Energy can be transported from one point (where a transmitter is located) to another point (with a receiver) by means of EM waves. The rate of energy transportation can be obtained from Maxwell's equations:

Using Maxwell equation: \(\nabla \times \mathbf{H} = \sigma \mathbf{E} + \varepsilon \frac{\partial \mathbf{E}}{\partial t} \)

Dotting both sides with \(\mathbf{E} \):

\[\mathbf{E} \cdot (\nabla \times \mathbf{H}) = \mathbf{E} \cdot (\sigma \mathbf{E} + \varepsilon \frac{\partial \mathbf{E}}{\partial t}) \]

But from vector identities: \(\mathbf{E} \cdot (\nabla \times \mathbf{H}) = \mathbf{H} \cdot (\nabla \times \mathbf{E}) - \mathbf{H} \cdot (\nabla \times \mathbf{E}) \)

\[\mathbf{E} \cdot (\nabla \times \mathbf{H}) = \mathbf{H} \cdot (\nabla \times \mathbf{E}) + \mathbf{H} \cdot (\nabla \times \mathbf{E}) \]

\[\mathbf{H} \cdot (\nabla \times \mathbf{E}) = \sigma \mathbf{E}^2 + \frac{1}{2} \varepsilon \frac{\partial \mathbf{E}^2}{\partial t} \quad ... \ (1) \]

10.7 Power and the Poynting Vector

Total power leaving the volume

Rate of decrease in energy stored in electric and magnetic fields

Ohmic power dissipated

The **Poynting vector** (Watts/m²) is defined as:

\[S = \mathbf{E} \times \mathbf{H} \]

It represents the instantaneous power density vector associated with the EM field at a given point.
Power and the Poynting Vector

Poynting theorem: states that the net power flowing out of a given volume \(v \) is equal to the time rate of decrease in the energy stored with \(v \) minus the ohmic losses.

Illustration of power balance for EM fields.

Note that \(\mathbf{E} \times \mathbf{H} \) is normal to both \(\mathbf{E} \) and \(\mathbf{H} \) and is therefore along the direction of propagation \(\mathbf{a} \).

The time-average Poynting vector \(\mathbf{\hat{v}}_{av}(z) \) over the period \(T=2\pi/\omega \) is:

\[
\mathbf{\hat{v}}_{av}(z) = \frac{1}{T} \int_{0}^{T} \mathbf{\hat{v}}(z,t) \, dt
\]

It can also be found by:

\[
\mathbf{\hat{v}}_{av}(z) = \frac{1}{2} \text{Re}(\mathbf{E} \times \mathbf{H}^*)
\]

For \(\mathbf{\hat{v}}(z,t) = \frac{E_z^2}{2|\mathbf{H}|} e^{-2\omega z} \left[\cos \theta \gamma + \cos(2\omega t - \beta z - \theta) \right] \mathbf{a}_\gamma
\]

\[
\mathbf{\hat{v}}_{av}(z) = \frac{E_z^2}{2|\mathbf{H}|} e^{-2\omega z} \cos \theta \gamma \mathbf{a}_\gamma
\]

The total time-average power crossing a given surface \(S \) is given by:

\[
P_{av} = \int \mathbf{\hat{v}}_{av} \cdot dS
\]

Assume that

\[
\mathbf{E}(z,t) = E_z e^{-\omega z} \cos(\omega t - \beta z) \mathbf{a}_\gamma
\]

then

\[
\mathbf{H}(z,t) = \frac{E_z}{|\mathbf{H}|} e^{-\omega z} \cos(\omega t - \beta z - \theta) \mathbf{a}_\gamma
\]

and

\[
\mathbf{\hat{v}}(z,t) = \mathbf{E} \times \mathbf{H} = \frac{E_z^2}{2|\mathbf{H}|} e^{-2\omega z} \cos(\omega t - \beta z) \cos(\omega t - \beta z - \theta) \mathbf{a}_\gamma
\]

\[
\mathbf{\hat{v}}_{av}(z) = \frac{E_z^2}{2|\mathbf{H}|} e^{-2\omega z} \left[\cos \theta \gamma + \cos(2\omega t - 2\beta z - \theta) \right] \mathbf{a}_\gamma
\]

since

\[
\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha - B) + \cos(\alpha + B) \right]
\]

The total time-average power through a surface \(S \) is given by:

\[
P_{av} = \int \mathbf{\hat{v}}_{av} \cdot dS
\]

Power and the Poynting Vector

Assume that

\[
E(z,t) = E_z e^{-\omega z} \cos(\omega t - \beta z) \mathbf{a}_\gamma
\]

then

\[
H(z,t) = \frac{E_z}{|\mathbf{H}|} e^{-\omega z} \cos(\omega t - \beta z - \theta) \mathbf{a}_\gamma
\]

and

\[
\mathbf{\hat{v}}(z,t) = \mathbf{E} \times \mathbf{H} = \frac{E_z^2}{|\mathbf{H}|} e^{-2\omega z} \cos(\omega t - \beta z) \cos(\omega t - \beta z - \theta) \mathbf{a}_\gamma
\]

\[
\mathbf{\hat{v}}_{av}(z) = \frac{E_z^2}{2|\mathbf{H}|} e^{-2\omega z} \left[\cos \theta \gamma + \cos(2\omega t - 2\beta z - \theta) \right] \mathbf{a}_\gamma
\]

since

\[
\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha - B) + \cos(\alpha + B) \right]
\]
Example 10.7

