Chapter 9
Normal Subgroups and Factor Groups

- Normal Subgroups
- Factor Groups
- Applications of Factor Groups
- Internal Direct Products
Normal Subgroups

As we saw in Chapter 7, if G is a group and H is a subgroup of G, it is not always true that $aH = Ha$ for all a in G. In this chapter, we study a type of subgroups H for which $aH = Ha$ for all a in G. Such subgroups are called Normal subgroups.

Definition (Normal Subgroup)

A subgroup H of a group G is called a normal subgroup of G if $aH = Ha$ for all a in G. We denote this by $H 	riangleleft G$.

- Note that if $aH = Ha$, it is not true that $ah = ha$ for all $a \in G$ and $h \in H$. But
- $ah = h_1 a$ and $ha = ah_2$ for some $h_1, h_2 \in H$.

Ahmed EL-Mabhouh

Abstract Algebra I
Theorem (1, Normal Subgroup Test)

A subgroup H of G is normal in G if and only if $xHx^{-1} \subseteq H$

Proof.

If $H \triangleleft G$, then $xH = Hx$ for any $x \in G$. Therefore, $H = xHx^{-1}$, and so $xHx^{-1} \subseteq H$ for all x in G.

Conversely, assume $xHx^{-1} \subseteq H$ for all x in G. We want to show $aH = Ha$ for all $a \in G$.

Let $a = x$, we have $aHa^{-1} \subseteq H$ and so $aH \subseteq Ha$ (we multiply on the right by a.)

Let $a^{-1} = x$, we have $a^{-1}H(a^{-1})^{-1} = a^{-1}Ha \subseteq H$ and so $Ha \subseteq aH$ (we multiply on the left by a.)

Therefore, $aH = Ha$ for all $a \in G$ and so $H \triangleleft G$.
Example (1)

Every subgroup of an Abelian group is normal.

Example (2)

The center $Z(G)$ is a normal subgroup of G, WHY?

Example (3)

The group $SL(2, \mathbb{R})$ of 2×2 matrices with determinant 1 is a normal subgroup of $GL(2, \mathbb{R})$.

Proof.

We show that $A \begin{bmatrix} SL(2, \mathbb{R}) \end{bmatrix} A^{-1} \subseteq SL(2, \mathbb{R})$. For any $B \in SL(2, \mathbb{R})$, we have

$\det(ABA^{-1}) = \det(A) \det(B) \det(A^{-1}) = \det(B) = 1$.

Therefore, $ABA^{-1} \in SL(2, \mathbb{R})$. That is $A \begin{bmatrix} SL(2, \mathbb{R}) \end{bmatrix} A^{-1} \subseteq SL(2, \mathbb{R})$. Hence, $SL(2, \mathbb{R}) \triangleleft GL(2, \mathbb{R})$. \qed
Example (4)
The alternating group A_n of even permutations is a normal subgroup of S_n. Note that $(12)(123) \neq (123)(12)$ but $(12)(123) = (132)(12)$. $\alpha A_n = A_n\alpha$ for any $\alpha \in S_n$.

Example (5)
The subgroup of rotations R in D_n is normal in D_n.

Proof.
For any rotation r and any reflection f, we have $fr = r^{-1}f$, whereas for any rotations r and r', we have $rr' = r'r$. That means, for any $x \in D_n$, we have $xR = Rx$.

Ahmed EL-Mabhouh
Abstract Algebra I
Recall that the multiplication table for A_4 is given in the following diagram:

\[
\begin{array}{cccccccccccc}
\alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 & \alpha_8 & \alpha_9 & \alpha_{10} & \alpha_{11} & \alpha_{12} \\
(1) = \alpha_1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
(12)(34) = \alpha_2 & 2 & 1 & 4 & 3 & 6 & 5 & 8 & 7 & 10 & 9 & 12 & 11 \\
(13)(24) = \alpha_3 & 3 & 4 & 1 & 2 & 7 & 8 & 5 & 6 & 11 & 12 & 9 & 10 \\
(14)(23) = \alpha_4 & 4 & 3 & 2 & 1 & 8 & 7 & 6 & 5 & 12 & 11 & 10 & 9 \\
(123) = \alpha_5 & 5 & 8 & 6 & 7 & 9 & 12 & 10 & 11 & 1 & 4 & 2 & 3 \\
(243) = \alpha_6 & 6 & 7 & 5 & 8 & 10 & 11 & 9 & 12 & 2 & 3 & 1 & 4 \\
(142) = \alpha_7 & 7 & 6 & 8 & 5 & 11 & 10 & 12 & 9 & 3 & 2 & 4 & 1 \\
(134) = \alpha_8 & 8 & 5 & 7 & 6 & 12 & 9 & 11 & 10 & 4 & 1 & 3 & 2 \\
(132) = \alpha_9 & 9 & 11 & 12 & 10 & 1 & 3 & 4 & 2 & 5 & 7 & 8 & 6 \\
(143) = \alpha_{10} & 10 & 12 & 11 & 9 & 2 & 4 & 3 & 1 & 6 & 8 & 7 & 5 \\
(234) = \alpha_{11} & 11 & 9 & 10 & 12 & 3 & 1 & 2 & 4 & 7 & 5 & 6 & 8 \\
(124) = \alpha_{12} & 12 & 10 & 9 & 11 & 4 & 2 & 1 & 3 & 8 & 6 & 5 & 7 \\
\end{array}
\]

$H = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ and $K = \{\alpha_1, \alpha_5, \alpha_9\}$ are subgroups of A_4. Why $H \triangleleft A_4$ but $H \not\triangleleft A_4$?

Note that the only subgroup of order 4 is H since any element not in H has order 3. Also $\beta H \beta^{-1}$ is a subgroup of order 4, and so $\beta H \beta^{-1} = H$. While $\alpha_2 \alpha_5 \alpha_2^{-1} = \alpha_7 \notin K$. Therefore, $\alpha_2 K \alpha_2^{-1} \notin K$
Theorem (2, Factor Group)

Let G be a group and let H be a normal subgroup of G. The set

$$G/H = \{aH | a \in G\}$$

is a group under the operation $(aH)(bH) = abH$

Proof.

- First, we show that multiplication is well defined.
- Let $aH = a'H$ and $bH = b'H$, we show $aHbH = a'Hb'H$. That is, $abH = a'b'H$
- Since $aH = a'H$ and $bH = b'H$, then $a' = ah_1$ and $b' = bh_2$ for some h_1, h_2 in H
- Therefore,

$$a'b'H = ah_1bh_2H = ah_1bH = ah_1Hb^2 = aHb = abH$$

(Since $H \triangleleft G$, we have $bH = Hb$)
Proof.

- For associativity,
 \[aH(bHcH) = aH(bcH) = a(bc)H = (ab)cH = (aHbH)cH. \]

- The identity is \(eH = H \) since for each \(aH \) we have
 \(eHaH = eaH = aH. \)

- The inverse of \(aH \) is \((aH)^{-1} = a^{-1}H \) since
 \[aHa^{-1}H = aa^{-1}H = eH = H. \]

- Therefore, \(G/H \) is a group.

The group \(G/H \) is called the factor group of \(G \) by \(H \) or
the quotient group of \(G \) by \(H \).
Example (6)

Let $G = \mathbb{Z}$ and $H = 4\mathbb{Z} = \{0, \pm 4, \pm 8, \ldots\}$. Since \mathbb{Z} is an Abelian group, then $4\mathbb{Z} \triangleleft \mathbb{Z}$. So

$$\mathbb{Z}/4\mathbb{Z} = \{0 + 4\mathbb{Z}, 1 + 4\mathbb{Z}, 2 + 4\mathbb{Z}, 3 + 4\mathbb{Z}\}$$

is a group where the multiplication table is given by:

<table>
<thead>
<tr>
<th></th>
<th>$0 + 4\mathbb{Z}$</th>
<th>$1 + 4\mathbb{Z}$</th>
<th>$2 + 4\mathbb{Z}$</th>
<th>$3 + 4\mathbb{Z}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 + 4\mathbb{Z}$</td>
<td>$0 + 4\mathbb{Z}$</td>
<td>$1 + 4\mathbb{Z}$</td>
<td>$2 + 4\mathbb{Z}$</td>
<td>$3 + 4\mathbb{Z}$</td>
</tr>
<tr>
<td>$1 + 4\mathbb{Z}$</td>
<td>$1 + 4\mathbb{Z}$</td>
<td>$2 + 4\mathbb{Z}$</td>
<td>$3 + 4\mathbb{Z}$</td>
<td>$0 + 4\mathbb{Z}$</td>
</tr>
<tr>
<td>$2 + 4\mathbb{Z}$</td>
<td>$2 + 4\mathbb{Z}$</td>
<td>$3 + 4\mathbb{Z}$</td>
<td>$0 + 4\mathbb{Z}$</td>
<td>$1 + 4\mathbb{Z}$</td>
</tr>
<tr>
<td>$3 + 4\mathbb{Z}$</td>
<td>$3 + 4\mathbb{Z}$</td>
<td>$0 + 4\mathbb{Z}$</td>
<td>$1 + 4\mathbb{Z}$</td>
<td>$2 + 4\mathbb{Z}$</td>
</tr>
</tbody>
</table>

Note that $|\mathbb{Z}/4\mathbb{Z}| = 4$ and $|1 + 4\mathbb{Z}| = 4$, so $\mathbb{Z}/4\mathbb{Z}$ is a cyclic group of order 4 and so $\mathbb{Z}/4\mathbb{Z} \cong \mathbb{Z}_4$.

Notice the similarity of multiplication tables of both $\mathbb{Z}/4\mathbb{Z}$ and \mathbb{Z}_4.

Ahmed EL-Mabhouh Abstract Algebra I
Example (7)

Let $G = \mathbb{Z}_{18}$ and let $H = \langle 6 \rangle = \{0, 6, 12\}$
List down all distinct elements of G/H
How addition is performed?
Is G/H cyclic?

Proof.
Example (8)

Let \(\mathcal{K} = \{R_0, R_{180}\} \), then the factor group is \(D_4/\mathcal{K} = \{\mathcal{K}, R_{90}\mathcal{K}, H\mathcal{K}, D\mathcal{K}\} \) where

\[
R_0\mathcal{K} = \mathcal{K},
R_{90}\mathcal{K} = \{R_{90}, R_{270}\},
V\mathcal{K} = \{V, H\},
D\mathcal{K} = \{D, D'\},
\]

Since \(|D_4/\mathcal{K}| = 4 \), then \(D_4/\mathcal{K} \cong \mathbb{Z}_4 \) or \(D_4/\mathcal{K} \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \).

Decide which one.
the following table shows how a factor group of G is related to G itself.

