Chapter (2)

Eng. Mai Z. Alyazji

October, 2016
Table 2.1

<table>
<thead>
<tr>
<th>Postulate/ Theorem</th>
<th>Expression 1</th>
<th>Expression 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postulate 2</td>
<td>(x + 0 = x)</td>
<td>(x \cdot 1 = x)</td>
</tr>
<tr>
<td>Postulate 5</td>
<td>(x + x' = 1)</td>
<td>(x \cdot x' = 0)</td>
</tr>
<tr>
<td>Theorem 1</td>
<td>(x + x = x)</td>
<td>(x \cdot x = x)</td>
</tr>
<tr>
<td>Theorem 2</td>
<td>(x + 1 = 1)</td>
<td>(x \cdot 0 = 0)</td>
</tr>
<tr>
<td>Theorem 3, involution</td>
<td>((x')' = x)</td>
<td></td>
</tr>
<tr>
<td>Postulate 3, commutative</td>
<td>(x + y = y + x)</td>
<td>(xy = yx)</td>
</tr>
<tr>
<td>Theorem 4, associative</td>
<td>(x + (y + z) = (x + y) + z)</td>
<td>(x(yz) = (xy)z)</td>
</tr>
<tr>
<td>Postulate 4, distributive</td>
<td>(x(y + z) = xy + xz)</td>
<td>(x + yz = (x + y)(x + z))</td>
</tr>
<tr>
<td>Theorem 5, De Morgan</td>
<td>((x + y)' = x'y')</td>
<td>((xy)' = x' + y')</td>
</tr>
<tr>
<td>Theorem 6, absorption</td>
<td>(x + xy = x)</td>
<td>(x(x + y) = x)</td>
</tr>
</tbody>
</table>

2.2 Simplify the following Boolean expressions to a minimum number of literals:

\[\begin{align*}
(a) & \quad xy + xy' \\
(b) & \quad (x + y)(x + y') \\
(f) & \quad a'bc + abc' + abc + a'bc'
\end{align*} \]

Answer:

\[\begin{align*}
(a) & \quad xy + xy' = x(y + y') = x(1) = x \\
b) & \quad (x + y)(x + y') = xx + xy' + xy + yy' = x + x(y + y') = x \\
f) & \quad a'bc + abc' + abc + a'bc' \\
& \quad = b(a' + a) = b
\]

2.3 Simplify the following Boolean expressions to a minimum number of literals:

\[\begin{align*}
(b) & \quad x'yz + xz \\
(d) & \quad xy + x(wz + wz')
\end{align*} \]

Answer:

\[\begin{align*}
b) & \quad x'yz + xz = (x'y + x)z = z(x' + x') = (x + y)
\end{align*} \]
d) \[xy + x(wz + wz') = x(y + wz + wz') = x(y + w(z + z')) = x(w + y) \]

2.4 Reduce the following Boolean expressions to the indicated number of literals:

(a) \[A'C' + ABC + AC' \] to three literals

(b) \[(x'y' + z)' + z + xy + wz \] to three literals

(c) \[A'B(D' + C'D) + B(A + A'CD) \] to one literal

Answer:

a) \[A'C' + ABC + AC' = C'(A'+A) + ABC = (C' + AB)(C' + C) = C' + AB \]

b) \[(x'y' + z)' + z + xy + wz = (x'y')'z' + z + xy + wz \]
\[= [(x + y)z' + z] + xy + wz = (z + z')(z + x + y) + xy + wz \]
\[= z + wz + x + xy + y = z(1 + w) + x(1 + y) + y = x + y + z \]

(c) \[A'B(D' + C'D) + B(A + A'CD) = B(A'D' + A'C'D + A + A'CD) \]
\[= B(A'D' + A + A'D(C + C')) = B(A + A'(D' + D)) = B(A + A') = B \]

2.5 Draw logic diagrams of the circuits that implement the original and simplified expressions in Problem 2.2.

Answer:

a)
b) Find the complement of $F = wx + yz$; then show that $FF' = 0$ and $F + F' = 1$.