In a nonmagnetic medium
\[E = 4 \sin (2\pi \times 10^7 t - 0.8x) \ a_x \ \text{V/m} \]

Find
(a) \(\alpha \), \(\eta \)
(b) The time-average power carried by the wave
(c) The total power crossing 100 cm² of plane \(2x + y = 5 \)

Example 10.7 - Solution

(a) Since \(\alpha = 0 \) and \(\beta \neq \omega c \), the medium is not free space but a lossless medium.
\[\beta = 0.8 \ \text{,} \ \omega = 2\pi \times 10^7 \ \text{,} \ \mu = \mu_0 \text{(nonmagnetic)}, \ \epsilon = \epsilon_0 \epsilon_r \]
Hence
\[\beta = \omega \sqrt{\mu \epsilon} = \omega \sqrt{\mu_0 \epsilon_0 \epsilon_r} = \frac{\omega}{c} \sqrt{\epsilon_r} \]

or
\[\sqrt{\epsilon_r} = \frac{\beta c}{\omega} = \frac{0.8 \times (3 \times 10^8)}{2\pi \times 10^7} \times \frac{12}{\pi} \]
\[\epsilon_r = 14.59 \]

\[\eta = \sqrt{\frac{\mu}{\epsilon}} = \sqrt{\frac{120\pi}{120\pi \frac{\pi}{12} \times 10^3}} = 98.7 \ \Omega \]

Example 10.7 - Solution

(b) \(\varphi = E \times H = \frac{E^2}{\eta} \sin^2(\omega t - \beta x) \ a_x \)
\[\varphi_{ave} = \frac{\int \varphi \ dt}{T} = \frac{E^2}{2\eta} \ a_x = \frac{16}{2 \times 10^6} \ a_x = 81 \ a_x \ \text{mW/m}^2 \]

(c) On plane \(2x + y = 5 \) (see Example 3.5 or 8.5),
\[a_y = 2a_x + a_x \]
Hence the total power is
\[P_{ave} = \int \varphi_{ave} \ dS = \varphi_{ave} S a_x = (81 \times 10^{-3} a_x) \ (100 \times 10^{-3}) \left(\frac{2a_x + a_x}{\sqrt{5}} \right) \]
\[= \frac{162 \times 10^{-3}}{\sqrt{5}} = 724.5 \ \mu W \]

10.8 Reflection of a plane wave at normal incidence

- When a plane wave from one medium meets a different medium, it is partly reflected and partly transmitted.
- The proportion of the incident wave that is reflected or transmitted depends on the parameters (\(\epsilon, \mu, \sigma \)) of the two media involved.
- Normal incidence (plane wave is normal to the boundary) and oblique incidence will be studied.
Reflection of a plane wave at normal incidence

Suppose a plane wave propagating along the +z direction is incident normally on the boundary z=0 between medium 1 (z<0) characterised by $\varepsilon_1,\mu_1,\sigma_1$ and medium 2 (z>0) characterised by $\varepsilon_2,\mu_2,\sigma_2$.

Incident Wave
(E, H) is traveling along +a in medium 1.

Assume the electric and magnetic field (in phasor form) as follows:

If $E_{i0}(z) = E_0 e^{j\omega z} a_y$, then

$$E_{i0}(z) = E_0 e^{j\omega z} a_y$$

If $H_{i0}(z) = H_0 e^{j\omega z} a_y$, then

$$H_{i0}(z) = H_0 e^{j\omega z} a_y$$

E_{i0} is magnitude of the incident electric field at z=0

H_{i0} is magnitude of the incident magnetic field at z=0

Reflected Wave
(E, H) is traveling along -a in medium 1.

$E_{r0}(z) = E_0 e^{j\omega z} a_y$

$H_{r0}(z) = H_0 e^{j\omega z} a_y$

E_{r0} is magnitude of the reflected electric field at z=0

H_{r0} is magnitude of the reflected magnetic field at z=0

Transmitted Wave
(E, H) is traveling along +a in medium 2.

If $E_{t0}(z) = E_0 e^{j\omega z} a_y$, then

$$E_{t0}(z) = E_0 e^{j\omega z} a_y$$

If $H_{t0}(z) = H_0 e^{j\omega z} a_y$, then

$$H_{t0}(z) = H_0 e^{j\omega z} a_y$$

E_{t0} is magnitude of the transmitted electric field at z=0

H_{t0} is magnitude of the transmitted magnetic field at z=0
Reflection of a plane wave at normal incidence

Field in medium 1: \(E_i = E_e + E_r \), \(H_i = H_r + H_e \)
Field in medium 2: \(E_i = E_e \), \(H_i = H_e \)

→ Since the waves are transverse, E and H fields are entirely tangential to the interface.

