Analog CMOS Integrated Circuit Design

Single-Stage Amplifiers

Dr. Jawdat Abu-Taha
Department of Electrical and Computer Engineering
Islamic University of Gaza
jtaha@iugaza.edu.ps
Overview

1. Why Amplifiers?
2. Amplifier Characteristics
3. Amplifier Trade-offs
4. Single-stage Amplifiers
5. Common Source Amplifiers
 1. Resistive Load
 2. Diode-connected Load
 3. Current Source Load
 4. Triode Load
 5. Source Degeneration
Overview

6. Common-Drain (Source-Follower) Amplifiers
 1. Resistive Load
 2. Current Source Load
 3. Voltage Division in Source Followers

7. Common-Gate Amplifiers

8. Cascode Amplifiers
Reading Assignments

• Reading:
 Chapter 3 of Razavi’s book

• In this set of slides we will study low-frequency small-signal behavior of single-stage CMOS amplifiers. Although, we assume long-channel MOS models (not a good assumption for deep submicron technologies) the techniques discussed here help us to develop basic circuit intuition and to better understand and predict the behavior of circuits.

Most of the figures in these lecture notes are © Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
Why Amplifiers?

• Amplifiers are essential building blocks of both analog and digital systems.

• Amplifiers are needed for variety of reasons including:
 – To amplify a weak analog signal for further processing
 – To reduce the effects of noise of the next stage
 – To provide a proper logical levels (in digital circuits)

• Amplifiers also play a crucial role in feedback systems

• We first look at the low-frequency performance of amplifiers. Therefore, all capacitors in the small-signal model are ignored!
Amplifier Characteristics - 1

• Ideally we would like that the output of an amplifier be a linear function of the input, i.e., the input times a constant gain:

\[y = \alpha_1 x \]

• In real world the input-output characteristics is typically a nonlinear function:
Amplifier Characteristics - 2

• It is more convenient to use a linear approximation of a nonlinear function.
• Use the tangent line to the curve at the given (operating) point.

\[y = \pm \]

• The larger the signal changes about the operating point, the worse the approximation of the curve by its tangent line.

• This is why small-signal analysis is so popular!
A well-behaved nonlinear function in the vicinity of a given point can be approximated by its corresponding Taylor series:

\[y \approx f(x_0) + f'(x_0) \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \cdots + \frac{f^n(x_0)}{n!} \cdot (x - x_0)^n \]

Let \(\alpha_n = \frac{f^n(x_0)}{n!} \) to get:

\[y \approx \alpha_0 + \alpha_1 (x - x_0) + \alpha_2 (x - x_0)^2 + \cdots + \alpha_n (x - x_0)^n \]

If \(x - x_0 = \Delta x \) is small, we can ignore the higher-order terms (hence the name small-signal analysis) to get:

\[y \approx \alpha_0 + \alpha_1 (x - x_0) \]

\(\alpha_0 \) is referred to as the operating (bias) point and \(\alpha_1 \) is the small-signal gain.

\[\Delta y = y - f(x_0) = y - \alpha_0 \approx \alpha_1 \Delta x \]
Amplifier Trade-offs

• In practice, when designing an amplifier, we need to optimize for some performance parameters. Typically, these parameters trade performance with each other, therefore, we need to choose an acceptable compromise.
Single-Stage Amplifiers

- We will examine the following types of amplifiers:
 1. Common Source
 2. Common Drain (Source Follower)
 3. Common Gate
 4. Cascode and Folded Cascode

- Each of these amplifiers have some advantages and some disadvantages. Often, designers have to utilize a cascade combination of these amplifiers to meet the design requirements.
Common Source Basics - 1

- In common-source amplifiers, the input is (somehow!) connected to the gate and the output is (somehow!) taken from the drain.

- We can divide common source amplifiers into two groups:
 1. Without source degeneration (no body effect for the main transistor):

 ![Diagram 1]

 2. With source degeneration (have to take body effect into account for the main transistor):

 ![Diagram 2]
In a simple common source amplifier:

- gate voltage variations times g_m gives the drain current variations,
- drain current variations times the load gives the output voltage variations.
- Therefore, one can expect the small-signal gain to be:

\[|A_v| = g_m \cdot R_D \]
Common Source Basics - 3

• Different types of loads can be used in an amplifier:
 1. Resistive Load
 2. Diode-connected Load
 3. Current Source Load
 4. Triode Load

• The following parameters of amplifiers are very important:
 1. Small-signal gain
 2. Voltage swing
Let's use a resistor as the load.

The region of operation of M_1 depends on its size and the values of V_{in} and R.

We are interested in the small-signal gain and the headroom (which determines the maximum voltage swing).

We will calculate the gain using two different methods

1. Small-signal model
2. Large-signal analysis
Gain – Method 1: Small-Signal Model

- This is assuming that the transistor is in saturation, and channel length modulation is ignored.
- The current through R_D:
 \[i_D = g_m \cdot v_{IN} \]
- Output Voltage:
 \[v_{OUT} = -i_D \cdot R_D = -g_m \cdot v_{IN} \cdot R_D \]
- Small-signal Gain:
 \[A_v = \frac{v_{OUT}}{v_{IN}} = -g_m \cdot R_D \]
Gain – Method 2: Large-Signal Analysis

- If $V_{IN} < V_{TH}$, M1 is off, and $V_{OUT} = V_{DD} = V_{DS}$.

\[
V_{OUT} = V_{DD} - R_D \cdot i_D = V_{DD}
\]

\[
A_v = \frac{\partial V_{OUT}}{\partial V_{IN}} = 0
\]

- As V_{IN} becomes slightly larger than V_{TH}, M1 turns on and goes into saturation ($V_{DS} \approx V_{DD} > V_{GS} - V_{TH} \approx 0$).

\[
V_{OUT} = V_{dd} - R_D \cdot i_D = V_{dd} - R_D \cdot \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{IN} - V_{TH})^2
\]

\[
A_v = \frac{\partial V_{OUT}}{\partial V_{IN}} = -R_D \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{IN} - V_{TH}) = -R_D \cdot g_n
\]

