Chapter 3
Relations and Functions

This chapter discusses ordered pairs and the Cartesian product of two sets. Then it defines a relation as a set of ordered pairs. The intimate connection between a partition and an equivalence relation on a set is closely examined. The concept of a function is introduced as a special kind of relation. Moreover, the important properties of functions are studied.

3.1 Cartesian Products of Two Sets

Definition. (Ordered pairs)

(a) Given any two objects a and b, the object (a, b) is called the ordered pair a, b.

(b) If (a, b) is an ordered pair, then a is called the first coordinate and b is called the second coordinate.

(c) We say that two ordered pairs (a, b) and (c, d) are equal, and write $(a, b) = (c, d)$, if and only if $a = c$ and $b = d$.

Remark. The adjective “ordered” here emphasizes that the order in which the objects a and b appear in (a, b) is essential.

Example 1. If $(1, 2)$ and $(2, 1)$ are two ordered pairs, then $(1, 2) \neq (2, 1)$.

Example 2. $(x, y) = (2, 3)$ if and only if $x = 2$ and $y = 3$.

Definition. (Cartesian products)

Let A and B be sets. The cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (x, y) with $x \in A$ and $y \in B$. In symbols

$$ A \times B = \{(x, y) : x \in A \land y \in B\}. $$

Example 1. Let $A = \{1, 2, 3\}$ and let $B = \{a, b\}$. Find $A \times B$ and $B \times A$.

Solution.
Example 2. Let A be any set. Find $A \times \phi$ and $\phi \times A$.

Solution.

Theorem 3.1. Let $A, B,$ and C be any three sets. Then

(a) $A \times (B \cap C) = (A \times B) \cap (A \times C),$

(b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof.
Theorem 3.2. Let A, B, and C be any three sets. Then $A \times (B - C) = (A \times B) - (A \times C)$.

Proof.

Example 1. Prove that if $C \neq \phi$ and $A \times C \subseteq B \times C$, then $A \subseteq B$.

Solution.
Example 2. Prove that $A \times B = \emptyset$ if and only if $A = \emptyset$ or $B = \emptyset$.

Solution.

Example 3. Prove or disprove: $\wp(A \times B) = \wp(A) \times \wp(B)$.

Solution.
3.2 Relations

Given sets A and B, not necessarily distinct, when we say that an element a of A is related to another element b of B by a relation R we are making a statement about the ordered pair (a, b) in the Cartesian product $A \times B$. Therefore, a mathematical definition of a relation can be precisely given in term of ordered pairs in Cartesian product of sets.

Definition. (Relations)
A relation R from a set A to a set B is a subset of the Cartesian product $A \times B$.

Notation. If R is a relation and $(a, b) \in R$, then we write $a R b$ (read: a is R–related to b).

Example 1. Let $A = \{a, b\}$ and let $B = \{1, -1\}$. Then $R = \{(a, 1), (b, 1)\}$ is a relation from A to B.

Example 2. Let $A = \{1, 2, 3\}$ and let $R = \{(1, 1), (2, 2), (1, 3)\}$. Then R is a relation from A to A.

Remark. If R is a relation from A to A, then R is called a relation on A.

Definition. (Inverse relation)
Let A and B be two sets, not necessarily distinct, and let R be a relation from A to B. The inverse of the relation R is the relation R^{-1} from B to A such that $b R^{-1} a$ if and only if $a R b$. That is $R^{-1} = \{(b, a) \in B \times A : (a, b) \in R\}$.

Example 1. Let $A = \{1, 2\}$, $B = \{-1, 0, -2\}$, and let R be a relation from A to B given by $R = \{(1, -1), (2, -2)\}$. Find R^{-1}.

Solution.

Example 2. Find R^{-1} if $R = \{(n, m) \in \mathbb{N} \times \mathbb{Z} : n$ divides $m\}$.

Solution.

Example 3. Let $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x > y\}$. Find R^{-1}.

Solution.
Definition. (Domain and image of a relation)
Let R be a relation from a set A to a set B.

(a) The domain of R is the set $\text{Dom}(R) = \{a \in A : (a, b) \in R \text{ for some } b \in B\}$.

(b) The image of R is the set $\text{Im}(R) = \{b \in B : (a, b) \in R \text{ for some } a \in A\}$.