→ Applying the boundary conditions at the interface \(z = 0 \): \((E_{i1} = E_{i2} \) and \(H_{i1} = H_{i2}) \)
then:
\[
E_i(0) + E_{i1}(0) = E_{i2}(0) \rightarrow E_{i2} + E_{i1} = E_{i0}
\]
\[
H_i(0) + H_{i1}(0) = H_{i2}(0) \rightarrow \frac{1}{\eta_i}(E_{i0} - E_{i1}) = \frac{E_{i0}}{\eta_2}
\]

Reflection of a plane wave at normal incidence

When medium 1 is a perfect dielectric (lossless, \(\sigma_1 = 0 \)), and medium 2 is a perfect conductor (\(\sigma_2 = \infty \)):

For conductor \(n = \sqrt{\frac{\omega \mu \epsilon}{\sigma}} \):

\(\eta_2 = 0 \rightarrow \Gamma = -1 \rightarrow \tau = 0 \)
The wave is totally reflected and there is no transmitted wave \((E_2 = 0) \).

The totally reflected wave combines with the incident wave to form a standing wave.

A standing wave "stands" and does not travel; it consists of two travelling waves \((E_i \) and \(E_r) \) of equal amplitudes but in opposite directions.

Reflection of a plane wave at normal incidence

The standing wave in medium 1 is:
\[
E_{x_i} = E_{x_0} + E_{x_1} = E_{x_0} e^{-j\alpha x} + E_{x_1} e^{j\beta x} a_x
\]
But \(\Gamma = \frac{E_{x_0}}{E_{x_1}} = -1 \), \(\sigma_1 = 0, \alpha_z = 0, \gamma_i = j\beta_i \)
\[
E_{x_1} = -E_{x_0} e^{j\beta x} a_x
\]
or \(E_{x_1} = -2jE_{x_0} \sin \beta z a_x \) (since \(\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j} \))
Thus \(E_i = \text{Re} \left(E_{x_0} e^{j\omega t} \right) \), or \(E_i = 2E_{x_0} \sin \beta z \sin \omega t a_x \)

Similarly, it can be shown that:
\[
H_i = \frac{2E_{x_0}}{\eta_2} \cos \beta z \cos \omega t a_y
\]
Reflection of a plane wave at normal incidence

Standing waves $E = 2E_0 \sin \beta z \sin \omega t$. The curves $0, 1, 2, 3, 4, \ldots$, are, respectively, at times $t = 0, T/8, T/4, 3T/8, T/2, \ldots$; $\lambda = 2\pi/\beta$.

Standing waves $E = 2E_0 \sin \beta z \sin \omega t$. The curves $0, 1, 2, 3, 4, \ldots$, are, respectively, at times $t = 0, T/8, T/4, 3T/8, T/2, \ldots$; $\lambda = 2\pi/\beta$.

Reflection of a plane wave at normal incidence

Medium 1: perfect dielectric $\sigma_1 = 0$

Medium 2: perfect dielectric $\sigma_2 = 0$

- η_1 and η_2 are real and so are Γ and τ.
- There is a standing wave in medium 1 but there is also a transmitted wave in medium 2. (incident wave is partly reflected and partly transmitted).
- However, the incident and reflected waves have amplitudes that are not equal in magnitude.
- Two cases:
 - case 1: when $\eta_2 > \eta_1$
 - case 2: when $\eta_2 < \eta_1$

CASE 1

Medium 1: perfect dielectric $\sigma_1 = 0$, Medium 2: perfect dielectric $\sigma_2 = 0$

If $\eta_2 > \eta_1$, $\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$, $\Gamma > 0$,

$\Gamma = |E_i| = |E_r| = 0$

$\Gamma = |E_i| = |E_r| = 0$

η_1 and η_2 are real

Γ and Γ are real

$E_i = E_0 + E_r = E_0(e^{-i\beta z} + \Gamma e^{i\beta z})$

$E_i = E_0 + E_r = E_0(e^{-i\beta z} + \Gamma e^{i\beta z})$

E_i is maximum when $e^{2i\beta z} = 1$ $\rightarrow |E_i|_{\text{max}} = |E_0| (1 + |\Gamma|)$

E_i is maximum when $e^{2i\beta z} = 1$ $\rightarrow |E_i|_{\text{max}} = |E_0| (1 + |\Gamma|)$