<table>
<thead>
<tr>
<th></th>
<th>R_0</th>
<th>R_{180}</th>
<th>R_{90}</th>
<th>R_{270}</th>
<th>H</th>
<th>V</th>
<th>D</th>
<th>D'</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0</td>
<td>R_0</td>
<td>R_{180}</td>
<td>R_{90}</td>
<td>R_{270}</td>
<td>H</td>
<td>V</td>
<td>D</td>
<td>D'</td>
</tr>
<tr>
<td>R_{180}</td>
<td>R_{180}</td>
<td>R_0</td>
<td>R_{270}</td>
<td>R_{90}</td>
<td>V</td>
<td>H</td>
<td>D'</td>
<td>D</td>
</tr>
<tr>
<td>R_{90}</td>
<td>R_{90}</td>
<td>R_{270}</td>
<td>R_{180}</td>
<td>R_0</td>
<td>D'</td>
<td>D</td>
<td>H</td>
<td>V</td>
</tr>
<tr>
<td>R_{270}</td>
<td>R_{270}</td>
<td>R_{90}</td>
<td>R_{180}</td>
<td>R_0</td>
<td>D</td>
<td>D'</td>
<td>V</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>V</td>
<td>D</td>
<td>D'</td>
<td>R_0</td>
<td>R_{180}</td>
<td>R_{90}</td>
<td>R_{270}</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>H</td>
<td>D'</td>
<td>D</td>
<td>R_{180}</td>
<td>R_0</td>
<td>R_{270}</td>
<td>R_{90}</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D'</td>
<td>V</td>
<td>H</td>
<td>R_{270}</td>
<td>R_{90}</td>
<td>R_{0}</td>
<td>R_{180}</td>
</tr>
<tr>
<td>D'</td>
<td>D'</td>
<td>D</td>
<td>H</td>
<td>V</td>
<td>R_{180}</td>
<td>R_{0}</td>
<td>R_{0}</td>
<td>R_{180}</td>
</tr>
</tbody>
</table>
Let $H = \{1, 2, 3, 4\}$ be the normal subgroup of A_4. (Here i denotes the permutation α_i). Then $A_4/H = \{H, 5H, 9H\}$ where $H = \{1, 2, 3, 4\}$, $5H = \{5, 6, 7, 8\}$, and $9H = \{9, 10, 11, 12\}$.
Why normal is so important?
Let \(H = \{1, 5, 9\} \) which is not a normal subgroup of \(A_4 \).
(Here \(i \) denotes the permutation \(\alpha_i \)). Then the left cosets are
\(1H = H = \{1, 5, 9\} \), \(2H = \{2, 6, 10\} \), \(3H = \{3, 7, 11\} \) and
\(4H = \{4, 8, 12\} \). Look at the multiplication table

\[
\begin{array}{cccc|cccc|cccc}
 & 1 & 5 & 9 & 2 & 6 & 10 & 3 & 7 & 11 & 4 & 8 & 12 \\
1 & 1 & 5 & 9 & 2 & 6 & 10 & 3 & 7 & 11 & 4 & 8 & 12 \\
5 & 5 & 9 & 1 & 8 & 12 & 4 & 6 & 10 & 2 & 7 & 11 & 3 \\
9 & 9 & 1 & 5 & 11 & 3 & 7 & 12 & 4 & 8 & 10 & 2 & 6 \\
\end{array}
\]
Example (9)

Let
\[G = U(32) = \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31\} \]
and
\[H = U_{16}(32) = \{1, 17\}. \]

Then \(G/H \) as an Abelian group of order \(|G|/|H| = 16/2 = 8 \).

This group is isomorphic to one of the following groups:
\(\mathbb{Z}_8 \), \(\mathbb{Z}_4 \oplus \mathbb{Z}_2 \), or \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \). Decide which one.

Proof.

- The distinct elements of \(G/H \) are:

 \[1H = \{1, 17\}, \ 3H = \{3, 19\}, \ 5H = \{5, 21\}, \ 7H = \{7, 23\} \]

 \[9H = \{9, 25\}, \ 11H = \{11, 27\}, \ 13H = \{13, 29\}, \ 15H = \{15, 31\} \]

- Since \(|3H| = 4 \), and \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \) has no elements of order 4, then \(G/H \not\cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \).
Proof.

Since $|7H| = |9H| = 2$ then G/H has at least two elements of order 2 but \mathbb{Z}_8 has only one element of order 2, so $G/H \not\cong \mathbb{Z}_8$.

Therefore $G/H \cong \mathbb{Z}_4 \oplus \mathbb{Z}_2$.

Example (10)

Let $G = U(32)$ and $K = \{1, 15\}$. Then $|G/K| = |G|/|K| = 16/2 = 8$. This group is isomorphic to one of the following groups: \mathbb{Z}_8, $\mathbb{Z}_4 \oplus \mathbb{Z}_2$, or $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Decide which one.