Remark. If R is a relation from a set A to a set B, then $\text{Dom}(R) \subseteq A$ and $\text{Im}(R) \subseteq B$.

Example 1. Let $R = \{(1, 1), (1, -2), (2, 5)\}$. Find $\text{Dom}(R)$ and $\text{Im}(R)$.

Solution.

Example 2. Let $R = \{(n, m) \in \mathbb{N} \times \mathbb{Z} : n \text{ divides } m\}$. Find $\text{Dom}(R)$ and $\text{Im}(R)$.

Solution.

Example 3. Prove that for any relation R, $\text{Dom}(R) = \text{Im}(R^{-1})$.

Solution.

Example 4. Let R be a relation from A to B and let $D \subseteq A$. By the restriction of R to D we mean the relation $R|D = \{(x, y) \in R : x \in D\}$ from D to B. Prove that $R|D = R \cap (D \times \text{Im}(R))$.

Solution.
Example 5. Let R be a relation from A to B and let $X \subseteq A$. Define

$$R(X) = \{ y \in B : (x,y) \in R \text{ for some } x \in X \}.$$

Prove that if $D \subseteq A$ and $E \subseteq A$, then

$$R(D \cap E) \subseteq (R(D) \cap R(E)).$$

Solution.

Equivalence Relations

Definition. (Equivalence relations)
Let R be a relation on a set X. Then

(a) R is reflexive if and only if $x R x$ for all $x \in X$,

(b) R is symmetric if and only if $x R y \Rightarrow y R x$,

(c) R is transitive if and only if $x R y \land y R z \Rightarrow x R z$,

(d) R is an equivalence relation if and only if R is reflexive, symmetric, and transitive.

Example 1. Let $X = \{1,2\}$ and let R be a relation on X given by $R = \{(1,1),(1,2),(2,2)\}$. Show that R is reflexive and transitive, but not symmetric.

Solution.
Example 2. Let $X = \{a, b, c\}$ and let R be a relation on X given by $R = \{(a, b), (b, a), (a, c), (c, a), (b, b)\}$. Show that R is symmetric but neither transitive nor reflexive.

Solution.

Example 3. Let $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : xy > 0\}$. Determine whether R is reflexive, symmetric, transitive or not.

Solution.
Example 4. Let $X = \{0, 1\}$ and let R be a relation on X given by $R = \{(1, 1), (0, 0), (0, 1), (1, 0)\}$. Show that R is an equivalence relation on X.

Solution.

Remark. Given a nonempty set X, there always exist at least two equivalence relations on X; the diagonal (or identity) relation $\Delta_x = \{(x, x) : x \in X\}$, and the relation $R = X \times X$.

Example 1. Let $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x - y = 3k \text{ for some } k \in \mathbb{Z}\}$. Show that R is an equivalence relation on \mathbb{Z}.

Solution.

Example 2. Let m be an arbitrary fixed positive integer and let $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x - y = mk \text{ for some } k \in \mathbb{Z}\}$. Then R is an equivalence relation on \mathbb{Z} and it is called the congruence relation modulo m on \mathbb{Z}. If $(x, y) \in R$, then we write $x \equiv y$ (modulo m).
Example 3. Let $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x + y = 3k \text{ for some } k \in \mathbb{Z}\}$. Determine whether R is reflexive, symmetric, transitive or not.

Solution.

Example 4. Let R be a relation on a set X. Prove that R is reflexive if and only if $\Delta_x \subseteq R$.

Solution.

Exercise 3.2 (1-18)
3.3 Partitions and Equivalence Relations

Definition. (Partition)
Let X be a nonempty set. A partition P of X is a set of nonempty subsets of X such that

(1) if $A, B \in P$ and $A \neq B$, then $A \cap B = \emptyset$,

(2) $\bigcup_{A \in P} A = X$.

Remark. Intuitively, a partition of a set X is a cutting up of X into nonempty disjoint pieces.

Example 1. Let $X = \{1, 2, 3, 4, 5\}$ and let $P = \{\{1, 5\}, \{2, 3\}, \{4\}\}$. Is P a partition of X? Explain.
Solution.

Example 2. Let $X = \mathbb{Z}$ and let $E = \{x \in \mathbb{Z} : x \text{ is even}\}$, $D = \{x \in \mathbb{Z} : x \text{ is odd}\}$. Then $P = \{E, D\}$ is a partition of X.