$-2\beta x_{\text{max}} = 0, 2\pi, 4\pi, 6\pi, \ldots$

$-2\beta x_{\text{max}} = 0, 2\pi, 4\pi, 6\pi, \ldots$

$\rightarrow x_{\text{max}} = \frac{n\pi}{\beta}$

$\rightarrow x_{\text{max}} = \frac{n\pi}{\beta}$

$n = 0, 1, 2, 3$

$|E_i|_{\text{max}} = E_0 (1 + |\Gamma|)$

$|E_i|_{\text{max}} = E_0 (1 + |\Gamma|)$

- $2\beta x_{\text{max}} = \pi, 3\pi, 5\pi, \ldots$

- $2\beta x_{\text{max}} = \pi, 3\pi, 5\pi, \ldots$

$\rightarrow |E_i|_{\text{min}} = E_0 (1 - |\Gamma|)$

$\rightarrow |E_i|_{\text{min}} = E_0 (1 - |\Gamma|)$

$-2\beta x_{\text{min}} = \frac{3\pi}{2}, \frac{5\pi}{2}, \ldots$

$-2\beta x_{\text{min}} = \frac{3\pi}{2}, \frac{5\pi}{2}, \ldots$

$n = 0, 1, 2, 3$

$\frac{2\beta x_{\text{min}}}{2\beta} = \frac{(2n+1)\pi}{4}$

$\frac{2\beta x_{\text{min}}}{2\beta} = \frac{(2n+1)\pi}{4}$

$\rightarrow |E_i|_{\text{min}} = E_0 (1 - |\Gamma|)$

$\rightarrow |E_i|_{\text{min}} = E_0 (1 - |\Gamma|)$

$\frac{2\beta x_{\text{min}}}{2\beta} = \frac{(2n+1)\pi}{4}$

$\frac{2\beta x_{\text{min}}}{2\beta} = \frac{(2n+1)\pi}{4}$

$\rightarrow |E_i|_{\text{min}} = E_0 (1 - |\Gamma|)$

$\rightarrow |E_i|_{\text{min}} = E_0 (1 - |\Gamma|)$

http://www.walter-fendt.de/ph14e/stwaverefl.htm
CASE 2

Medium 1: perfect dielectric \(\sigma_1 = 0 \), Medium 2: perfect dielectric \(\sigma_2 = 0 \)

If \(\eta_1 < \eta_2 \), \(\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} \), \(\Gamma < 0 \), \(\Gamma = |\Gamma|e^{i\angle\Gamma} \), \(\angle \Gamma > 180^\circ \), \(\gamma \) and \(\Gamma \) are real

\[
|E_1| \text{ is maximum when } e^{i\angle\Gamma} = -1 \rightarrow |E_1|_{\text{max}} = |E_0| (1 + |\Gamma|)
\]

\[
-2\beta z_{\text{max}} = \pi, 3\pi, 5\pi, \ldots
\]

or \(-2\beta z_{\text{max}} = \frac{\pi, 3\pi, 5\pi, \ldots}{2\beta} \)

\[
z_{\text{max}} = -\left(\frac{2n + 1)\pi}{2\beta}\right)
\]

\(n = 0, 1, 2, 3, \ldots \)

\[
|E_1| \text{ is minimum when } e^{-i\angle\Gamma} = 1 \rightarrow |E_1|_{\text{min}} = |E_0| (1 - |\Gamma|)
\]

\[
-2\beta z_{\text{min}} = 0, 2\pi, 4\pi, 6\pi, \ldots
\]

or \(-2\beta z_{\text{min}} = \frac{\pi, 3\pi, 5\pi, \ldots}{2\beta} \)

\[
z_{\text{min}} = -\left(\frac{n\pi}{2}\right) = -\left(\frac{n\lambda}{2}\right)
\]

\(n = 0, 1, 2, 3, \ldots \)

Standing Wave Ratio, SWR

- Measures the amount of reflections, the more reflections, the larger the standing wave that is formed.
- The ratio of \(|E_{\text{max}}| \) to \(|E_{\text{min}}| \)

\[
s = \frac{|E_{\text{max}}|}{|E_{\text{min}}|} = \frac{|H_1|_{\text{max}}}{|H_1|_{\text{min}}} = 1 + |\Gamma|
\]

or \(|\Gamma| = \frac{s - 1}{s + 1} \)

\(s \) is dimensionless, expressed in decibels (dB) as: \(s \text{dB} = 20\log_{10}s \)

Example 10.8

In freespace \(z \geq 0 \), a plane wave with \(\mathbf{H}_0 = 10 \cos(10^3 t - \beta z) \mathbf{a}_z \) mA/m is incident normally on a lossless medium \((\epsilon = 2, \mu = 4\mu_0) \) in region \(z \geq 0 \).

Determine the reflected wave \(\mathbf{H}_r, \mathbf{E}_r \) and the transmitted wave \(\mathbf{H}_t, \mathbf{E}_t \)

Solution:

\[
\beta_1 = \frac{\omega}{c} = \frac{10^3}{3 \times 10^8} = \frac{1}{3}
\]

\(\eta_1 = \eta_2 = 120\pi \)

\[
\beta_2 = \frac{\omega}{c} = \frac{10^3}{4 \times 10^8} = \frac{25}{3}
\]

\[
\eta_2 = \sqrt{\frac{\mu_2}{\epsilon_2}} = \sqrt{\frac{4\mu_0}{4\epsilon_0}} = \frac{2\eta_0}{3}
\]
Example 10.8 – solution continued

Given that \(\mathbf{H} = 10 \cos(10t - \beta z) \mathbf{a}_z \), we expect that
\[\mathbf{E} = \mathbf{E}_0 \cos(10t - \beta z) \mathbf{a}_z, \]

where \(\mathbf{a}_z = \mathbf{a}_m \times \mathbf{a}_n = \mathbf{a}_x \times \mathbf{a}_y = -\mathbf{a}_y \) and \(E_n = \eta H_m = 10 \eta \).

Hence,
\[E_x = -10 \eta \cos(10t - \beta z) \mathbf{a}_x \text{ mV/m}. \]

Now \(\frac{E_m}{E_n} = \Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = \frac{2\eta_2 - \eta_m - \eta_n}{2\eta_2 + \eta_m + \eta_n} = \frac{1}{3} \), \(E_m = \frac{1}{3} E_n \).

