CHAPTER 3

MECHANICS OF MATERIALS

Ferdinand P. Beer
E. Russell Johnston, Jr.
John T. DeWolf

Torsion

Lecture Notes:
J. Walt Oler
Texas Tech University

Presented by:
Dr. Mohammed Arafa

© 2002 The McGraw-Hill Companies, Inc. All rights reserved.
Contents

Introduction
Torsional Loads on Circular Shafts
Net Torque Due to Internal Stresses
Axial Shear Components
Shaft Deformations
Shearing Strain
Stresses in Elastic Range
Normal Stresses
Torsional Failure Modes
Sample Problem 3.1
Angle of Twist in Elastic Range

Statically Indeterminate Shafts
Sample Problem 3.4
Design of Transmission Shafts
Stress Concentrations
Plastic Deformations
Elastoplastic Materials
Residual Stresses
Example 3.08/3.09
Torsion of Noncircular Members
Thin-Walled Hollow Shafts
Example 3.10
Torsional Loads on Circular Shafts

- Interested in stresses and strains of circular shafts subjected to twisting couples or *torques*.
- Turbine exerts torque T on the shaft.
- Shaft transmits the torque to the generator.
- Generator creates an equal and opposite torque T'.
Net Torque Due to Internal Stresses

- Net of the internal shearing stresses is an internal torque, equal and opposite to the applied torque,

\[T = \int \rho \, dF = \int \rho (\tau \, dA) \]

- Although the net torque due to the shearing stresses is known, the distribution of the stresses is not

- Distribution of shearing stresses is statically indeterminate – must consider shaft deformations

- Unlike the normal stress due to axial loads, the distribution of shearing stresses due to torsional loads can not be assumed uniform.
Axial Shear Components

- Torque applied to shaft produces shearing stresses on the faces perpendicular to the axis.

- Conditions of equilibrium require the existence of equal stresses on the faces of the two planes containing the axis of the shaft.

- The existence of the axial shear components is demonstrated by considering a shaft made up of axial slats.

The slats slide with respect to each other when equal and opposite torques are applied to the ends of the shaft.
• From observation, the angle of twist of the shaft is proportional to the applied torque and to the shaft length.

\[\phi \propto T \]

\[\phi \propto L \]

• When subjected to torsion, every cross-section of a circular shaft remains plane and undistorted.

• Cross-sections for hollow and solid circular shafts remain plain and undistorted because a circular shaft is axisymmetric.

• Cross-sections of noncircular (non-axisymmetric) shafts are distorted when subjected to torsion.
Shearing Strain

- Consider an interior section of the shaft. As a torsional load is applied, an element on the interior cylinder deforms into a rhombus.

- Since the ends of the element remain planar, the shear strain is equal to angle of twist.

- It follows that

\[L\gamma = \rho\phi \quad \text{or} \quad \gamma = \frac{\rho\phi}{L} \]

- Shear strain is proportional to twist and radius

\[\gamma_{\text{max}} = \frac{c\phi}{L} \quad \text{and} \quad \gamma = \frac{\rho}{c}\gamma_{\text{max}} \]
Stresses in Elastic Range

- Multiplying the previous equation by the shear modulus,
 \[G \gamma = \frac{\rho}{c} G \gamma_{\text{max}} \]
 From Hooke’s Law, \(\tau = G \gamma \), so
 \[\tau = \frac{\rho}{c} \tau_{\text{max}} \]
 The shearing stress varies linearly with the radial position in the section.

- Recall that the sum of the moments from the internal stress distribution is equal to the torque on the shaft at the section,
 \[T = \int \rho \tau \, dA = \frac{\tau_{\text{max}}}{c} \int \rho^2 \, dA = \frac{\tau_{\text{max}}}{c} J \]
 The results are known as the elastic torsion formulas,
 \[\tau_{\text{max}} = \frac{Tc}{J} \quad \text{and} \quad \tau = \frac{T\rho}{J} \]
Normal Stresses

- Elements with faces parallel and perpendicular to the shaft axis are subjected to shear stresses only. Normal stresses, shearing stresses or a combination of both may be found for other orientations.

- Consider an element at 45° to the shaft axis,

 $$F = 2(\tau_{\text{max}} A_0) \cos 45^\circ = \tau_{\text{max}} A_0 \sqrt{2}$$

 $$\sigma_{45^\circ} = \frac{F}{A} = \frac{\tau_{\text{max}} A_0 \sqrt{2}}{A_0 \sqrt{2}} = \tau_{\text{max}}$$

- Element a is in pure shear.