Example 3. Let $X = \mathbb{Z}$ and for $j = 0, 1, 2$ define $Z_j = \{x \in \mathbb{Z} : x - j = 3k \text{ for some } k \in \mathbb{Z}\}$. Then $P = \{Z_0, Z_1, Z_2\}$ is a partition of \mathbb{Z}.

Remark. There is a close connection between the partition of a nonempty set and an equivalence relation on the set.

Definition. (Equivalence classes)
Let \mathcal{E} be an equivalence relation on a nonempty set X.

(1) For each $x \in X$, we define the equivalence class determined by x to be the set $x/\mathcal{E} = \{y \in X : (x, y) \in \mathcal{E}\}$.

(2) The set of all equivalence classes in X is called X modulo \mathcal{E} and it is denoted by X/\mathcal{E}. In symbols: $X/\mathcal{E} = \{x/\mathcal{E} : x \in X\}$.

Remark. If \mathcal{E} is an equivalence relation on a nonempty set X, then every equivalence class x/\mathcal{E} is a subset of X.

Example 1. Let $X = \{1, 2\}$ and let $\mathcal{E} = \{(1, 1), (2, 2), (1, 2), (2, 1)\}$. Find X/\mathcal{E}.
Example 2. Let $X = \{1, 2, 3\}$ and let $E = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}$. Find X/E.

Solution.

Example 3. Let $\Box = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 = y^2\}$. Show that \Box is an equivalence relation on \mathbb{Z} and Find \mathbb{Z}/\Box.

Solution.
Theorem 3.3. (Properties of equivalence classes)

Let \mathcal{E} be an equivalence relation on a nonempty set X. Then

(a) each equivalence class x/\mathcal{E} is a nonempty subset of X,

(b) $x/\mathcal{E} \cap y/\mathcal{E} \neq \emptyset$ if and only if $(x, y) \in \mathcal{E}$,

(c) $(x, y) \in \mathcal{E}$ if and only if $x/\mathcal{E} = y/\mathcal{E}$.

Proof.
Theorem 3.4. \((X/\mathcal{E} \text{ is a partition of } X)\)

Let \(\mathcal{E}\) be an equivalence relation on a nonempty set \(X\). Then \(X/\mathcal{E}\) is a partition of \(X\).

Proof.

Example 1. Let \(X = \{1, 2, 3, 4\}\) and let \(\mathcal{E} = \{(1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (3, 2)\}\). Find \(X/\mathcal{E}\).

Solution.

Example 2. Let \(X = \mathbb{Z}\) and let \(\mathcal{E} = \{(x, y) : x - y = 4k \text{ for some } k \in \mathbb{Z}\}\). Find \(X/\mathcal{E}\).

Solution.

Remark. Theorem 3.4 shows that an equivalence relation on \(X \neq \emptyset\) gives rise to a partition on \(X\). We shall show that the converse is also true.
Relations Induced by Partitions

Definition. (Relations induced by partitions)
Let \mathcal{P} be a partition of a nonempty set X. We define a relation X/\mathcal{P} on X by $(x,y) \in X/\mathcal{P}$ if and only if there exists a set $A \in \mathcal{P}$ such that x and y are in A. That is

$$X/\mathcal{P} = \{(x,y) : x \in A \land y \in A \text{ for some } A \in \mathcal{P}\}.$$

Example 1. Let $X = \{0,1,2\}$ and let $\mathcal{P} = \{\{0,2\}, \{1\}\}$. Find the relation X/\mathcal{P}. Is X/\mathcal{P} an equivalence relation?

Solution.

Example 2. Let $X = \mathbb{Z}$ and let $\mathcal{P} = \{E,D\}$. Find the relation X/\mathcal{P}. Is X/\mathcal{P} an equivalence relation?

Solution.

Theorem 3.5. (X/\mathcal{P} is an equivalence relation)
Let \mathcal{P} be a partition of a nonempty set X. Then the relation X/\mathcal{P} is an equivalence relation on X.