Thus
\[E_x = -\frac{10}{3} \eta \cos \left(10t + \frac{1}{3}z\right) \mathbf{a}_x \text{ mV/m}. \]

from which we easily obtain \(\mathbf{H}_x \) as
\[\mathbf{H}_x = -\frac{10}{3} \cos \left(10t + \frac{1}{3}z\right) \mathbf{a}_x \text{ mA/m}. \]

Example 10.8 – solution continued

Similarly,
\[\frac{E_n}{E_m} = \tau = 1 + \Gamma = \frac{4}{5} \text{ or } E_m = \frac{4}{3} E_n. \]

Thus
\[E_x = E_m \cos \left(10t + \beta z\right) \mathbf{a}_x. \]

where \(\mathbf{a}_{m} = \mathbf{a}_{n} = -\mathbf{a}_{z} \). Hence,
\[E_x = -\frac{40}{3} \eta \cos \left(10t - \frac{4}{3}z\right) \mathbf{a}_x \text{ mV/m}. \]

from which we obtain
\[\mathbf{H}_x = \frac{20}{3} \cos \left(10t - \frac{4}{3}z\right) \mathbf{a}_x \text{ mA/m}. \]

Example 10.9

Given a uniform plane wave in air as
\[\mathbf{E}_x = 40 \cos(\omega t - \beta z) \mathbf{a}_x + 30 \sin(\omega t - \beta z) \mathbf{a}_y \text{ V/m}. \]

(a) Find \(\mathbf{H}_x \).
(b) If the wave encounters a perfectly conducting plate normal to the \(z \) axis at \(z = 0 \), find the reflected wave \(\mathbf{E}_x \) and \(\mathbf{H}_x \).
(c) What are the total \(\mathbf{E} \) and \(\mathbf{H} \) fields for \(z \leq 0 \) ?
(d) Calculate the time-average Poynting vectors for \(z \leq 0 \) and \(z \geq 0 \).

Example 10.9 - solution

Solution

(a) This is similar to the problem in Example 10.3.
We may treat the wave as consisting of two waves \(\mathbf{E}_1 \) and \(\mathbf{E}_2 \), where
\[\mathbf{E}_1 = 40 \cos(\omega t - \beta z) \mathbf{a}_x, \quad \mathbf{E}_2 = 30 \sin(\omega t - \beta z) \mathbf{a}_y. \]

At atmospheric pressure, air has \(\varepsilon_r = 1.0006 \pm 1 \).

Thus air may be regarded as free space.

Let \(\mathbf{H}_1 = \mathbf{H}_1 + \mathbf{H}_2 \)
\[\mathbf{H}_1 = H_{1n} \cos(\omega t - \beta z) \mathbf{a}_n. \]

\[H_{1n} = \frac{E_n}{\eta} = \frac{40}{120\pi} \frac{1}{3\pi} \]
\[\mathbf{a}_n = \mathbf{a}_x \times \mathbf{a}_y = \mathbf{a}_z \times \mathbf{a}_y = \mathbf{a}_y \]

Hence \[\mathbf{H}_1 = \frac{1}{3\pi} \cos(\omega t - \beta z) \mathbf{a}_y. \]
Example 10.9 -solution

Similarly,
\[\mathbf{H}_z = H_{z,0} \sin(\omega t - \beta z) \mathbf{a}_n \]
where
\[H_{z,0} = \frac{E_{z,0}}{\eta_0} = \frac{30}{120\pi} = \frac{1}{4\pi} \]
\[\mathbf{a}_n = \mathbf{a}_x \times \mathbf{a}_y = \mathbf{a}_x \times \mathbf{a}_y = -\mathbf{a}_z \]

Hence
\[\mathbf{H}_z = \frac{1}{4\pi} \sin(\omega t - \beta z) \mathbf{a}_z \]
and
\[\mathbf{H}_z = \mathbf{H}_z + \mathbf{H}_x = -\frac{1}{4\pi} \sin(\omega t - \beta z) \mathbf{a}_x + \frac{1}{3\pi} \cos(\omega t - \beta z) \mathbf{a}_y \text{ mA/m} \]

This problem can also be solved using Method 2 of Example 10.3.

Example 10.9 -solution

(b) Since medium 2 is perfectly conducting,
\[\sigma_z >> 1 \rightarrow \eta_z << \eta_i \]
that is \(\Gamma = -1 \), \(\tau = 0 \)
showing that the incident \(\mathbf{E} \) and \(\mathbf{H} \) fields are totally reflected.\[E_{inc} = \mathbf{E}_{inc} \mathbf{E}_{inc} = -E_w \]

Hence,
\[\mathbf{E}_a = -40 \cos(\omega t + \beta z) \mathbf{a}_y - 30 \sin(\omega t + \beta z) \mathbf{a}_y \text{ V/m} \]
\[\mathbf{H}_a = \frac{1}{3\pi} \cos(\omega t + \beta z) \mathbf{a}_y - \frac{1}{4\pi} \sin(\omega t + \beta z) \mathbf{a}_y \text{ A/m} \]

(c) The total fields in air
\[\mathbf{E}_i = \mathbf{E} + \mathbf{E}_a \text{ and } \mathbf{H}_i = \mathbf{H} + \mathbf{H}_a \]
can be shown to be standing wave.
The total fields in the conductor are \(\mathbf{E}_z = \mathbf{E}_i = 0 \), \(\mathbf{H}_z = \mathbf{H}_a = 0 \).
Oblique incidence

\[\theta_i \text{ is angle of incidence.} \]

The plane defined by propagation vector \(\mathbf{k} \) and a unit normal vector \(\mathbf{a}_n \) to the boundary is called \textit{plane of incidence}.