- As V_{IN} increases, V_{DS} decreases, and M1 goes into triode when $V_{IN} - V_{TH} = V_{OUT}$. We can find the value of V_{IN} that makes M1 switch its region of operation.

\[
V_{OUT} = V_{dd} - R_D \cdot i_D = V_{dd} - R_D \cdot \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{IN} - V_{TH})^2 = (V_{IN} - V_{TH})
\]
Gain – Method 2: Large-Signal Analysis (Continued)

- As V_{in} increases, V_{DS} decreases, and M_1 goes into triode.

\[
V_{OUT} = V_{DD} - R_D \cdot i_D = V_{DD} - R_D \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{IN} - V_{TH}) \cdot V_{OUT} - \frac{V_{OUT}^2}{2}
\]

\[
\frac{\partial V_{OUT}}{\partial V_{IN}} = -R_D \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{IN} - V_{TH}) \cdot \frac{\partial V_{OUT}}{\partial V_{IN}} + V_{OUT} - V_{OUT} \cdot \frac{\partial V_{OUT}}{\partial V_{IN}}
\]

- We can find A_v from above. It will depend on both V_{in} and V_{OUT}.

- If V_{in} increases further, M_1 goes into deep triode if $V_{OUT} \ll 2(V_{IN} - V_{TH})$.

\[
V_{OUT} = V_{DD} - R_D \cdot i_D = V_{DD} - R_D \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{IN} - V_{TH}) \cdot V_{OUT}
\]

\[
V_{OUT} = \frac{V_{DD}}{1 + R_D \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{IN} - V_{TH})} = \frac{V_{DD}}{1 + R_D \cdot \frac{1}{R_{ON}}} = V_{DD} \cdot \frac{R_{ON}}{R_{ON} + R_D}
\]
Example: Sketch the drain current and g_m of M_1 as a function of V_{IN}.

- g_m depends on V_{IN}, so if V_{IN} changes by a large amount the small-signal approximation will not be valid anymore.
- In order to have a linear amplifier, we don’t want gain to depend on parameters like g_m which depend on the input signal.
• Gain of common-source amplifier:

\[
A_v = -g_m \cdot R_D = -\mu_n C_{ox} \frac{W}{L} (V_{IN} - V_{TH}) \cdot \frac{V_{RD}}{I_D} = \sqrt{2\mu_n C_{ox} \frac{W}{L}} \cdot \frac{V_{RD}}{\sqrt{I_D}} = \frac{-2 \cdot V_{RD}}{V_{eff}}
\]

• To increase the gain:
 1. Increase \(g_m \) by increasing \(W \) or \(V_{IN} \) (DC portion or bias). Either way, \(I_D \) increases (more power) and \(V_{RD} \) increases, which limits the voltage swing.
 2. Increase \(R_D \) and keep \(I_D \) constant (\(g_m \) and power remain constant). But, \(V_{RD} \) increases which limits the voltage swing.
 3. Increase \(R_D \) and reduce \(I_D \) so \(V_{RD} \) remains constant.
 - If \(I_D \) is reduced by decreasing \(W \), the gain will not change.
 - If \(I_D \) is reduced by decreasing \(V_{IN} \) (bias), the gain will increase. Since \(R_D \) is increased, the bandwidth becomes smaller (why?).

• Notice the trade-offs between gain, bandwidth, and voltage swings.
• Now let’s consider the simple common-source circuit with channel length modulation taken into account.

• Channel length modulation becomes more important as R_D increases (in the next slide we will see why!).

• Again, we will calculate the gain in two different methods
 1. Small-signal Model
 2. Large Signal Analysis
Resistive Load - 8

Gain – Method 1: Small-Signal Model

- This is assuming that the transistor is in saturation.
- The current through R_D:
 $$i_D = g_m \cdot v_{IN}$$
- Output Voltage:
 $$v_{OUT} = -i_D \cdot (R_D || r_o) = -g_m \cdot v_{IN} \cdot (R_D || r_o)$$
- Small-signal Gain:
 $$A_v = \frac{v_{OUT}}{v_{IN}} = -g_m \cdot (R_D || r_o)$$
Gain – Method 2: Large-Signal Analysis

- As V_{in} becomes slightly larger than V_{th}, M_1 turns on and goes into saturation ($V_{ds} \approx V_{dd} > V_{gs} - V_{th} \approx 0$).

\[V_{out} = V_{dd} - R_D \cdot I_D = V_{dd} - R_D \cdot \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{in} - V_{th})^2 \cdot (1 + \lambda \cdot V_{out}) \]

\[\frac{\partial V_{out}}{\partial V_{in}} = -R_D \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{in} - V_{th}) \cdot \left[(1 + \lambda \cdot V_{out}) + \frac{1}{2} \cdot (V_{in} - V_{th}) \cdot \lambda \cdot \frac{\partial V_{out}}{\partial V_{in}} \right] \]

\[A_v = \frac{-R_D \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{in} - V_{th}) \cdot (1 + \lambda \cdot V_{out})}{1 + \frac{1}{2} \cdot R_D \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{in} - V_{th})^2 \cdot \lambda} = \frac{-R_D \cdot g_m}{1 + R_D \cdot I_D \cdot \lambda} = \frac{-R_D \cdot g_m}{1 + R_D \cdot \frac{1}{r_o}} \]

\[= \frac{-r_o \cdot R_D \cdot g_m}{r_o + R_D} = -g_m \cdot (R_D \| r_o) \]
Example:

- Assuming M_1 is biased in active region, what is the small-signal gain of the following circuit?

- I_1 is a current source and ideally has an infinite impedance.

$$A_v = \frac{V_{OUT}}{V_{IN}} = -g_m \cdot (\alpha||r_o) = -g_m \cdot r_o$$

- This is the maximum gain of this amplifier (why?), and is known as the intrinsic gain.