Proof.
Lemma 3.1. \((x/Q = A)\)

Let \(\mathcal{P}\) be a partition of a nonempty set \(X\) and let \(Q = X/\mathcal{P}\). If \(x \in A\) for some \(A \in \mathcal{P}\), then \(x/Q = A\).

\[\text{Proof.}\]

\[\square\]

Theorem 3.6. \((X/(X/\mathcal{P}) = \mathcal{P})\)

Let \(\mathcal{P}\) be a partition of a nonempty set \(X\). Then the equivalence classes induced by the relation \(X/\mathcal{P}\) are precisely the sets in \(\mathcal{P}\). Symbolically \(X/(X/\mathcal{P}) = \mathcal{P}\).
Proof.

Example 3. Let $X = \{1, 2, 3, 4\}$ and consider the partition $P = \{\{1\}, \{2, 3, 4\}\}$. Find X/P and $X/(X/P)$.

Solution.

Exercise 3.3 (1-11)

Additional Exercises

1. Let $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x + y \text{ is even}\}$. Prove that R is an equivalence relation and determine the distinct equivalence classes.

2. Prove that $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : 3x - 7y = 2k \text{ for some } k \in \mathbb{Z}\}$ is an equivalence relation and find \mathbb{Z}/R.

3. Let $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : 3x + 5y = 2k \text{ for some } k \in \mathbb{Z}\}$. Prove that R is an equivalence relation and find \mathbb{Z}/R.

4. Let $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : 3x + 7y = 2k \text{ for some } k \in \mathbb{Z}\}$. Determine whether R is an equivalence relation or not.

5. Let $R = \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : x + y = k \text{ for some } k \in \mathbb{Z}\}$. Prove or disprove that R is an equivalence relation.
3.4 Functions

The concept of function is one of the most basic ideas in every branch of mathematics.

Definition. (Functions)
Let X and Y be sets. A function from X to Y is a triple (f, X, Y), where f is a relation from X to Y satisfying

1. $\text{Dom}(f) = X$,
2. if $(x, y) \in f$ and $(x, z) \in f$, then $y = z$.

Example 1. Let $X = \{1, -1\}$, $Y = \{0\}$, and $f = \{(1, 0), (-1, 0)\}$. Is f a function?

Solution.

Example 2. Let $X = \{1, 2, 3\}$, $Y = \{5, 10, 15, 20\}$, and $f = \{(1, 5), (2, 20)\}$. Is f a function?

Solution.

Example 3. Let $X = \{1, 2, 3\}$, $Y = \{5, 10, 15, 20\}$, and $f = \{(1, 5), (2, 20), (3, 15), (3, 10)\}$. Is f a function?

Solution.

Notation.

1. If (f, X, Y) is a function from X to Y, then we write $f : X \rightarrow Y$.
2. If (f, X, Y) is a function from X to Y and $(x, y) \in f$, then we write $y = f(x)$.

Definition. (Image and pre-image)
Let $f : X \rightarrow Y$ be a function. If $y = f(x)$, then we say that y is the image of x under f and x is a pre-image of y under f.

Definition. (Range)
If $f : X \rightarrow Y$ is a function, then Y is called the range of f.
Remark. Note that \(\text{Im}(f) = \{ y \in Y : (x, y) \in f \text{ for some } x \in X \} \subseteq \text{range of } f \). In general, range of \(f \neq \text{Im}(f) \).

Example. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be defined by \(f(x) = |x| = \) the greatest integer \(\leq x \). Find \(\text{Range}(f) \) and \(\text{Im}(f) \).

Solution.

Theorem 3.6. (Each set containing the image can be a range) Let \(f : X \rightarrow Y \) be a function and let \(W \) be a set containing the image of \(f \); that is \(\text{Im}(f) \subseteq W \). Then \(f : X \rightarrow W \) is a function.

Proof. Exercise

Example. Let \(f(x) = |x| = \) the greatest integer less than or equal to \(x \). Then \(f : \mathbb{R} \rightarrow \mathbb{R}, f : \mathbb{R} \rightarrow \mathbb{Q}, \) and \(f : \mathbb{R} \rightarrow \mathbb{Z} \)

Theorem 3.7. (Equality of functions)
Let \(f : X \rightarrow Y \) and \(g : X \rightarrow Y \) be functions. Then \(f = g \) if and only if \(f(x) = g(x) \) for all \(x \in X \).

Proof.

Example. Let \(X = \{1, 2, 3\} \) and let \(Y = \{-1, -2, -3\} \). Define \(f : X \rightarrow Y \) by \(f = \{(1, -1), (2, -2), (3, -3)\} \) and \(g : X \rightarrow Y \) by \(g(x) = -x \). Is \(f = g \)?