Note that $|3K| = 8$.

Applications of Factor Groups

In the following example, we give another proof to show that A_4 Has No Subgroup of Order 6 using properties of factor groups.

Example (11)

Show that A_4 Has No Subgroup of Order 6.

Proof.

Assume A_4 has a subgroup H of order 6, then $|A_4 : H| = 2$, and so $H \triangleleft A_4$. Hence, $|A_4/H| = 2$ and so by Lagrange's theorem, for each $\alpha \in A_4$, we have $\alpha^2 H = (\alpha H)^2 = H$. Hence, $\alpha^2 \in H$ for all α in A_4. Back to the multiplication table of A_4, we see that we have 9 distinct elements of the form α^2 all of them are in H, which is a contradiction.
Theorem

Let G be a group and let $Z(G)$ be the center of G. If $G/Z(G)$ is cyclic, then G is Abelian.

Proof.

Assume $G/Z(G)$ is cyclic, so $G/Z(G) = \langle gZ(G) \rangle$ for some $g \in G$. Let $a, b \in G$. We show that $ab = ba$.

Since $a, b \in G$, then $aZ(G)$ and $bZ(G)$ are in $G/Z(G)$. Therefore, for some integers i, j we have

$$aZ(G) = (gZ(G))^i = g^iZ(G), \quad bZ(G) = (gZ(G))^j = g^jZ(G)$$

Thus, $a = g^i x$ for some x in $Z(G)$ and $b = g^j y$ for some y in $Z(G)$, hence

$$ab = (g^i x) (g^j y) = g^i (xg^j) y = g^i (g^j x) y$$

$$= (g^i g^j) (xy) = (g^j g^i) (yx) = (g^j y) (g^i x) = ba$$
Remarks

1. If $H \leq Z(G)$ and G/H is cyclic, then G is Abelian.

2. The contrapositive of theorem:
 If G is non-Abelian, then $G/Z(G)$ is not cyclic.

Example (12)

Let G be a non Abelian group with $|G| = pq$ where p and q are primes, then $Z(G) = \{e\}$.

Proof.
Theorem

For any group G, $G/Z(G)$ is isomorphic to $\text{Inn}(G)$.

Proof.

Let $T: G/Z(G) \to \text{Inn}(G)$ given by: $T(gZ(G)) = \phi_g$ where ϕ_g is the inner automorphism given by: $\phi_g(x) = gxg^{-1}$ for all x in G.

We show that T is an isomorphism.

- **T is well defined:** Let $gZ(G) = hZ(G)$ and we verify that $T(gZ(G)) = T(hZ(G))$ that is $\phi_g = \phi_h$.

 From $gZ(G) = hZ(G)$, we have that $h^{-1}g$ belongs to $Z(G)$. So, for all x in G, $h^{-1}gx = xh^{-1}g$. Therefore, $gxg^{-1} = hxh^{-1}$ for all x in G, and, therefore, $\phi_g = \phi_h$.

- Reversing the argument in part 1, shows that T is one-to-one, as well.

- **T is Onto**

- **T is operation-preserving,** note that $\phi_g \phi_h = \phi_{gh}$ for all g and h in G
Example (13)

Show that $\text{Inn}(D_6)$ is isomorphic to D_3

Proof.
Theorem (Cauchy’s Theorem for Abelian Groups)

Let G be a finite Abelian group and let p be a prime that divides the order of G. Then G has an element of order p.

Proof.

By the Second Principle of Mathematical Induction on $|G|$. If $|G| = 2$, it is true that G has an element of order 2. Assume the result is true for all Abelian groups with order $< |G|$. Note that G has an element of prime order, since for $x \in G$ and $x \neq e$ where $|x| = m$, let q be a prime factor of m. That is $|x| = qn$, then $|x^n| = q$.