- How can V_{IN} change if I_1 is constant?

$$I_D = \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{IN} - V_{TH})^2 \cdot (1 + \lambda \cdot V_{OUT})$$

- Here we have to take channel-length modulation into account. As V_{IN} changes, V_{OUT} also changes to keep I_1 constant.
Often, it is difficult to fabricate tightly controlled or reasonable size resistors on chip. So, it is desirable to replace the load resistor with a MOS device.

Recall the diode connected devices:

<table>
<thead>
<tr>
<th>Body Effect</th>
<th>R_X (when $\lambda \neq 0$)</th>
<th>R_X (when $\lambda = 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>$R_X = \frac{1}{g_m}$</td>
<td>$R_X = \frac{1}{g_m}$</td>
</tr>
<tr>
<td>YES</td>
<td>$R_X = \frac{1}{g_m + g_{mb}}$</td>
<td>$R_X = \frac{1}{g_m + g_{mb}}$</td>
</tr>
</tbody>
</table>
Diode Connected Load - 2

- Now consider the common-source amplifier with two types of diode connected loads:
 1. PMOS diode connected load:
 (No body effect)

 2. NMOS diode connected load:
 (Body effect has to be taken into account)
Diode Connected Load - 3

PMOS Diode Connected Load:

- Note that this is a common source configuration with M₂ being the load. We have:

\[
A_v = \frac{v_{out}}{v_{in}} = -g_{m1} \cdot (R_x || r_{o1}) = -g_{m1} \cdot \left(\frac{1}{g_{m2}} || r_{o2} || r_{o1} \right)
\]

- Ignoring the channel length modulation \((r_{o1} = r_{o2} = \infty)\), we can write:

\[
A_v = -g_{m1} \cdot \left(\frac{1}{g_{m2}} \right) = -\frac{g_{m1}}{g_{m2}} = -\sqrt{\frac{2 \mu_n \cdot C_{ox} \cdot \frac{W}{L}_1 \cdot I_{D1}}{2 \mu_p \cdot C_{ox} \cdot \frac{W}{L}_2 \cdot I_{D2}}} = \frac{\mu_n \cdot \left(\frac{W}{L}_1 \right)_{1}}{\mu_p \cdot \left(\frac{W}{L}_2 \right)_{2}}
\]

\[
A_v = -\frac{g_{m1}}{g_{m2}} = -\frac{2 \cdot I_{D1}}{V_{GS1} - V_{TH1}} = -\frac{2 \cdot I_{D2}}{V_{GS2} - |V_{TH2}|} = \frac{V_{SG2} - |V_{TH2}|}{V_{GS1} - V_{TH1}}
\]
Diode Connected Load - 4

NMOS Diode Connected Load:

- Again, note that this is a common source configuration with M_2 being the load. We have:
 \[
 A_v = \frac{V_{\text{out}}}{V_{\text{in}}} = -g_{m_1} \cdot (R_x \parallel r_{o1}) = -g_{m_1} \left(\frac{1}{g_{m_2} + g_{mb2}} \parallel r_{o2} \parallel r_{o1} \right)
 \]

- Ignoring the channel length modulation ($r_{o1} = r_{o2} = \infty$), we can write:
 \[
 A_v = -g_{m1} \cdot \left(\frac{1}{g_{m2} + g_{mb2}} \parallel \infty \parallel \infty \right) = -\frac{g_{m1}}{g_{m2} + g_{mb2}} = -\frac{g_{m1}}{g_{m2} \cdot (1 + \eta)}
 \]
 \[
 A_v = -\frac{1}{1 + \eta} \sqrt{\left(\frac{W}{L} \right)_1} = -\frac{1}{1 + \eta} \frac{V_{GS2} - V_{TH}}{V_{GS1} - V_{TH}}
 \]
For a diode connected load we observe that (to the first order approximation):

1. The amplifier gain is not a function of the bias current. So, the change in the input and output levels does not affect the gain, and the amplifier becomes more linear.

2. The amplifier gain is not a function of the input signal (amplifier becomes more linear).

3. The amplifier gain is a weak function (square root) of the transistor sizes. So, we have to change the dimensions by a considerable amount so as to increase the gain.
4. The gain of the amplifier is reduced when body effect should be considered.

5. We want M_1 to be in saturation, and M_2 to be on (M_2 cannot be in triode (why?)):

6. The voltage swing is constrained by both the required overdrive voltages and the threshold voltage of the diode connected device.

$$M1: V_{\text{OUT}} > V_{GS1} - V_{TH1} = V_{\text{eff1}}, \quad M2: V_{\text{OUT}} < V_{DD} - |V_{TH2}|$$

7. A high amplifier gain leads to a high overdrive voltage for the diode connected device which limits the voltage swing.
Example:

1. Find the gain of the following circuit if M1 is biased in saturation and $I_S = 0.75I_1$.

$$A_v = \frac{V_{OUT}}{V_{IN}} = -g_{m1} \cdot \left(R_x \parallel r_o \parallel r_{o1} \right) = -g_{m1} \cdot \left(\frac{1}{g_{m2}} \parallel r_{o2} \parallel \infty \parallel r_{o1} \right) = -g_{m1} \cdot \left(\frac{1}{g_{m2}} \parallel r_{o2} \parallel r_{o1} \right)$$

2. Ignoring the channel length modulation ($r_{o1} = r_{o2} = \infty$) we get:

$$A_v = -g_{m1} \cdot \left(\frac{1}{g_{m2}} \parallel \infty \parallel \infty \right) = -\frac{g_{m1}}{g_{m2}}$$

$$A_v = -2 \cdot \sqrt{\frac{2\mu_n \cdot C_{ox} \cdot \left(\frac{W}{L} \right)_1 \cdot I_{D1}}{2 \cdot I_{D2} \cdot \left(\frac{W}{L} \right)_2}} \cdot \frac{2 \cdot I_{D1}}{V_{GS1} - V_{TH1}} \cdot \frac{2 \cdot I_{D2}}{V_{SG2} - |V_{TH2}|}$$

$$A_v = -2 \cdot \sqrt{\frac{\mu_n \cdot \left(\frac{W}{L} \right)_1}{\mu_p \cdot \left(\frac{W}{L} \right)_2}} = -4 \cdot \frac{V_{SG2} - |V_{TH2}|}{V_{GS1} - V_{TH1}}$$
Example (Continued):

- We observe for this example that:

1. For fixed transistor sizes, using the current source increases the gain by a factor of 2.

2. For fixed overdrive voltages, using the current source increases the gain by a factor of 4.

3. For a given gain, using the current source allows us to make the diode connected load 4 times smaller.

4. For a given gain, using the current source allows us to make the overdrive voltage of the diode connected load 4 times smaller. This increases the headroom for voltage swing.
Note that current source M_2 is the load.