Parallel Polarization

It's defined as \(\mathbf{E} \parallel \) to incidence plane (\(\mathbf{E} \)-field lies in the xz-plane)

Oblique incidence

\[
\begin{align*}
E_i &= E_{i0} \cos(k_{ix}x + k_{iy}y + k_{iz}z - \omega t) \\
E_r &= E_{r0} \cos(k_{rx}x + k_{ry}y + k_{rz}z - \omega t) \\
E_t &= E_{t0} \cos(k_{tx}x + k_{ty}y + k_{tiz}z - \omega t)
\end{align*}
\]

where
\[
\begin{align*}
k_i &= k_z = \beta_i = \omega \sqrt{\mu_i \epsilon_i} \\
k_r &= \beta_r = \omega \sqrt{\mu_r \epsilon_r} \\
k_t &= \beta_t \cos \theta_r \\
k_{tiz} &= \beta_t \sin \theta_r
\end{align*}
\]

Parallel Polarization

\[
\begin{align*}
E_{ix} &= E_{i0} \cos \theta_i \; \mathbf{a}_x - \sin \theta_i \; \mathbf{a}_z e^{-j\beta_i (\sin \theta_i + \cos \theta_i)} \\
H_{ix} &= \frac{E_{i0}}{\eta_1} e^{-j\beta_i (\sin \theta_i + \cos \theta_i)} \; \mathbf{a}_y \\
E_{ry} &= E_{r0} \cos \theta_r \; \mathbf{a}_x + \sin \theta_r \; \mathbf{a}_z e^{-j\beta_r (\sin \theta_r - \cos \theta_r)} \\
H_{ry} &= \frac{E_{r0}}{\eta_1} e^{-j\beta_r (\sin \theta_r - \cos \theta_r)} \; \mathbf{a}_y
\end{align*}
\]
Tangential components of E and H should be continuous at the boundary $z=0$,

$$E_{in} \cos \theta_i + E_{in} \cos \theta_i = E_{in} \cos \theta_i \quad \text{(x-components of E)}$$

$$\frac{E_{in}}{\eta_1} - \frac{E_{in}}{\eta_2} = \frac{E_{in}}{\eta_1}$$ \quad \text{(y-component of H)}

Reflection coefficient

$$\Gamma_i = \frac{E_{in}}{E_{in}} = \frac{\eta_1 \cos \theta_i - \eta_2 \cos \theta_i}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_i}, \quad E_{in} = \Gamma_i E_{in}$$

Transmission coefficient

$$t_i = \frac{E_{in}}{E_{in}} = \frac{2\eta_1 \cos \theta_i}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_i}, \quad E_{in} = t_i E_{in}$$

where \(t_i = (1 + \Gamma_i) \cos \theta_i \cos \theta_i \)

Parallel Polarization - Brewster angle, θ_B

- Defined as the incidence angle at which the reflection coefficient is 0 (all transmission).

By setting $\theta = \theta_B$:

$$\Gamma_i = \eta_1 \cos \theta_i - \eta_2 \cos \theta_i = 0$$

$$\eta_2 \cos \theta_i = \eta_1 \cos \theta_i$$

or

$$\eta_1 \left(1 - \sin^2 \theta_i\right) = \eta_2 \left(1 - \sin^2 \theta_i\right)$$

Since

$$\sin \theta_i = \frac{\mu_2}{\mu_1} \quad \text{and} \quad \theta_i = \theta_{\text{B}}$$

$$\sin^2 \theta_B = \frac{1 - (\epsilon_2/\epsilon_1)}{1 - (\epsilon_1/\epsilon_2)}$$
Perpendicular Polarization

In this case, the \(E \) field is **perpendicular** to the plane of incidence (the \(xz \)-plane)

\[E_z = E_{\text{in}} e^{-j \beta \left(\sin \theta_i + \cos \theta_i \right)} \mathbf{a}_y \]

\[H_z = \frac{E_{\text{in}}}{\eta_2} \left(-\cos \theta_i \mathbf{a}_x + \sin \theta_i \mathbf{a}_z \right) e^{-j \beta \left(\sin \theta_i + \cos \theta_i \right)} \]

Tangential components of \(E \) and \(H \) should be continuous at the boundary \(z=0 \), and by setting \(\theta_i = \theta_r \):

\[E_{\text{in}} + E_{\text{tr}} = E_{\text{in}} \] \(\text{y-component of E} \)

\[\left(\frac{E_{\text{in}}}{\eta_i}, \frac{E_{\text{in}}}{\eta_i} \right) \cos \theta_i = \frac{E_{\text{in}}}{\eta_2} \cos \theta_r \] \(\text{x-component of H} \)

Reflection coefficient

\[\Gamma = \frac{E_{\text{in}}}{E_{\text{in}}} = \frac{\eta_2 \cos \theta_i - \eta_i \cos \theta_i}{\eta_2 \cos \theta_i + \eta_i \cos \theta_i} \]