- Element c is subjected to a tensile stress on two faces and compressive stress on the other two.

- Note that all stresses for elements a and c have the same magnitude.
Torsional Failure Modes

- Ductile materials generally fail in shear. Brittle materials are weaker in tension than shear.

- When subjected to torsion, a ductile specimen breaks along a plane of maximum shear, i.e., a plane perpendicular to the shaft axis.

- When subjected to torsion, a brittle specimen breaks along planes perpendicular to the direction in which tension is a maximum, i.e., along surfaces at 45° to the shaft axis.
Shaft BC is hollow with inner and outer diameters of 90 mm and 120 mm, respectively. Shafts AB and CD are solid of diameter d. For the loading shown, determine (a) the minimum and maximum shearing stress in shaft BC, (b) the required diameter d of shafts AB and CD if the allowable shearing stress in these shafts is 65 MPa.

SOLUTION:

- Cut sections through shafts AB and BC and perform static equilibrium analysis to find torque loadings.
- Apply elastic torsion formulas to find minimum and maximum stress on shaft BC.
- Given allowable shearing stress and applied torque, invert the elastic torsion formula to find the required diameter.
Sample Problem 3.1

- Cut sections through shafts AB and BC and perform static equilibrium analysis to find torque loadings.

\[\sum M_x = 0 = (6 \text{kN} \cdot \text{m}) - T_{AB} \]

\[T_{AB} = 6 \text{kN} \cdot \text{m} = T_{CD} \]

\[\sum M_x = 0 = (6 \text{kN} \cdot \text{m}) + (14 \text{kN} \cdot \text{m}) - T_{BC} \]

\[T_{BC} = 20 \text{kN} \cdot \text{m} \]
Sample Problem 3.1

- Apply elastic torsion formulas to find minimum and maximum stress on shaft BC

$$J = \frac{\pi}{2} \left(c_2^4 - c_1^4 \right) = \frac{\pi}{2} \left[(0.060)^4 - (0.045)^4 \right]$$

$$= 13.92 \times 10^{-6} \text{ m}^4$$

$$\tau_{\text{max}} = \tau_2 = \frac{T_{BC} c_2}{J} = \frac{(20 \text{ kN} \cdot \text{m})(0.060 \text{ m})}{13.92 \times 10^{-6} \text{ m}^4}$$

$$= 86.2 \text{ MPa}$$

$$\frac{\tau_{\text{min}}}{\tau_{\text{max}}} = \frac{c_1}{c_2} \quad \frac{\tau_{\text{min}}}{86.2 \text{ MPa}} = \frac{45 \text{ mm}}{60 \text{ mm}}$$

$$\tau_{\text{min}} = 64.7 \text{ MPa}$$

- Given allowable shearing stress and applied torque, invert the elastic torsion formula to find the required diameter

$$\tau_{\text{max}} = \frac{T_c}{J} = \frac{T_c}{\frac{\pi}{2} c^4}$$

$$65 \text{ MPa} = \frac{6 \text{ kN} \cdot \text{m}}{\frac{\pi}{2} c^3}$$

$$c = 38.9 \times 10^{-3} \text{ m}$$

$$d = 2c = 77.8 \text{ mm}$$
Angle of Twist in Elastic Range

- Recall that the angle of twist and maximum shearing strain are related,
 \[\gamma_{\text{max}} = \frac{c \phi}{L} \]
- In the elastic range, the shearing strain and shear are related by Hooke’s Law,
 \[\gamma_{\text{max}} = \frac{\tau_{\text{max}}}{G} = \frac{Tc}{JG} \]
- Equating the expressions for shearing strain and solving for the angle of twist,
 \[\phi = \frac{TL}{JG} \]
- If the torsional loading or shaft cross-section changes along the length, the angle of rotation is found as the sum of segment rotations
 \[\phi = \sum_{i} \frac{T_i L_i}{J_i G_i} \]
Given the shaft dimensions and the applied torque, we would like to find the torque reactions at A and B.

From a free-body analysis of the shaft,
\[T_A + T_B = 90 \text{lb} \cdot \text{ft} \]
which is not sufficient to find the end torques. The problem is statically indeterminate.

Divide the shaft into two components which must have compatible deformations,
\[\phi = \phi_1 + \phi_2 = \frac{T_A L_1}{J_1 G} - \frac{T_B L_2}{J_2 G} = 0 \quad T_B = \frac{L_1 J_2}{L_2 J_1} T_A \]

Substitute into the original equilibrium equation,
\[T_A + \frac{L_1 J_2}{L_2 J_1} T_A = 90 \text{lb} \cdot \text{ft} \]