Answer:

$$F' = (wx + yz)' = (wx)'(yz)' = (w' + x')(y' + z')$$

$$FF' = wx(w' + x')(y' + z') + yz(w' + x')(y' + z') = 0$$

$$F + F' = wx + yz + (wx + yz)' = A + A' = 1$$ with $A = wx + yz$

2.9 Given the Boolean functions F_1 and F_2, show that

(a) The Boolean function $E = F_1 + F_2$ contains the sum of the minterms of F_1 and F_2.

(b) The Boolean function $G = F_1F_2$ contains only the minterms that are common to F_1 and F_2.

Answer:

(a) $F_1 + F_2 = \sum m_{1i} + \sum m_{2i} = \sum (m_{1i} + m_{2i})$

(b) $F_1 F_2 = \sum m_i \sum m_j$ where $m_i m_j = 0$ if $i \neq j$ and $m_i m_j = 1$ if $i = j$
2.12 We can perform logical operations on strings of bits by considering each pair of corresponding bits separately (called bitwise operation). Given two eight-bit strings A = 10110001 and B = 10101100, evaluate the eight-bit result after the following logical operations:

(a) AND (b) OR (c) XOR (d) NOT A (e) NOT B

Answer:

a) 1010 0000
b) 1011 1101
c) 0001 1101
d) 0100 1110
e) 0101 0011

2.13 Draw logic diagrams to implement the following Boolean expressions:

(a) \(F = [(u + x') (y' + z)] \)

Answer:

\[u \]
\[x \]
\[y \]
\[z \]
2.14 Implement the Boolean function

F = xy + x'y' + y'z

(a) With AND, OR, and inverter gates

(b) With OR and inverter gates

With AND and inverter gates

With NAND and inverter gates

With NOR and inverter gates

Answer:

a)

\[
F = xy + x'y' + y'z
\]

b)

\[
F = x'y + (x + y)' + (y + z)'
\]
c) \[F = xy + x'y' + y'z \]
\[= [(xy)'(x'y')'(y'z)']' \]

d) \[F = xy + x'y' + y'z \]
\[= [(xy)'(x'y')'(y'z)']' \]

e) \[F = xy + x'y' + y'z \]
\[= (x' + y')' + (x + y)' + (y + z')' \]
2.15 Simplify the following Boolean functions T1 and T2 to a minimum number of literals:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Answer:

\[
T_1 = A'B'C' + A'B'C + A'BC' = A'B'(C' + C)' + A'BC' = A'B' + A'BC' \\
= (A'B' + A'B) (A'B' + C') = A'(B' + B)'(A'B' + C') = A'(A'B' + C') \\
= (A'A'B' + A'C') = (A'B' + A'C') = A'(B' + C') \\
\]

\[
T_2 = (A + B + C)(A + B + C')(A + B' + C) \\
= (A + AB + AC' + AB + B + BC' + AC + BC + CC')(A + B' + C) \\
= (A(1 + B + C' + C) + B(1 + C' + C) + CC')(A + B' + C) \\
= (A + B)(A + B' + C) + AB + AC + AB + BB' + BC = A(1 + B' + C + B) + BC' \\
= A + BC \\
\]

OR

\[
T_2 = T_1' = A'BC + AB'C' + AB'C + ABC' + ABC' \\
= BC(A' + A) + AB'(C' + C) + AB(C' + C) \\
= BC + AB' + AB = BC + A(B' + B) \\
= A + BC
\]
2.16 The logical sum of all minterms of a Boolean function of n variables is 1.

(a) Prove the previous statement for n = 3.

(b) Suggest a procedure for a general proof.