Recall that the output impedance of M_2 seen from V_{out}:

$$R_x = \frac{v_x}{i_x} = r_{o,2}$$

$$A_v = \frac{v_{out}}{v_{in}} = -g_{m1} \cdot (R_x \| r_{o1}) = -g_{m1} \cdot (r_{o2} \| r_{o1})$$

For large gain at given power, we want large r_o and

$$r_o = \frac{1}{\lambda \cdot I_D} \propto \frac{1}{L \cdot \frac{W}{L}} = \frac{L^2}{W}$$

Increase L and W keeping the aspect ratio constant (so r_o increases and I_D remains constant). However, this approach increases the capacitance of the output node.

We want M_2 to be in saturation so

$$V_{SD2} = V_{DD} - V_{OUT} > V_{SG2} - |V_{TH}| = V_{eff2} \rightarrow V_{OUT} < V_{DD} - V_{eff2}$$
Current Source Load - 2

- We also want M_1 to be in saturation:
 \[V_{DS_1} = V_{OUT} > V_{GS_1} - V_{TH} = V_{eff_1} \rightarrow V_{OUT} > V_{eff_1} \]

- Thus, we want V_{eff_1} and V_{eff_2} to be small, so that there is more headroom for output voltage swing. For a constant I_D, we can increase W_1 and W_2 to reduce V_{eff_1} and V_{eff_2}.

- The intrinsic gain of this amplifier is: $A_v = -g_m \cdot r_o$

- In general, we have:
 \[g_m \propto \frac{W}{L}, \quad r_o \propto \frac{L}{W} \rightarrow A_v \propto L \]

- But since current in this case is roughly constant:
 \[g_m = \sqrt{2 \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot I_D} \propto \sqrt{\frac{W}{L}}, \quad r_o = \frac{1}{\lambda \cdot I_D} \propto L \rightarrow A_v \propto \sqrt{LW} \]
Triode Load

• We recognize that this is a common source configuration with M2 being the load. Recall that if M_2 is in deep triode, i.e., $V_{SD} \ll 2(V_{SG} - |V_{TH}|)$, it behaves like a resistor.

If $V_{SD} \ll 2(V_{SG} - |V_{TH}|)$:

$$R_{ON2} = \frac{1}{\mu p \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{SG} - |V_{TH}|)} = \frac{1}{\mu p \cdot C_{ox} \cdot \frac{W}{L} \cdot (V_{dd} - V_b - |V_{TH}|)}$$

• V_b should be low enough to make sure that M_2 is in deep triode region and usually requires additional complexity to be precisely generated.

• R_{ON2} depends on μ_p, C_{ox}, and V_{TH} which in turn depend on the technology being used.

• In general, this amplifier with triode load is difficult to design and use!

• However, compared to diode-connected load, triode load consumes less headroom:

$$M_1: V_{OUT} > V_{GS1} - V_{TH} = V_{eff1}, \quad M_2: V_{OUT} \approx V_{DD}$$
The following circuit shows a common source configuration with a degeneration resistor in the source.

We will show that this configuration makes the common source amplifier more linear.

We will use two methods to derive the gain of this circuit:
1. Small-signal Model
2. Using the following Lemma

Lemma:
In linear systems, the voltage gain is equal to $-G_m R_{out}$.

Source Degeneration - 1
Gain – Method 1: Small Signal Model

\[i_{OUT} = g_m \cdot v_1 + g_{mb} \cdot v_{BS} + \frac{v_{OUT} - i_{OUT} \cdot R_S}{r_O}, \quad i_{OUT} = \frac{-v_{OUT}}{R_D} \]

\[v_1 = v_{IN} - i_{OUT} \cdot R_S = v_{IN} + \frac{v_{OUT}}{R_D} \cdot R_S, \quad v_{BS} = -i_{OUT} \cdot R_S = \frac{v_{OUT}}{R_D} \cdot R_S \]

\[\frac{-v_{OUT}}{R_D} = g_m \cdot \left(v_{IN} + \frac{v_{OUT}}{R_D} \cdot R_S \right) + g_{mb} \cdot \left(\frac{v_{OUT}}{R_D} \cdot R_S \right) + \frac{v_{OUT} + \frac{v_{OUT}}{R_D} \cdot R_S}{r_O} \]

\[v_{OUT} \cdot \left(1 + g_m \cdot R_S + g_{mb} \cdot R_S + \frac{R_D}{r_O} + \frac{R_S}{r_O} \right) = -g_m \cdot v_{IN} \cdot R_D \]

\[A_v = \frac{v_{OUT}}{v_{IN}} = \frac{-g_m \cdot r_O \cdot R_D}{r_O \cdot \left(1 + (g_m + g_{mb}) \cdot R_S \right) + R_D + R_S} \]
Source Degeneration - 3

Gain – Method 2: Lemma

- The Lemma states that in linear systems, the voltage gain is equal to \(-G_m R_{out}\). So we need to find \(G_m\) and \(R_{out}\).