Transmission coefficient

\[\tau = \frac{E_{\text{tr}}}{E_{\text{in}}} = \frac{2\eta_2 \eta_i \cos \theta_i}{\eta_2 \cos \theta_i + \eta_i \cos \theta_i} \]

where \(1 + \Gamma = \tau \)
For no reflection (total transmission):

By setting \(\theta_1 = \theta_2 \):

\[
\Gamma = \frac{\eta_2 \cos \theta_2 - \eta_1 \cos \theta_1}{\eta_2 \cos \theta_2 + \eta_1 \cos \theta_1} = 0
\]

or

\[
\eta_1 (1 - \sin^2 \theta_2) = \eta_2 (1 - \sin^2 \theta_1)
\]

Since

\[
\frac{\sin \theta_1}{\sin \theta_2} = \sqrt{\frac{\mu_2 \varepsilon_1}{\mu_1 \varepsilon_2}} \quad \text{and} \quad \theta_2 = \theta_2
\]

\[
\sin^2 \theta_2 = \frac{1 - (\varepsilon_2 \mu_1 / \varepsilon_1 \mu_2)}{1 - (\mu_1 / \mu_2)^2}
\]

Summary

<table>
<thead>
<tr>
<th>Property</th>
<th>Normal Incidence</th>
<th>Perpendicular</th>
<th>Parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection coefficient</td>
<td>(r = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1})</td>
<td>(r = \frac{\eta_2 \cos \theta_2 - \eta_1 \cos \theta_1}{\eta_2 \cos \theta_2 + \eta_1 \cos \theta_1})</td>
<td>(r = \frac{\eta_2 \cos \theta_2 - \eta_1 \cos \theta_1}{\eta_2 \cos \theta_2 + \eta_1 \cos \theta_1})</td>
</tr>
<tr>
<td>Transmission coefficient</td>
<td>(\tau = \frac{2\eta_1}{\eta_1 + \eta_2})</td>
<td>(\tau = \frac{2\eta_1 \cos \theta_2}{\eta_2 \cos \theta_2 + \eta_1 \cos \theta_1})</td>
<td>(\tau = \frac{2\eta_2 \cos \theta_2}{\eta_2 \cos \theta_2 + \eta_1 \cos \theta_1})</td>
</tr>
<tr>
<td>Relation</td>
<td>(r = 1 + \Gamma)</td>
<td>(\tau = 1 + \Gamma)</td>
<td>(\tau = 1 + \Gamma)</td>
</tr>
</tbody>
</table>

Example 10.10

An EM wave travels in free space with the electric field component

\[
E_x = 100e^{j(0.866y + 0.5z)} \mathbf{a}_x \text{ V/m}
\]

Determine

(a) \(\omega \) and \(\lambda \)

(b) The magnetic field component

(c) The time average power in the wave

Example 10.10 - solution

(a) Comparing the given \(E \) with

\[
E_x = E_o e^{j(k_x x + k_y y + k_z z)} \mathbf{a}_x
\]

it is clear that

\[
k_x = 0 , \quad k_y = 0.866 , \quad k_z = 0.5
\]

\[
k = \sqrt{k_x^2 + k_y^2 + k_z^2} = \sqrt{(0.866)^2 + (0.5)^2} = 1
\]

But in free space,

\[
k = \frac{\omega}{c} = \frac{2\pi}{\lambda}
\]

Hence,

\[
\omega = kc = 3 \times 10^8 \text{ rad/s}
\]

\[
\lambda = \frac{2\pi}{k} = 2\pi = 6.283 \text{ m}
\]
Example 10.10 - solution

(b) The corresponding magnetic field is given by
\[\mathbf{H} = \frac{\mathbf{a} \times \mathbf{E}}{\eta} \]
\[a_x = \frac{0.866a_y + 0.5a_z}{\sqrt{0.866^2 + 0.5^2}} = 0.866a_y + 0.5a_z \]
\[H_x = \frac{0.866a_y + 0.5a_z}{\eta} \times 100 \mathbf{a}_x e^{j(0.866x - 0.5z)} \quad \eta = (120\pi) \]
\[H_z = (0.132a_y - 0.23a_x) e^{j(0.866x - 0.5z)} \text{ A/m} \]
(c) The time average power is
\[\rho_{av} = \frac{1}{2} \text{Re} \left(\mathbf{E} \times \mathbf{H}^* \right) = \frac{E_y^2 - a_y}{2\eta} = \frac{(100)^2}{2(120\pi)} (0.866a_y + 0.5a_z) \]
= 11.49a_y + 6.631a_z \text{ W/m}^2

Example 10.11

A uniform plane wave in air with \(\mathbf{E} = 8 \cos (\omega t - 4x - 3z) \mathbf{a}_y \text{ V/m} \)
is incident on a dielectric slab \((z \geq 0) \) with \(\mu_1 = 1, \varepsilon_\infty = 2.5, \sigma = 0. \)
Find
(a) The polarization of the wave
(b) The angle of incidence
(c) The reflected field
(d) The transmitted field

Example 10.11 - solution

(a) From the incident field, it is evident that the propagation vector is
\[\mathbf{k}_i = 4\mathbf{a}_y + 3\mathbf{a}_z \rightarrow k_i = 5 = \omega\sqrt{\mu_1 \varepsilon_\infty} = \frac{\omega}{c} \]
Hence,
\[\omega = 5c = 15 \times 10^8 \text{ rad/s} \]
A unit vector normal to the interface \((z = 0) \) is \(\mathbf{a}_z \).
The plane containing \(\mathbf{k} \) and \(\mathbf{a}_z \) is \(y = \text{constant} \), which is the \(xz \)-plane, the plane of incidence. Since \(\mathbf{E}_i \) is normal to this plane, we have perpendicular polarization (similar to Figure 10.17).