Answer:

a) \(F(A, B, C) = A'B'C' + A'B'C + A'BC' + A'BC + AB'C' + AB'C + ABC' + ABC \\
 = A'(B'C' + B'C + BC' + BC) + A((B'C' + B'C + BC') + BC) \\
 = B'(C' + C) + B(C' + C) = B' + B = 1 \\

b) \(F(x_1, x_2, x_3, \ldots, x_n) = \sum m_i \) has \(2^n/2 \) minterms with \(x_1 \) and \(2^n/2 \) minterms with \(x_1' \), which can be factored and removed as in (a). The remaining \(2^{n-1} \) product terms will have \(2^{n-1}/2 \) minterms with \(x_2 \) and \(2^{n-1}/2 \) minterms with \(x_2' \), which and be factored to remove \(x_2 \) and \(x_2' \), continue this process until the last term is left and \(x_n + x_n' = 1 \).

2.17 Obtain the truth table of the following function, and express the function in sum-of-minterms and product-of-maxterms form:

(b) \((cd + b'c + bd')(b + d) \)

Answer:

\[
(cd + b'c + bd')(b + d) = bcd + b'b'c'0 + bbd' + cdd + b'cd + b'd'd'0 \\
= bcd + bd' + cd + b'cd \\
= bcd + b(c+c')d' + (b+b')cd + b'cd \\
= bcd + bcd' + bc'd' + bcd + b'cd + b'cd \\
\]

<table>
<thead>
<tr>
<th>b</th>
<th>c</th>
<th>d</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(F = \Pi (0,1,2,5) = \sum (3,4,6,7) \)
2.19 Express the following function as a sum of minterms and as a product of minterms:

\[F(A, B, C, D) = B'D + A'D + BD \]

Answer:

First look at the number of literals... we have four different literals
\[A, B, C, D \]
In the first term \(B'D \), we have \(A, C \) are missing
We get them back as \((A'+A')B'(C+C)D \), that \(B'D \) is equivalent to
\[AB'CD + A'B'CD + AB'C'D + A'B'C'D \] and so on...

\[F = (A+A')B'(C+C)D + A'(B+B')(C+C)D + (A+A')B(C+C)D \]
\[= AB'CD + A'B'CD + AB'C'D + A'B'C'D + A'BCD + A'BCD + A'BC'D + A'B'C'D + ABCD + A'BC'D \] (omit repeated terms)
\[= AB'CD + A'B'CD + AB'C'D + A'B'C'D + A'BCD + A'BC'D + ABCD + ABC'D \]
\[= \sum(11, 3, 9, 1, 7, 5, 15, 13) = \sum(1, 3, 5, 7, 9, 11, 13, 15) \]
\[= \Pi(0, 2, 4, 6, 8, 10, 12, 14) \]

2.20 Express the complement of the following functions in sum-of-minterms form:

(a) \(F(A, B, C, D) = \sum(2, 4, 7, 10, 12, 14) \)

(b) \(F(x, y, z) = \Pi(3, 5, 7) \)

Answer:

a) \(\sum(0, 1, 3, 5, 6, 8, 9, 11, 13, 15) \)

b) \(= \Pi(3, 5, 7) = \sum(0, 1, 2, 4, 6) \) complement=\(\sum(3, 5, 7) \)

2.21 Convert each of the following to the other canonical form:

(a) \(F(x, y, z) = \sum(1, 3, 5) \)
(b) \(F(A, B, C, D) = \Pi(3, 5, 8, 11) \)

Answer:

a) \(\Pi(0, 2, 4, 6, 7) \)

b) \(\Sigma(0, 1, 2, 4, 6, 7, 9, 10, 12, 13, 14, 15) \)

2.24 Show that the dual of the exclusive-OR is equal to its complement.

Answer:

\(x \oplus y = x'y + xy' \) and \((x \oplus y)' = (x + y')(x' + y) \)

Dual of \(x'y + xy' = (x' + y)(x + y') = (x \oplus y)' \)

2.29 Determine whether the following Boolean equation is true or false.

\(x'y' + x'z + x'z' = x'z' + y'z' + x'z \)

Answer:

\[
\begin{align*}
\text{False} \\
\downarrow & \downarrow \\
x'y' + x'z + x'z' \neq x'z' + y'z' + x'z \\
\Sigma(0,1,2,3) \neq \Sigma(0,1,2,3,4)
\end{align*}
\]
2.9 Find complement:

(a) \(xy' + x'y = (xy)'(x'y) = (x'+y)(x+y) = x'y' + xy + x'y + xy' \)

(b) \((a+c)(a+b)(a'+b+c') \)
\((a+c)'(a+b)'(a'+b+c)' = ac' + ab + a'b'c'\)

(c) \(z + z'(w' + xy) \)
\(z'(z'(w' + xy)') = z'(w' + xy)' \)
\(= z'(z + (w + xy)')(x + y') \)
\(= z'(z + y) + z'(w + xy)(x + y') = z'(w + z + y' + x' + w'y + z'y') \)

2.11 List Truth table.

(a) \(F = xy + x'y + y'z \)

(b) \(F = bc + a'c' \)
2.23) Draw logic diagram without simplifying.
(a) Bc\(^1\) + AB + Ac\(^1\)D

2.25) By substituting the Boolean expr equivalent of the binary ops as defined in Table 2.3, show the following:

(a) The inhibition operation is neither commutative nor associative.

F = xy\(^1\) = x\(\bar{y}\)
F = x\(\bar{y}\) = x\(\bar{y}\) ≠ not comm.
(x\(\bar{y}\))x\(\bar{z}\) = x\(\bar{y}\)z
x\(\bar{y}\) = x\(\bar{y}\)z

(b) The exclusive-or op. is commutative and associative.

x\(\oplus\)y = xy\(^1\) + xy
(x\(\oplus\)y)\(\oplus\)z = (xy\(^1\) + xy)\(\oplus\)z

x\(\oplus\)z + xy\(^1\) + x\(\bar{y}\)\(\bar{z}\) = x\(\bar{y}\) + y\(\bar{z}\) + x\(\bar{y}\)z

2.26) Show that a positive logic NAND gate is negative logic NOR gate and vice versa.

<table>
<thead>
<tr>
<th>NAND Gate</th>
<th>NAND Pos.</th>
<th>NOR Pos.</th>
<th>NOR Neg.</th>
<th>NAND Neg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

\[x = x y^1 + x y^2 + x y_1 z + x y_1 ^2 \]
2-30 Write Boolean expression for sum of products:

\[(b + d) (a' + b' + c) \]
\[a'b + bb + bc + ad + bd + dc \]
\[= ab(c+c)(d+d') + (a+a')bc(d+d') + a'(b+b')(c+c)d + (a+a')bd \]
\[+ (c+c) + (a+a')(b+b') \]
\[cd = \frac{abcd + abcd' + abcd + abcd'}{abed + abed + abed + abed + abed + abed} \]
\[+ \frac{abed + abed + abed + abed + abed + abed}{abed + abed + abed + abed + abed + abed} \]

2-31 Write Boolean expression for product of sum form:

\[F = a'b + a'c' + abc \]
\[a'b(c+c) + a'(b+b')c' + abc \]
\[= a'bc + ab'c + a'bc + abc + abc + abc + abc \]
\[F' = \Sigma (0, 2, 3, 7) = a'bc + ab'c + abc + abc \]

\[F = (a'bc + ab'c + abc + abc) \]
\[\xi \]
\[F = (a + b + c') (a + b + c) (a + b + c') (a + b + c') \]
\[= \Pi (1, 2, 3, 6) \]

301 2

\[\xi \]
\[= a'bc d + a'bc d \]
\[000 \]
\[001 \]
\[010 \]
\[011 \]
\[100 \]
\[101 \]
\[110 \]
\[111 \]

\[= \Sigma (0, 3, 4, 5, 6, 7, 9, 13, 14) \]
Boolean Expression

<table>
<thead>
<tr>
<th>F_1</th>
<th>F_2</th>
<th>ab</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$$F_1 = a'b'c' + a'bc' + ab'c + abc' + abc$$

$$F_2 = a'b'c + ab'c + a'bc$$

$$Z = a'b'c' + ab'c + a'bc$$