1. \(G_m\):
 Recall that the equivalent transconductance of the above circuit is:

 \[G_m = \frac{i_{OUT}}{v_{IN}} = \frac{g_m \cdot r_O}{r_O + r_O \cdot (g_m \cdot R_S + g_{mb} \cdot R_S) + R_S} = \frac{g_m \cdot r_O}{r_O[1+(g_m + g_{mb}) \cdot R_S] + R_S} \]
Gain – Method 2: Lemma (Continued)

1. \(R_{\text{OUT}} \):

 We use the following small signal model to derive the small signal output impedance of this amplifier:

 \[
 v_i = -i_X \cdot R_S, \quad v_{BS} = -i_X \cdot R_S \n \]

 \[
 v_X = i_X \cdot R_S + (i_X - g_m \cdot v_i - g_{mb} \cdot v_{BS}) \cdot r_O
 \]

 \[
 = i_X \cdot R_S + (i_X - g_m \cdot (-i_X \cdot R_S) - g_{mb} \cdot (-i_X \cdot R_S)) \cdot r_O
 \]

 \[
 R_X = \frac{v_X}{i_X} = R_S + (1 + g_m \cdot R_S + g_{mb} \cdot R_S) \cdot r_O = R_S + (1 + (g_m + g_{mb}) \cdot R_S) \cdot r_O
 \]

 \[
 R_{\text{OUT}} = R_X \parallel R_D = \left(\frac{R_S + (1 + (g_m + g_{mb}) \cdot R_S) \cdot r_O}{R_S + (1 + (g_m + g_{mb}) \cdot R_S) \cdot r_O} \right) \cdot R_D
 \]

 • Since typically \(r_O \gg R_S \):

 \[
 R_X = R_S + (1 + (g_m + g_{mb}) \cdot R_S) \cdot r_O = (1 + (g_m + g_{mb}) \cdot R_S) \cdot r_O = (g_m + g_{mb}) \cdot R_S \cdot r_O
 \]
Gain – Method 2: Lemma (Continued)

\[G_m = \frac{g_m \cdot r_O}{r_O (1 + (g_m + g_{mb}) \cdot R_S) + R_S} \]

\[R_{OUT} = \frac{(R_S + (1 + (g_m + g_{mb}) \cdot R_S) \cdot r_O) \cdot R_D}{R_S + (1 + (g_m + g_{mb}) \cdot R_S) \cdot r_O + R_D} \]

\[A_v = -G_m \cdot R_{OUT} = -\frac{g_m \cdot r_O}{r_O + r_O \cdot (g_m \cdot R_S + g_{mb} \cdot R_S) + R_S \cdot r_O + (1 + g_m \cdot r_O + g_{mb} \cdot r_O) \cdot R_S} \cdot R_D \]

\[= \frac{-g_m \cdot r_O \cdot R_D}{r_O + (1 + (g_m + g_{mb}) \cdot R_S) \cdot r_O + R_D} \]
If we ignore body effect and channel-length modulation:

Method 1 – Small-signal Model:

\[
\begin{align*}
 v_{\text{OUT}} &= -g_m \cdot v_{\text{GS}} \cdot R_D, \\
 v_{\text{GS}} &= v_{\text{IN}} - g_m \cdot v_{\text{GS}} \cdot R_S \\
 v_{\text{GS}} &= v_{\text{IN}} \cdot \frac{1}{1 + g_m \cdot R_S} \\
 A_v &= \frac{v_{\text{OUT}}}{v_{\text{IN}}} = \frac{-g_m \cdot R_D}{1 + g_m \cdot R_S}
\end{align*}
\]

Method 2 – Taking limits:

\[
\begin{align*}
 G_m &= \lim_{r_o \to \infty, g_{mb} \to 0} \frac{g_m \cdot r_o}{r_o + r_o \cdot (g_m \cdot R_S + g_{mb} \cdot R_S) + R_S} = \frac{g_m}{1 + (g_m + g_{mb}) \cdot R_S} = \frac{g_m}{1 + g_m \cdot R_S} \\
 R_{\text{OUT}} &= \lim_{r_o \to \infty, g_{mb} \to 0} \frac{(r_o + (1 + g_m \cdot r_o + g_{mb} \cdot r_o) \cdot R_S) \cdot R_D}{r_o + (1 + g_m \cdot r_o + g_{mb} \cdot r_o) \cdot R_S + R_D} = \frac{(1 + (g_m + g_{mb}) \cdot R_S) \cdot R_D}{1 + (g_m + g_{mb}) \cdot R_S} = R_D \\
 A_v &= -G_m \cdot R_{\text{OUT}} = \frac{-g_m \cdot R_D}{1 + g_m \cdot R_S}
\end{align*}
\]
Obtaining G_m and R_{out} directly assuming $\lambda=\gamma=0$:

1. **G_m**:

 \[i_D = g_m \cdot v_{GS} \quad , \quad v_{GS} = v_{IN} - g_m \cdot v_{GS} \cdot R_S \]

 \[v_{GS} = v_{IN} \cdot \frac{1}{1 + g_m \cdot R_S} \quad \rightarrow \quad G_m = \frac{i_D}{v_{IN}} = \frac{g_m}{1 + g_m \cdot R_S} \]

2. **R_{OUT}**:

 \[v_{GS} = -g_m \cdot v_{GS} \cdot R_S \quad \rightarrow \quad v_{GS} = 0 \]

 \[i_X = \frac{v_X}{R_D} + g_m \cdot v_{GS} = \frac{v_X}{R_D} \]

 \[R_{OUT} = \frac{v_X}{i_X} = R_D \]

 \[A_v = -G_m \cdot R_{OUT} = \frac{-g_m \cdot R_D}{1 + g_m \cdot R_S} \]
• If we ignore body effect and channel-length modulation:

\[G_m = \frac{g_m}{1 + g_m \cdot R_S} \quad , \quad R_{OUT} = R_D \quad \rightarrow \quad A_v = \frac{-g_m \cdot R_D}{1 + g_m \cdot R_S} \]

• We Notice that as \(R_S \) increases \(G_m \) becomes less dependent on \(g_m \):

\[\lim_{R_S \to \infty} G_m = \lim_{R_S \to \infty} \frac{g_m}{1 + g_m \cdot R_S} = \frac{1}{R_S} \]

• That is for large \(R_S \):

\[G_m = \frac{i_{OUT}}{v_{IN}} \approx \frac{1}{R_S} \quad \rightarrow \quad v_{IN} \approx R_S \cdot i_{OUT} \]

• Therefore, the amplifier becomes more linear when \(R_S \) is large enough. Intuitively, an increase in \(v_{IN} \) tend to increase \(I_D \), however, the voltage drop across \(R_S \) also increases. This makes the amplifier less sensitive to input changes, and makes \(I_D \) smoother!