Therefore, let x be an element of G where $|x| = q$ for some prime q. If $p = q$, we are finished; so assume that $q \neq p$.

since G is Abelian, then $H = \langle x \rangle \triangleleft G$, and so, we have the factor group $\overline{G} = G/H$ and $|\overline{G}| = |G|/q < |G|$.

since $p \neq q$, then $p \parallel |\overline{G}|$. By induction hypothesis, \overline{G} has an element say, $y \in \langle x \rangle$ with $|y \in \langle x \rangle| = p$.

By exercise 65 of this chapter, G has an element of order p.

Ahmed EL-Mabhouh
Abstract Algebra I
Internal Direct Products

Definition

We say that G is the internal direct product of H and K and write $G = H \times K$ if

1. H and K are normal subgroups of G
2. $G = HK = \{hk : h \in H, k \in K\}$
3. $H \cap K = \{e\}$

Note that $HK \cong H \oplus K$.

Figure: For the internal direct product, H and K must be subgroups of the same group.
Example (14)

Let $D_6 = H \times K$, where $H = \{ R_0, R_{120}, R_{240}, F, R_{120}F, R_{240}F \}$ and $K = \{ R_0, R_{180} \}$.

Example (15)

Let $G = S_3$, $H = \langle (123) \rangle$, and $K = \langle (12) \rangle$. Is $S_3 = H \times K$? Why?

Note that H, K are both cyclic and $|H|, |K|$ are relatively prime, so $H \oplus K$ is cyclic but S_3 is not cyclic.

Therefore, $H \oplus K \nless S_3$ although $S_3 = HK$.

This is because K is not normal.
Internal Direct Products

Definition

Let H_1, H_2, \ldots, H_n be a finite collection of subgroups of G. We say that G is the internal direct product of H_1, H_2, \ldots, H_n and write $G = H_1 \times H_2 \times \cdots \times H_n$, if

1. $H_i \triangleleft G$ for all $i = 1, 2, \ldots, n$,
2. $G = H_1 H_2 \cdots H_n = \{h_1 h_2 \cdots h_n | h_i \in H_i\}$
3. $(H_1 H_2 \cdots H_i) \cap H_{i+1} = \{e\}$ for $i = 1, 2, \ldots, n - 1$

Theorem

If a group G is the internal direct product of a finite number of subgroups H_1, H_2, \ldots, H_n, then G is isomorphic to the external direct product of H_1, H_2, \ldots, H_n. That is:

$$H_1 \times H_2 \times \cdots \times H_n \cong H_1 \oplus H_2 \oplus \cdots \oplus H_n$$
Classification of Groups of Order \(p^2 \)

Theorem

Every group of order \(p^2 \), where \(p \) is a prime, is isomorphic to \(\mathbb{Z}_{p^2} \) or \(\mathbb{Z}_p \oplus \mathbb{Z}_p \)

Corollary

If \(G \) is a group of order \(p^2 \), where \(p \) is a prime, then \(G \) is Abelian.
If \(m = n_1 n_2 \cdots n_k \), where \(\gcd(n_i, n_j) = 1 \) for \(i \neq j \), then

\[
U(m) = U_{m/n_1}(m) \times U_{m/n_2}(m) \times \cdots \times U_{m/n_k}(m)
\]

\[
\approx U(n_1) \oplus U(n_2) \oplus \cdots \oplus U(n_k)
\]

Example (16)

\[
U(105) = U(15 \cdot 7) = U_{15}(105) \times U_7(105)
\]

\[
= \{1, 16, 31, 46, 61, 76\} \times \{1, 8, 22, 29, 43, 64, 71, 92\}
\]

\[
\approx U(7) \oplus U(15)
\]

\[
U(105) = U(3 \cdot 5 \cdot 7) = U_{35}(105) \times U_{21}(105) \times U_{15}(105)
\]

\[
= \{1, 71\} \times \{1, 22, 43, 64\} \times \{1, 16, 31, 46, 61, 76\}
\]

\[
\approx U(3) \oplus U(5) \oplus U(7)
\]