Today’s Objectives:
Students will be able to:
a) Draw the free body diagram of a frame or machine and its members.
b) Determine the forces acting at the joints and supports of a frame or machine.

In-Class Activities:
- Check Homework, if any
- Reading Quiz
- Applications
- Analysis of a Frame/Machine
- Concept Quiz
- Group Problem Solving
- Attention Quiz

READING QUIZ
1. Frames and machines are different as compared to trusses since they have ________.
 A) only two-force members B) only multiforce members
 C) at least one multiforce member D) at least one two-force member

2. Forces common to any two contacting members act with ________ on the other member.
 A) equal magnitudes but opposite sense
 B) equal magnitudes and the same sense
 C) different magnitudes but opposite sense
 D) different magnitudes but the same sense

APPLICATIONS
Frames are commonly used to support various external loads.

How is a frame different than a truss? How can you determine the forces at the joints and supports of a frame?
Machines, like these above, are used in a variety of applications. How are they different from trusses and frames? How can you determine the loads at the joints and supports? These forces and moments are required when designing the machine members.

Frames and machines are two common types of structures that have at least one multi-force member. (Recall that trusses have nothing but two-force members). Frames are generally stationary and support external loads. Machines contain moving parts and are designed to alter the effect of forces.

1. Draw the FBD of the frame or machine and its members, as necessary.
 Hints: a) Identify any two-force members, b) Forces on contacting surfaces (usually between a pin and a member) are equal and opposite; and, c) For a joint with more than two members or an external force, it is advisable to draw a FBD of the pin.
2. Develop a strategy to apply the equations of equilibrium to solve for the unknowns. Problems are going to be challenging since there are usually several unknowns. A lot of practice is needed to develop good strategies.
EXAMPLE
Given: The wall crane supports an external load of 700 lb.
Find: The force in the cable at the winch motor \(W \) and the horizontal and vertical components of the pin reactions at \(A, B, C, \) and \(D. \)

Plan:
1. Draw FBDs of the frame’s members and pulleys.
2. Apply the equations of equilibrium and solve for the unknowns.

\[\sum F_Y = 2T - 700 = 0 \]
\[T = 350 \text{ lb} \]

\[\sum F_X = C_X - 350 = 0 \]
\[C_X = 350 \text{ lb} \]

\[\sum F_Y = C_Y - 350 = 0 \]
\[C_Y = 350 \text{ lb} \]

\[\sum F_X = -B_X + 350 - 350 \sin 30^\circ = 0 \]
\[B_X = 175 \text{ lb} \]

\[\sum F_Y = B_Y - 350 \cos 30^\circ = 0 \]
\[B_Y = 303.1 \text{ lb} \]
EXAMPLE (continued)

Please note that member BD is a two-force member.

\[\sum M_A = T_{BD} \sin 45^\circ \times 4 - 303 \times 4 - 700 = 0 \]

\[T_{BD} = 2409 \text{ lb} \]

\[\sum F_Y = A_Y + 2409 \sin 45^\circ - 303 - 700 = 0 \]

\[A_Y = -700 \text{ lb} \]

\[\sum F_X = A_X - 2409 \cos 45^\circ + 175 - 350 = 0 \]

\[A_X = 1880 \text{ lb} \]

EXAMPLE (continued)

At D, the X and Y component are

\[\rightarrow + D_X = -2409 \cos 45^\circ = -1700 \text{ lb} \]

\[\uparrow + D_Y = 2409 \sin 45^\circ = 1700 \text{ lb} \]

CONCEPT QUIZ

1. The figures show a frame and its FBDs. If an additional couple moment is applied at C, then how will you change the FBD of member BC at B?

A) No change, still just one force (F_{AB}) at B.

B) Will have two forces, B_X and B_Y at B.

C) Will have two forces and a moment at B.

D) Will add one moment at B.
2. The figures show a frame and its FBDs. If an additional force is applied at D, how will you change the FBD of member \(BC \) at \(B \)?

A) No change, still just one force (\(F_{BA} \)) at \(B \).
B) Will have two forces, \(B_X \) and \(B_Y \), at \(B \).
C) Will have two forces and a moment at \(B \).
D) Will add one moment at \(B \).

GROUP PROBLEM SOLVING

Given: A frame and loads as shown.

Find: The reactions that the pins exert on the frame at \(A \), \(B \), and \(C \).

Plan:

a) Draw a FBD of members \(AB \) and \(BC \).

b) Apply the equations of equilibrium to each FBD to solve for the six unknowns. Think about a strategy to easily solve for the unknowns.

\[
\begin{align*}
\sum M_A &= B_Y (0.4) + B_Y (0.4) - 1000 (0.2) = 0 \\
\sum M_C &= -B_X (0.4) + B_Y (0.6) + 500 (0.4) = 0
\end{align*}
\]

Equating moments at \(A \) and \(C \) to zero, we get:

\begin{align*}
\sum M_A &= B_Y (0.4) + B_Y (0.4) - 1000 (0.2) = 0 \\
\sum M_C &= -B_X (0.4) + B_Y (0.6) + 500 (0.4) = 0
\end{align*}

\[B_Y = 0 \quad \text{and} \quad B_Y = 500 \text{ N} \]
ATTENTION QUIZ

1. When determining the reactions at joints A, B, and C, what is the minimum number of unknowns for solving this problem?
 A) 3 B) 4 C) 5 D) 6

2. For the above problem, imagine that you have drawn a FBD of member AB. What will be the easiest way to write an equation involving unknowns at B?
 A) $\sum M_c = 0$ B) $\sum M_a = 0$
 C) $\sum M_b = 0$ D) $\sum F_x = 0$