• The linearization is achieved at the cost of losing gain and voltage headroom.
• We can manipulate the gain equation so the numerator is the resistance seen at the drain node, and the denominator is the resistance in the source path.

\[
A_v = \frac{-g_m \cdot R_D}{1 + g_m \cdot R_s} = \frac{-R_D}{\frac{1}{g_m} + R_s}
\]

• The following are \(I_D \) and \(g_m \) of a transistor without \(R_S \).

\[
\begin{align*}
I_D & \text{ vs. } V_{TH} \\
g_m & \text{ vs. } V_{TH}
\end{align*}
\]

(a)

• \(I_D \) and \(g_m \) of a transistor considering \(R_S \) are:
 • When \(I_D \) is small such that \(R_S \cdot g_m \ll 1 \), \(G_m \approx g_m \).
 • When \(I_D \) is large such that \(R_S \cdot g_m \gg 1 \), \(G_m \approx 1/R_S \).
Alternative Method to Find the Output-Resistance of a Degenerated Common-Source Amplifier
Why Buffers?

- Common Source amplifiers needed a large load impedance to provide a large gain.

- If the load is small but we need a large gain (can you think of an example?) a **buffer** is used.

- Source-follower (common-drain) amplifiers can be used as buffers.

\[R_{\text{IN}} = \infty \quad , \quad R_{\text{OUT}} = 0 \quad , \quad A_r = 1 \]

Ideal Buffer:

1. \(R_{\text{IN}} = \infty \): the input current is zero; it doesn’t load the previous stage.
2. \(R_{\text{OUT}} = 0 \): No voltage drop at the output; behaves like a voltage source.
Resistive Load - 1

- We will examine the Source follower amplifier with two different loads:
 1. Resistive Load
 2. Current Source Load

 - **Resistive Load:**
 - As shown below the output (source voltage) will follow the input (gate voltage). We will analyze the following circuit using large-signal and small-signal analysis.
Large Signal Analysis:

- The relationship between \(V_{\text{IN}} \) and \(V_{\text{OUT}} \) is:

\[
V_{\text{OUT}} = R_s \cdot I_D = \frac{1}{2} \mu_n C_{\text{ox}} \frac{W}{L} \left(V_{\text{GS}} - V_{\text{TH}} \right)^2 \cdot \left(1 + \lambda \cdot V_{\text{DS}} \right) \cdot R_s
\]

\[
V_{\text{OUT}} = \frac{1}{2} \mu_n C_{\text{ox}} \frac{W}{L} \left(V_{\text{IN}} - V_{\text{OUT}} - V_{\text{TH}} \right)^2 \cdot \left(1 + \lambda \cdot V_{\text{DD}} - \lambda \cdot V_{\text{OUT}} \right) \cdot R_s
\]

- Differentiate with respect to \(V_{\text{IN}} \):

\[
\frac{\partial V_{\text{OUT}}}{\partial V_{\text{IN}}} = \frac{\mu_n C_{\text{ox}} \frac{W}{L} \left(V_{\text{IN}} - V_{\text{OUT}} - V_{\text{TH}} \right) \cdot \left(1 - \frac{\partial V_{\text{OUT}}}{\partial V_{\text{IN}}} - \frac{\partial V_{\text{TH}}}{\partial V_{\text{IN}}} \right) \cdot \left(1 + \lambda \cdot V_{\text{DS}} \right) \cdot R_s
\]

\[
+ \frac{1}{2} \mu_n C_{\text{ox}} \frac{W}{L} \left(V_{\text{GS}} - V_{\text{TH}} \right)^2 \cdot R_s \cdot (-\lambda) \cdot \frac{\partial V_{\text{OUT}}}{\partial V_{\text{IN}}}
\]

- Need to find the derivative of \(V_{\text{TH}} \) with respect to \(V_{\text{IN}} \):

\[
V_{\text{TH}} = V_{\text{TH}_0} + \gamma \cdot \left(\sqrt{2 \cdot \Phi_F + V_{\text{SB}}} - \sqrt{2 \cdot \Phi_F} \right) \quad , \quad V_{\text{SB}} = V_{\text{OUT}}
\]

\[
\frac{\partial V_{\text{TH}}}{\partial V_{\text{IN}}} = \gamma \cdot \frac{\partial V_{\text{TH}}}{\partial V_{\text{OUT}}} \cdot \frac{\partial V_{\text{OUT}}}{\partial V_{\text{IN}}} = 2 \sqrt{2 \cdot \Phi_F + V_{\text{SB}}} \cdot \frac{\gamma}{2 \sqrt{2 \cdot \Phi_F}} \cdot \frac{\partial V_{\text{OUT}}}{\partial V_{\text{IN}}} = \eta \cdot \frac{\partial V_{\text{OUT}}}{\partial V_{\text{IN}}}
\]
Large Signal Analysis (Continued):

- The small signal gain can be found:

\[
\frac{\partial V_{OUT}}{\partial V_{IN}} \cdot \left(1 + g_m \cdot R_S + g_m \cdot \eta \cdot R_S + I_D \cdot R_S \cdot \lambda \right) = g_m \cdot R_S
\]

\[
A_v = \frac{\partial V_{OUT}}{\partial V_{IN}} = \frac{g_m \cdot R_S}{1 + g_m \cdot R_S + g_{mb} \cdot R_S + \frac{R_S}{r_a}} = \frac{g_m \cdot R_S}{1 + \left(g_m + g_{mb} + \frac{1}{r_a}\right) \cdot R_S}
\]

- If channel-length modulation is ignored \((r_o=\infty)\) we get:

\[
A_v = \frac{\partial V_{OUT}}{\partial V_{IN}} = \frac{g_m \cdot R_S}{1 + \left(g_m + g_{mb}\right) \cdot R_S}
\]
Resistive Load - 4

