shift keying (DPSK)
ON–OFF keying (OOK)
Radio-over-fiber (ROF)

ABSTRACT

Radio-over-fiber (ROF) is a promising technology to achieve future broadband access requirements with reliability, transparency and flexibility. We propose a novel full-duplex bi-directional radio-over-fiber (ROF) system transmitting 10 Gb/s differential phase-shift keying (DPSK) signals at the central office (CO) for downstream and ON–OFF keying (OOK) remodulation of the downlink carrier at the base station (BS) for upstream. As the same optical carrier is used for both uplink and downlink, no additional light source is required at the BS, which significantly reduces the cost, improves the wavelength utilization efficiency and simplifies the overall system. The simulation results show that the downstream 10 Gb/s DPSK data and the upstream 1 Gb/s OOK data can transmit over 50 km single-mode fiber successfully without dispersion compensation. The results show that this scheme provides a practical solution to meet the data rate and cost requirement of tomorrow’s ROF access networks.

1. Introduction

Future broadband access networks need to offer cost-effective, high transmission capacity support for the increasing number of new broadband end-customer services. Radio-over-fiber (ROF), the integration of optical and wireless systems, is a practical solution to increase the capacity and serve both fixed and mobile users. In a ROF system, Most of the signal processing processes (including coding, Multiplexing, and RF generation and modulation) are carried out by central office (CO), which makes the base station (BS) cost-effective. Therefore, ROF will become a key technology in the next generation mobile communication system [1–3].

While ROF technique can be used for the distribution of wireless signals, differential phase-shift keying (DPSK) signal has high spectrum efficiency and great chromatic dispersion tolerance, which can increase the bandwidth and extend transmission distance over fiber [4]. Thus the integration of ROF technology and DPSK modulation is expected to play key role in future broadband wireless networks. At present, most optical signals can support on-off keying (OOK) format, however other modulation formats, such as phase-shift keying and quadrature amplitude modulation format are occasionally supported. Phase-modulated ROF links present several advantages over the intensity modulated links, such as no need for dc bias, better link gain, and linearity [5]. Thus these modulation schemes are expected to play key role in future broadband wireless networks.

The reflective semiconductor optical amplifier (RSOA) plays an important role in bidirectional ROF systems [6–12]. The RSOA can be used as a modulator and amplifier. This gives additional gain enabling the possibility of avoiding the use of an Erbium Doped Fiber Amplifier (EDFA) in the system [13]. In these systems, both the upstream and downstream channels use the same wavelength for improving the wavelength utilization efficiency.

In this paper, a full-duplex ROF system employing a 10 Gb/s DPSK modulated ROF for the downstream signal and 1 Gb/s OOK remodulated ROF for the upstream signal, has been demonstrated.

2. System architecture

The proposed ROF architecture is shown in Fig. 1. For downlink, the 193.2 THz signal generated by a CW laser is differential phase-shift keying (DPSK) modulated using a 10 Gb/s non-return to zero (NRZ) downstream data to generate the desired downstream signal. The generated signal is sent over the 50 km bidirectional single-mode fiber (SMF). A circulator is used in the central office (CO) to separate the downstream and upstream traffic. At the base station (BS), using optical splitter/coupler, portion of the DPSK modulated signal is fed to a DPSK receiver. For up-link, the other portion of the downstream DPSK modulated signal from the splitter/coupler is ON–OFF Keying (OOK) re-modulated using 1 Gb/s NRZ upstream data by RSOA in the BS. The re-modulated OOK signal re-pass through the bidirectional SMF and get back to the CO where a PIN receiver is used to receive the upstream signal.
power (P_m). It is clear that both uplink and downlink do provide good BER performances, however the uplink exhibits a better performance than the downlink. For example, when $P_m = -2.5$ dBm, the BER = 1.2×10^{-9} and the Q factor = 5.97 for the downlink while it is 1.42×10^{-40} and the Q factor = 13.2 for the uplink. When $P_m = 0$ dBm, the BER = 1.7×10^{-14} and the Q factor = 7.6 for the downlink while it is 1.42×10^{-51} and the Q factor = 15.01 for the uplink. This can be explained by the fact that the data rate for the downlink is much higher than that of the uplink. The higher data rate makes downlink more prone to chromatic dispersion which results higher BER.

4. Conclusion

The DPSK–RoF model has been proposed as solution for increased bandwidth demand. The integration of ROF technology and DPSK modulation has been performed to provide high data rates and bandwidth in wireless communication. We have proposed a full-duplex novel ROF scheme to provide a 10-Gb/s differential phase-shift keying (DPSK) signal for down-link and a 1 Gb/s ON-OFF Keying (OOK) signal for up-link. For the uplink, the need for additional light source at the base station (BS) is avoided by reusing the same optical carrier via Reflective Semiconductor Amplifier (ROF). Proposed ROF architecture was simulated at a longer distance (50 km) with acceptable bit-error-rate. The results show that this scheme is a practical solution for the future ROF-based optical-wireless access networks.

References

