Chapter 4 Physics of Bipolar Transistors

- 4.1 General Considerations
- 4.2 Structure of Bipolar Transistor
- 4.3 Operation of Bipolar Transistor in Active Mode
- 4.4 Bipolar Transistor Models
- 4.5 Operation of Bipolar Transistor in Saturation Mode
- 4.6 The PNP Transistor
In the chapter, we will study the physics of bipolar transistor and derive large and small signal models.
A voltage-dependent current source can act as an amplifier.

If $K R_L$ is greater than 1, then the signal is amplified.
Regardless of the input resistance, the magnitude of amplification remains unchanged.
A three-terminal exponential voltage-dependent current source is shown above.

Ideally, bipolar transistor can be modeled as such.
Bipolar transistor can be thought of as a sandwich of three doped Si regions. The outer two regions are doped with the same polarity, while the middle region is doped with opposite polarity.
Injection of Carriers

- Reverse biased PN junction creates a large electric field that sweeps any injected minority carriers to their majority region.
- This ability proves essential in the proper operation of a bipolar transistor.
Forward active region: \(V_{BE} > 0, V_{BC} < 0 \).

Figure b) presents a wrong way of modeling figure a).
Collector also carries current due to carrier injection from base.
Carrier Transport in Base

(a) Forward Biased

(b) Reverse Biased

(c) Electron Density
Applying the law of diffusion, we can determine the charge flow across the base region into the collector.

The equation above shows that the transistor is indeed a voltage-controlled element, thus a good candidate as an amplifier.
Parallel Combination of Transistors

When two transistors are put in parallel and experience the same potential across all three terminals, they can be thought of as a single transistor with twice the emitter area.
Although a transistor is a voltage to current converter, output voltage can be obtained by inserting a load resistor at the output and allowing the controlled current to pass thru it.
Ideally, the collector current does not depend on the collector to emitter voltage. This property allows the transistor to behave as a constant current source when its base-emitter voltage is fixed.
Base current consists of two components: 1) Reverse injection of holes into the emitter and 2) recombination of holes with electrons coming from the emitter.

\[I_C = \beta I_B \]
Applying Kirchoff’s current law to the transistor, we can easily find the emitter current.

\[I_E = I_C + I_B \]

\[I_E = I_C \left(1 + \frac{1}{\beta} \right) \]

\[\beta = \frac{I_C}{I_B} \]
Summary of Currents

\[I_C = I_S \exp \frac{V_{BE}}{V_T} \]

\[I_B = \frac{1}{\beta} I_S \exp \frac{V_{BE}}{V_T} \]

\[I_E = \frac{\beta + 1}{\beta} I_S \exp \frac{V_{BE}}{V_T} \]

\[\frac{\beta}{\beta + 1} = \alpha \]
A diode is placed between base and emitter and a voltage controlled current source is placed between the collector and emitter.
As R_L increases, V_x drops and eventually forward biases the collector-base junction. This will force the transistor out of forward active region.

Therefore, there exists a maximum tolerable collector resistance.
Characteristics of Bipolar Transistor

(a)

I_C

I_s \exp \left(\frac{V_{BE2}}{V_T} \right)

I_s \exp \left(\frac{V_{BE1}}{V_T} \right)

(b)

V_{BE} = V_{B2}

V_{BE} = V_{B1}

V_{CE}
Example: IV Characteristics

(a) I_C vs. V_{BE}
- 1.153 mA
- $169 \mu\text{A}$
- $24.6 \mu\text{A}$

(b) I_C vs. V_{BE}
- $V_{BE} = 800 \text{ mV}$
- $V_{BE} = 750 \text{ mV}$
- $V_{BE} = 700 \text{ mV}$

(c) I_B vs. V_{BE}
- $11.5 \mu\text{A}$
- $0.169 \mu\text{A}$
- $0.025 \mu\text{A}$

(d) I_B vs. V_{BE}
- $V_{BE} = 800 \text{ mV}$
- $V_{BE} = 750 \text{ mV}$
- $V_{BE} = 700 \text{ mV}$
Transconductance, g_m shows a measure of how well the transistor converts voltage to current.

It will later be shown that g_m is one of the most important parameters in circuit design.

$$g_m = \frac{d}{dV_{BE}} \left(I_s \exp \frac{V_{BE}}{V_T} \right)$$

$$g_m = \frac{1}{V_T} I_s \exp \frac{V_{BE}}{V_T}$$

$$g_m = \frac{I_C}{V_T}$$
Visualization of Transconductance

- g_m can be visualized as the slope of I_C versus V_{BE}.
- A large I_C has a large slope and therefore a large g_m.

\[g_m \Delta V \]

\[I_C \quad I_{C0} \quad V_{BE0} \quad V_{BE} \quad \Delta V \]
When the area of a transistor is increased by n, I_S increases by n. For a constant V_{BE}, I_C and hence g_m increases by a factor of n.
The figure above shows that for a given V_{BE} swing, the current excursion around I_{C2} is larger than it would be around I_{C1}. This is because g_m is larger for I_{C2}.