Small Signal Analysis:
• We get the following small signal model:

\[v_{OUT} = (g_m \cdot v_{GS} + g_{mb} \cdot v_{BS}) \cdot R_s \cdot R_o, \quad v_{GS} = v_{IN} - v_{OUT}, \quad v_{BS} = -v_{OUT} \]

\[v_{OUT} = \left(g_m \cdot (v_{IN} - v_{OUT}) + g_{mb} \cdot (-v_{OUT}) \right) \cdot \frac{R_s \cdot R_o}{R_s + R_o} \]

\[v_{OUT} \cdot (R_s + R_o + g_m \cdot R_s \cdot R_o + g_{mb} \cdot R_s \cdot R_o) = g_m \cdot R_s \cdot R_o \cdot v_{IN} \]

\[A_v = \frac{v_{OUT}}{v_{IN}} = \frac{g_m \cdot R_s \cdot R_o}{R_s + R_o + g_m \cdot R_s \cdot R_o + g_{mb} \cdot R_s \cdot R_o} = \frac{g_m \cdot R_s \cdot R_o}{R_s \cdot (1 + g_m \cdot R_o + g_{mb} \cdot R_o) + R_o} \]

\[A_v = \frac{g_m \cdot R_s}{R_s \cdot \left(\frac{1}{r_o} + g_m + g_{mb} \right) + 1} \]
Resistive Load - 5

- Graph of the gain of a source-follower amplifier:

1. M_1 never enters the triode region as long as $V_{IN} < V_{DD}$.
2. Gain is zero if V_{IN} is less than V_{TH} (because g_m is 0).
3. As V_{IN} increases, g_m increases and the gain becomes:
 \[A_v \approx \frac{g_m}{g_m + g_{mb}} = \frac{1}{1 + \eta} \]
4. As V_{OUT} increases, η decreases, and therefore, the maximum gain increases.
5. Even if $R_S = \infty$, the gain is less than one:
 \[A_v \approx \frac{g_m}{g_m + g_{mb} + \frac{1}{r}} < 1 \]
6. Gain depends heavily on the DC level of the input (nonlinear amplifier).
Current Source Load

- In a source follower with a resistive load, the drain current depends on the DC level of V_{IN}, which makes the amplifier highly nonlinear.

- To avoid this problem, we can use a current source as the load.

- The output resistance is:
 \[
 R_{M_1} = r_{o1} \left\| \frac{1}{g_{m1}} \right\| \frac{1}{g_{mib1}}, \quad R_{f1} = r_{o2} \rightarrow R_{OUT} = R_{M1} \parallel R_{f1} = r_{o1} \left\| \frac{1}{g_{m1}} \right\| \frac{1}{g_{mib1}}
 \]

- If channel length modulation is ignored ($r_{o1} = r_{o2} = \infty$):
 \[
 R_{OUT} = \infty \left\| \frac{1}{g_{m1}} \right\| \frac{1}{g_{mib1}} \parallel \infty = \frac{1}{g_{m1}} \left\| \frac{1}{g_{mib1}} \right\| \infty = \frac{1}{g_{m1} + g_{mib1}}
 \]

- Note that the body effect reduces the output impedance of the source follower amplifiers.
Voltage Division in Source Followers - 1

- When calculating output resistance seen at the source of M_1, i.e., R_{M1}, we force v_{IN} to zero and find the output impedance:

$$R_{M1} = r_{oi} \left| \frac{1}{g_{m1}} \right| \frac{1}{g_{mB1}}$$

- However, if we were to find the gain of the amplifier, we would not suppress v_{IN}.
- Here, we would like to find an equivalent circuit of M_1, from which we can find the gain.
- Consider the small-signal model of M_1:
Voltage Division in Source Followers - 2

- For small-signal analysis $v_{BS} = v_{DS}$, so $g_{mb}v_{BS}$ dependant current source can be replaced by a resistor ($1/g_{mb}$) between source and drain.
- Note that, when looking at the circuit from the source terminal, we can replace the $g_m v_{GS}$ dependant current source with a resistor (of value $1/g_m$) between source and gate.

![Diagram of voltage division in source followers]

- Simplified circuit:
Example:

- Find the gain of a source follower amplifier with a resistive load.
- We draw the small signal model of this amplifier as shown below to get:

\[
v_{OUT} = \frac{\frac{1}{g_{mb}} \cdot v_{IN}}{\frac{1}{g_{mb}} + \frac{1}{g_m}} \rightarrow A_v = \frac{v_{OUT}}{v_{IN}} = \frac{\frac{1}{g_{mb}} \cdot v_{OUT}}{\frac{1}{g_{mb}} + \frac{1}{g_m}}
\]

- We can show that this is equal to what we obtained before:

\[
A_v = \frac{1}{\frac{1}{g_{mb}} + \frac{1}{g_m}} = \frac{\frac{R_S \cdot r_o}{R_S + r_o + R_S \cdot r_o \cdot g_{mb}} + \frac{1}{g_m}}{\frac{R_S \cdot r_o}{R_S + r_o + R_S \cdot r_o \cdot g_{mb}} + \frac{1}{g_m}} = \frac{R_S \cdot r_o \cdot g_m}{R_S + r_o + R_S \cdot r_o \cdot g_{mb} + R_S \cdot r_o \cdot g_m}
\]
Voltage Division in Source Followers - 4

Example:
- Find the gain of a source follower amplifier with a current source load.
- Small-signal model of this amplifier is:

\[V_{OUT} = \frac{r_{02}}{r_{01}} \frac{1}{g_{mb1}} \cdot V_{IN} \rightarrow A_v = \frac{V_{OUT}}{V_{IN}} = \frac{r_{02}}{r_{01}} \frac{1}{g_{mb1}} \]