(b) From the figure, \(\tan \theta' = \frac{k_x}{k_z} = \frac{4}{3} \rightarrow \theta' = 53.13^\circ \)
Alternatively, we can obtain \(\theta' \) from the fact that \(\theta' \)
is the angle between \(\mathbf{k} \) and \(\mathbf{a}_z \), that is, \(\cos \theta' = a_z \cdot a_z \)
\[= \left(4a_y + 3a_z \right) \cdot a_z = \frac{3}{5} \]
or \[\theta' = 53.13^\circ \]
Example 10.11 - solution

c) Let \(\mathbf{E}_t = E_0 \cos(\omega t - \mathbf{k} \cdot \mathbf{r}) \mathbf{a}_y \),
which is similar to form to the given \(\mathbf{E}_0 \). The unit vector \(\mathbf{a}_y \) is chosen in
view of the fact that the tangential component of \(\mathbf{E} \) must be continuous
at the interface. From the Figure:
\[\mathbf{k}_x = \mathbf{k} \cdot \mathbf{a}_x - \mathbf{k} \cdot \mathbf{a}_y \]
\[\mathbf{k}_z = k_x \mathbf{a}_x + k_y \mathbf{a}_y \]
But \(\theta_t = \theta \) and \(k_x = 5 \) because both \(k_x \) and \(k_y \) are in
the same medium. Hence
\[k_x = 4a_x - 3a_y \]

Example 10.11 - solution

d) Similarly, let the transmitted electric field be
\[\mathbf{E}_t = E_0 \cos(\omega t - \mathbf{k} \cdot \mathbf{r}) \mathbf{a}_y \]
where \(k_x = \beta = \omega \sqrt{\mu_x \varepsilon_x} = \frac{\omega}{c} \sqrt{\mu_x \varepsilon_x \varepsilon_z} = \frac{15 \times 10^8}{3 \times 10^8} \sqrt{1 \times 2.5} = 7.906 \)
From the Figure,
\[k_y \sin \theta = 4 \]
\[k_y = k \cos \theta = 6.819 \]
\[k_y = 4a_x + 6.819a_y \]
Notice that \(k_x = k_y - k_z \)
\[\Gamma = \frac{E_{\text{in}}}{E_{\text{out}}} = \frac{2 \eta_1 \cos \theta}{\eta_1 \cos \theta + \eta_2 \cos \theta} = \frac{2 \times 238.4 \cos 53.13^\circ}{238.4 \cos 53.13^\circ + 377 \cos 30.39^\circ} = 0.611 \]

Example 10.11 - solution

to find \(E_{\text{in}} \), we need \(\theta_t \). From Snell's law
\[\sin \theta_t = \eta_2 \sin \theta = \frac{c \sqrt{\mu_x \varepsilon_x}}{c \sqrt{\mu_2 \varepsilon_2}} \sin \theta = \frac{\sin 53.13^\circ}{\sqrt{2.5}} \]
or \(\theta_t = 30.39^\circ \)
\[\Gamma = \frac{E_{\text{out}}}{E_{\text{in}}} = \frac{\eta_2 \cos \theta - \eta_1 \cos \theta}{\eta_1 \cos \theta + \eta_2 \cos \theta} \]
where \(\eta_1 = \eta_2 = 377 \), \(\eta_2 = \frac{\mu_x \mu_2}{\sqrt{\varepsilon_x \varepsilon_2}} = \frac{377}{\sqrt{2.5}} = 238.4 \)
\[\Gamma = \frac{E_{\text{out}}}{E_{\text{in}}} = \frac{238.4 \cos 53.13^\circ - 377 \cos 30.39^\circ}{238.4 \cos 53.13^\circ + 377 \cos 30.39^\circ} = -0.389 \]
Hence, \(E_{\text{in}} = \Gamma E_{\text{out}} = -0.389(8) = -3.112 \)
\[E_t = -3.112 \cos(15 \times 10^8 t - 4x + 3z) \mathbf{a}_y \text{ V/m} \]

Example 10.11 - solution

The same result could be obtained from the relation \(r = 1 + \Gamma \). Hence, \(E_{\text{in}} = \Gamma E_{\text{out}} = 0.611 \times 8 = 4.888 \)
\[E_t = 4.888 \cos(15 \times 10^8 t - 4x - 6.819z) \mathbf{a}_y \]
From \(E_x, H_z \) is easily obtained as
\[H_z = \frac{\mathbf{a}_z \times E_t}{\eta_2} = \frac{4a_z + 6.819a_y}{7.906(238.4)} \times 4.888 \cos(\omega t - \mathbf{k} \cdot \mathbf{r}) \]
\[H_z = (-17.69a_x + 10.37a_z) \cos(15 \times 10^8 t - 4x - 6.819z) \text{ mA/m} \]