Solution.
Some special functions

Example 1. Let X be a nonempty set. Then the diagonal relation Δ_x on X is a function from X to X. It is called the identity function on X.

Example 2. Let $X \neq \emptyset$ and $Y \neq \emptyset$ be two sets and let b be any fixed element of Y. Then the relation $C_b = \{(x, b) : x \in X\}$ is a function from X to Y. C_b is called a constant function.

Example 3. Let A be a subset of a nonempty set X and define
$$
\chi_A = \{(x, y) \in X \times \{0, 1\} : y = 1 \text{ if } x \in A \land y = 0 \text{ if } x \notin A\};
$$
that is
$$
\chi_A(x) = \begin{cases}
1, & \text{if } x \in A \\
0, & \text{if } x \in X - A.
\end{cases}
$$
Then χ_A is a function from X to $\{0, 1\}$ and it is called the characteristic function of A in X.

Example 4. Let X and Y be two sets. Then the X-projection function $p_x : X \times Y \to X$ is given by $p_x(x, y) = x$. The Y-projection function $p_y : X \times Y \to Y$ is given by $p_y(x, y) = y$.

Unions of functions

Example 1. Let $f : \{1, 2\} \to \{0\}$ be given by $f = \{(1, 0), (2, 0)\}$ and let $g : \{2, 3\} \to \{5\}$ be given by $g = \{(2, 5), (3, 5)\}$. Find $f \cup g$. Is $f \cup g$ a function?

Solution.

Example 2. Let $f : \{1, 2\} \to \{1, 4\}$ be given by $f = \{(1, 1), (2, 4)\}$ and let $g : \{3, 4\} \to \{5\}$ be given by $g = \{(3, 5), (4, 5)\}$. Find $f \cup g$. Is $f \cup g$ a function?

Solution.

Example 3. Let $f : (-\infty, 1) \to \mathbb{R}$ be given by $f(x) = 2x + 1$ and let $g : [1, \infty) \to \mathbb{R}$ be given by $g(x) = x - 2$. Find $f \cup g$. Is $f \cup g$ a function?
Solution.

Theorem 3.8. (The union of two functions)

Let \(f : A \rightarrow C \) and \(g : B \rightarrow D \) be two functions such that \(f(x) = g(x) \), \(\forall x \in A \cap B \). Then the union \(h \) of \(f \) and \(g \) define the function \(h = f \cup g : A \cup B \rightarrow C \cup D \), where

\[
\begin{align*}
 h(x) &= \begin{cases}
 f(x), & \text{if } x \in A \\
 g(x), & \text{if } x \in B.
 \end{cases}
\end{align*}
\]

Proof.

\(\square \)
Example. Let \(f : (-\infty, 0] \to \mathbb{R} \) be given by \(f(x) = -x^2 \) and let \(g : [0, \infty) \to \mathbb{R} \) be given by \(g(x) = x^2 \). Find \(f \cup g \). Is \(f \cup g \) a function?

Solution.

Exercise 3.4 (1-17)
3.5 Images and Inverse Images of Sets

The concept of image and preimage of an element can be extended to subsets.

Definition. (Images and inverse images of sets)
Let \(f : X \rightarrow Y \) be a function, and let \(A \) and \(B \) be subsets of \(X \) and \(Y \) respectively.

1. The image of \(A \) under \(f \), denoted by \(f(A) \), is the set
 \[
 f(A) = \{ y \in Y : y = f(x) \text{ for some } x \in A \} = \{ f(x) : x \in A \}.
 \]

2. The inverse image of \(B \) under \(f \), denoted by \(f^{-1}(B) \), is the set
 \[
 f^{-1}(B) = \{ x \in X : y = f(x) \text{ for some } y \in B \} = \{ x \in X : f(x) \in B \}.
 \]

Remarks.

1. \(f^{-1} \) in the above definition does NOT denote the inverse function of the function \(f \).

2. If \(f : X \rightarrow Y \), then \(f(X) = \operatorname{Im}(f) \) and \(f^{-1}(Y) = \operatorname{Dom}(f) \).

Example 1. Let \(f = \{(0, 5), (1, 6), (2, 7), (3, 5), (4, 5)\} \) be a function from \(X = \{0, 1, 2, 3, 4\} \) to \(Y = \{5, 6, 7\} \). Find \(f(A) \) and \(f^{-1}(B) \) if \(A = \{0, 1, 2\} \) and \(B = \{5, 6\} \).