- If we ignore channel length modulation:

\[V_{OUT} = \frac{g_{mb1}}{1 + \frac{1}{g_{mb1}}} \cdot V_{IN} \rightarrow A_v = \frac{V_{OUT}}{V_{IN}} = \frac{g_{mb1}}{1 + \frac{1}{g_{mb1}}} \]
Example:
- Find the gain of a source follower amplifier with a resistive load and biased with a current source.
- Small-signal model of this amplifier is:

\[
\begin{align*}
V_{OUT} &= \frac{r_{o2} \parallel R_L \parallel r_{o1} \parallel \frac{1}{g_{mb1}}}{r_{o2} \parallel R_L \parallel r_{o1} \parallel \frac{1}{g_{mb1}} + \frac{1}{g_{m1}}} \cdot V_{IN} \\
A_v &= \frac{V_{OUT}}{V_{IN}} = \frac{r_{o2} \parallel R_L \parallel r_{o1} \parallel \frac{1}{g_{mb1}}}{r_{o2} \parallel R_L \parallel r_{o1} \parallel \frac{1}{g_{mb1}} + \frac{1}{g_{m1}}}
\end{align*}
\]
Example:

- Find the gain of a source follower amplifier with a resistive load.

- Small-signal model of this amplifier is:

\[
\begin{align*}
V_{\text{OUT}} &= \frac{r_{o2}}{r_{o1}} \cdot \frac{1}{g_{mb1}} \left(\frac{1}{g_{m2}} + \frac{1}{g_{mb2}} \right) \cdot V_{\text{IN}} \\
A_v &= \frac{V_{\text{OUT}}}{V_{\text{IN}}} = \frac{r_{o2}}{r_{o1}} \cdot \frac{1}{g_{mb1}} \left(\frac{1}{g_{m2}} + \frac{1}{g_{mb2}} + \frac{1}{g_{m1}} \right)
\end{align*}
\]
Advantages and Disadvantages - 1

1. Source followers have typically small output impedance.
2. Source followers have large input impedance.
3. Source followers have poor driving capabilities.
4. Source followers are nonlinear. This nonlinearity is caused by:
 - Variable bias current which can be resolved if we use a current source to bias the source follower.
 - Body effect; i.e., dependence of V_{TH} on the source (output) voltage. This can be resolved for PMOS devices, because each PMOS transistor can have a separate n-well. However, because of low mobility, PMOS devices have higher output impedance. (In more advanced technologies, NMOS in a separate p-well, can be implemented that potentially has no body effect)
 - Dependence of r_o on V_{DS} in submicron devices.
Advantages and Disadvantages - 2

5. Source followers have voltage headroom limitations due to level shift. Consider this circuit (a common source followed by a source follower):

- If we only consider the common source stage, $V_X > V_{GS1} - V_{TH1}$.
- If we only consider the source follower stage, $V_X > V_{GS3} - V_{TH3} + V_{GS2}$.
- Therefore, adding the source follower will reduce the allowable voltage swing at node X.
- The DC value of V_{OUT} is V_{GS2} lower than the DC value of V_X.
Common-Gate

\[A_v = (g_m + g_{mb})R_D = g_m(1 + \eta)R_D \]
Common-Gate

\[A_v = \frac{(g_m + g_{mb})r_o + 1}{r_o + (g_m + g_{mb})r_o R_S + R_S + R_D} \]
Common-Gate

\[A_v = \frac{(g_m + g_{mb})r_o + 1}{r_o + (g_m + g_{mb})r_o R_S + R_S + R_D} \quad R_D \]

for \(R_S = 0 \): \(A_v \approx (g_m + g_{mb})(r_o \parallel R_D) \)
Common-Gate Input Impedance

\[R_{in} = \frac{R_2 + r_o}{1 + (g_m + g_{mb})r_o} = \frac{R_2}{1 + (g_m + g_{mb})r_o} + \frac{r_o}{1 + (g_m + g_{mb})r_o} \]

\[R_{in} = \frac{R_2}{1 + (g_m + g_{mb})r_o} + (r_o \parallel \frac{1}{g_m} \parallel \frac{1}{g_{mb}}) \]
Common-Gate Input Impedance

- Input impedance of common-gate stage is relatively low only if R_D is small

- Example: Find the input impedance of the following circuit.
Example

- Calculate the voltage gain of the following circuit:

\[A_v = 1 + (g_m + g_{mb}) r_o \]
Common-Gate Output Impedance

\[R_{out} = \left\{ \left[1 + (g_m + g_{mb})R_S \right]r_o + R_S \right\} \parallel R_D \]
Example

- Compare the gain of the following two circuits ($\lambda=\gamma=0$ and 50Ω transmission lines!)
Cascode Stage

- Cascade of a common-source stage and a common-gate stage is called a “cascode” stage.

\[
R_{out} = \left\{ \left[1 + (g_{m2} + g_{mb2})r_{o1} \right]r_{o2} + r_{o1} \right\} \parallel R_D
\]
\[
\approx \left[(g_{m2} + g_{mb2})r_{o1}r_{o2} \right] \parallel R_D
\]
\[
A_v \approx g_{m1} \left\{ [r_{o1}r_{o2}(g_{m2} + g_{mb2})] \parallel R_D \right\}
\]
Cascode Stage

\[A_V \approx g_{m1} \left[(r_{o1} r_{o2} g_{m2}) \parallel (r_{o3} r_{o4} g_{m3}) \right] \]
Output Impedance Comparison

Set 3: Single-Stage Amplifiers
Shielding Property

(a) Analog System

(b) Single-Stage Amplifiers
Triple Cascode

- What is the output resistance of this circuit?

- Problem?
Folded Cascode

(a) $V_{in} \rightarrow g_{m1} V_{in} \rightarrow M_1 \rightarrow M_2 \rightarrow V_{b} \rightarrow V_{out} = V_{DD}$

(b) $V_{in} \rightarrow V_{out} = V_{DD}$

(c) $V_{in} \rightarrow I_1 \rightarrow M_2 \rightarrow V_{out} = V_{DD}$
Output Impedance of a Folded Cascode

\[R_{out} = [1 + (g_{m2} + g_{mb2})r_{o2}] (r_{o1} \parallel r_{o3}) + r_{o2} \]