\[
V_{BE} = V_{B2} + \Delta V \\
V_{BE} = V_{B2} \\
V_{BE} = V_{B1} + \Delta V \\
V_{BE} = V_{B1}
\]

\[
g_{m2} \Delta V \\
g_{m1} \Delta V
\]
Small signal model is derived by perturbing voltage difference every two terminals while fixing the third terminal and analyzing the change in current of all three terminals. We then represent these changes with controlled sources or resistors.
Small-Signal Model: V_{BE} Change

\[\Delta I_C = g_m \Delta V_{BE} \]

\[\Delta I_E \]

\[\Delta V_{BE} \]

\[Q_1 \]

\[V_{CE} \]

\[I_s \exp \left(\frac{V_{BE} + \Delta V_{BE}}{V_T} \right) \]

\[\Delta I_C \]

\[V_{CE} \]

\[B \rightarrow \Delta V_{BE} \]

\[g_m \Delta V_{BE} \]

\[E \]

\[C \]

\[B \rightarrow v_{\pi} \]

\[g_m v_{\pi} \]

\[E \]

\[C \]

\[B \rightarrow r_{\pi} \]

\[v_{\pi} \]

\[g_m v_{\pi} \]

\[E \]

\[C \]
Ideally, V_{CE} has no effect on the collector current. Thus, it will not contribute to the small signal model.

It can be shown that V_{CB} has no effect on the small signal model, either.
Small Signal Example I

Here, small signal parameters are calculated from DC operating point and are used to calculate the change in collector current due to a change in V_{BE}.

\[g_m = \frac{I_C}{V_T} = \frac{1}{3.75 \Omega} \]

\[r_\pi = \frac{\beta}{g_m} = 375 \Omega \]
In this example, a resistor is placed between the power supply and collector, therefore, providing an output voltage.
Since the power supply voltage does not vary with time, it is regarded as a ground in small-signal analysis.
Early Effect

- The claim that collector current does not depend on V_{CE} is not accurate.
- As V_{CE} increases, the depletion region between base and collector increases. Therefore, the effective base width decreases, which leads to an increase in the collector current.
With Early effect, collector current becomes larger than usual and a function of V_{CE}.
Early Effect Representation

\[I_X = I_S \exp \left(\frac{V_1}{V_T} \right) \left(1 + \frac{V_X}{V_A} \right) \]
Early effect can be accounted for in large-signal model by simply changing the collector current with a correction factor.

In this mode, base current does not change.
Early Effect and Small-Signal Model

\[r_o = \frac{\Delta V_{CE}}{\Delta I_C} = \frac{V_A}{I_S \exp \left(\frac{V_{BE}}{V_T} \right)} \approx \frac{V_A}{I_C} \]
Summary of Ideas
When collector voltage drops below base voltage and forward biases the collector-base junction, base current increases and decreases the current gain factor, β.
Large-Signal Model for Saturation Region
The speed of the BJT also drops in saturation.
In order to keep BJT at least in soft saturation region, the collector voltage must not fall below the base voltage by more than 400mV.

A linear relationship can be derived for V_{CC} and R_C and an acceptable region can be chosen.

$$V_{CC} \geq I_C R_C + (V_{BE} - 400mV)$$
In deep saturation region, the transistor loses its voltage-controlled current capability and V_{CE} becomes constant.
PNP Transistor

- With the polarities of emitter, collector, and base reversed, a PNP transistor is formed.
- All the principles that applied to NPN's also apply to PNP’s, with the exception that emitter is at a higher potential than base and base at a higher potential than collector.
A Comparison between NPN and PNP Transistors

The figure above summarizes the direction of current flow and operation regions for both the NPN and PNP BJT’s.
PNP Equations

\[I_C = I_S \exp \frac{V_{EB}}{V_T} \]

\[I_B = \frac{I_S}{\beta} \exp \frac{V_{EB}}{V_T} \]

\[I_E = \frac{\beta + 1}{\beta} I_S \exp \frac{V_{EB}}{V_T} \]

\[I_C = \left(I_S \exp \frac{V_{EB}}{V_T} \right) \left(1 + \frac{V_{EC}}{V_A} \right) \]

Early Effect
Large Signal Model for PNP

\[I_S \exp \left(\frac{V_{EB}}{V_T} \right) \]
PNP Biasing

- Note that the emitter is at a higher potential than both the base and collector.
Small Signal Analysis

\[V_{in} \]

\[1.7 \text{ V} \]

\[R_C \]

\[300 \Omega \]

\[Q_1 \]

\[I_C \]

\[V_{out} \]

\[V_{CC} \]

\[2.5 \text{ V} \]
The small signal model for PNP transistor is exactly IDENTICAL to that of NPN. This is not a mistake because the current direction is taken care of by the polarity of V_{BE}.
Small Signal Model Example I
Small-signal model is identical to the previous ones.
Since during small-signal analysis, a constant voltage supply is considered to be AC ground, the final small-signal model is identical to the previous two.
Small Signal Model Example IV