Solution.

Example 2. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be defined by \(f(x) = x^2 \). Find \(f([-1, 1]) \) and \(f^{-1}([-2, 0]) \).

Solution.

Remarks.

1. \(x \in A \Rightarrow f(x) \in f(A) \) but \(f(x) \in f(A) \nRightarrow x \in A \).

2. \(x \in f^{-1}(B) \Leftrightarrow f(x) \in B \).
Example. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$, and let $A = \{2\}$. Then $f(A) = \{4\}$. Thus $f(-2) = 4 \in f(A)$ but $-2 \notin A$.

Theorem 3.9. (Basic properties of images and inverse images)
Let $f : X \to Y$ be a function. Then

(a) $f(\emptyset) = \emptyset$,

(b) $f(\{a\}) = \{f(a)\}$, $\forall a \in X$,

(c) if $A \subseteq B \subseteq X$, then $f(A) \subseteq f(B)$,

(d) if $C \subseteq D \subseteq Y$, then $f^{-1}(C) \subseteq f^{-1}(D)$.

Proof.
Example. Let $f : X \to Y$ be a function such that $f(X) = Y$, and let B and C be subsets of Y. Prove that if $f^{-1}(B) = f^{-1}(C)$, then $B = C$.

Solution.

Theorem 3.10. (Images of unions and intersections)
Let $f : X \to Y$ be a function and let $\{A_\gamma : \gamma \in \Gamma\}$ be a family of subsets of X. Then

(a) $f \left(\bigcup_{\gamma \in \Gamma} A_\gamma \right) = \bigcup_{\gamma \in \Gamma} f(A_\gamma)$,

(b) $f \left(\bigcap_{\gamma \in \Gamma} A_\gamma \right) \subseteq \bigcap_{\gamma \in \Gamma} f(A_\gamma)$.

Proof.
Example. Let \(X = \{1, 2\} \), \(Y = \{3\} \), \(A = \{1\} \), \(B = \{2\} \), and let \(f : X \to Y \) be given by \(f(1) = f(2) = 3 \). Then \(f(A \cap B) = f(\phi) = \phi \) but \(f(A) \cap f(B) = \{3\} \). Thus \(f(A) \cap f(B) \not\subset f(A \cap B) \).

Theorem 3.11. (Inverse images of unions and intersections)
Let \(f : X \to Y \) be a function and let \(\{B_\gamma : \gamma \in \Gamma\} \) be a family of subsets of \(Y \). Then

\[
\begin{align*}
(a) \quad f^{-1}\left(\bigcup_{\gamma \in \Gamma} B_\gamma \right) &= \bigcup_{\gamma \in \Gamma} f^{-1}(B_\gamma), \\
(b) \quad f^{-1}\left(\bigcap_{\gamma \in \Gamma} B_\gamma \right) &= \bigcap_{\gamma \in \Gamma} f^{-1}(B_\gamma).
\end{align*}
\]

Proof. \(\square\)
Theorem 3.12. (Inverse images of differences)

Let \(f : X \to Y \) be a function and let \(B \) and \(C \) be any subsets of \(Y \). Then \(f^{-1}(B - C) = f^{-1}(B) - f^{-1}(C) \).

Proof.

Exercise 3.5 (1-15)
3.6 Injective, Surjective, and Bijective Functions

Injective, Surjective, و Bijective Temperatur

Definition. (Injection)

1. A function \(f : X \to Y \) is said to be injective or one-to-one provided that if \(x_1, x_2 \in X \) with \(f(x_1) = f(x_2) \), then \(x_1 = x_2 \).

2. An injective function is called an injection.

Remark. \(f : X \to Y \) is injective \(\iff (\forall x_1)(\forall x_2)[f(x_1) = f(x_2) \implies x_1 = x_2] \)

Example 1. Let \(X \subseteq Y \) and \(f : X \to Y \) be a function given by \(f(x) = x \). Show that \(f \) is an injective function.

Solution.

Example 2. Let \(f : Z \to \mathbb{N} \cup \{0\} \) be a function given by \(f(n) = n^2 \). Show that \(f \) is not an injection.

Solution.

Example 3. Let \(f : X \to Y \) be a function, and let \(A \subseteq X \). Prove that if \(f \) is injective, then \(f^{-1}(f(A)) = A \).

Solution.
Definition. (Surjection)

(1) A function \(f : X \to Y \) is said to be surjective or onto provided that \(\forall y \in Y \) there exists at least one \(x \in X \) such that \(f(x) = y \). In other words, \(f : X \to Y \) is surjective if and only if \(f(X) = Y = \text{Im}(f) \).

(2) A surjective function is called a surjection.

Example 1. Let \(f : \mathbb{R} \to [0, \infty) \) be a function given by \(f(x) = x^2 \). Show that \(f \) is a surjective function.

Solution.

Example 2. Let \(f : \mathbb{R} \to \mathbb{R} \) be a function given by \(f(x) = x^2 \). Then \(f \) is not a surjective function since \(f(x) \neq -1 \) for all \(x \in \mathbb{R} \).

Example 3. Prove that the \(X \)-projection function \(p_x : X \times Y \to X \) is surjective.

Solution.

Example 4. Let \(f : X \to Y \) be a function and let \(B \subseteq Y \). Prove that if \(f \) is surjective, then \(f(f^{-1}(B)) = B \).

Solution.
Definition. (Bijection)

1. A function $f : X \rightarrow Y$ is said to be bijective if it is both injective and surjective.

2. A bijection is also called a one-to-one correspondence.

Example 1. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a function given by $f(x) = 2x + 3$. Show that f is a bijective function.

Solution.

Example 2. Let $f : X \rightarrow Y$ be an injection and let A_1, A_2 be subsets of X. Show that

$$f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2).$$

Solution.
Theorem 3.13. *(Image of intersections under injective functions)*

Let \(f : X \to Y \) be an injection and let \(\{ A_\gamma : \gamma \in \Gamma \} \) be a family of subsets of \(X \). Then

\[
f \left(\bigcap_{\gamma \in \Gamma} A_\gamma \right) = \bigcap_{\gamma \in \Gamma} f(A_\gamma).
\]

Proof.

Example. Let \(X = \{a, b, c, d\} \), \(Y = \{1, 2, 3, 4\} \), and consider the function \(f = \{(a, 1), (b, 2), (c, 1), (d, 4)\} \).

Find \(f^{-1} \). Is \(f^{-1} \) a function?

Solution.
Theorem 3.14. (The inverse of a bijection is a bijective function)
Let \(f : X \rightarrow Y \) be a bijection. Then \(f^{-1} : Y \rightarrow X \) is a bijection.

Proof.
3.7 Composition of Functions

Definition. (Composition of functions)
Let \(f : X \to Y \) and \(g : Y \to Z \) be two functions. The composition of these two functions is the function \(g \circ f : X \to Z \) defined by \((g \circ f)(x) = g(f(x))\). In other words,
\[
g \circ f = \{(x, z) \in X \times Z : \exists y \in Y \text{ such that } (x, y) \in f \land (y, z) \in g\}
\]

Example. Let \(f : \mathbb{R} \to \mathbb{R} \) and let \(g : \mathbb{R} \to \mathbb{R} \) be two functions given by \(f(x) = x^2 + 2 \) and \(g(x) = \sqrt{x^2 + 4} \). Find \((g \circ f)(x)\) and \((f \circ g)(x)\).

Solution.

Remark. Function composition is NOT commutative; that is, in general, \(f \circ g \neq g \circ f \).

Theorem 3.15. (Composition is associative)
Function composition is associative; that is, if \(f : X \to Y \), \(g : Y \to Z \) and \(h : Z \to W \), then \((h \circ g) \circ f = h \circ (g \circ f)\).

Proof.
Theorem 3.16. (Criterion for injection and surjection)
Let $f : X \rightarrow Y$ be a function.

(a) If there exists a function $g : Y \rightarrow X$ such that $g \circ f = I_X$, where $I_X : X \rightarrow X$ is the identity function on X, then f is injective.

(b) If there exists a function $h : Y \rightarrow X$ such that $f \circ h = I_Y$, where $I_Y : Y \rightarrow Y$ is the identity function on Y, then f is surjective.

Proof.

Example. Let $f : X \rightarrow Y$ be a function. Prove that $f \circ I_X = f = I_Y \circ f$.

Solution.

Exercise 3.7 (1-12)