CHAPTER
2
ANALYTIC FUNCTIONS

We now consider functions of a complex variable and develop a theory of differentiation for them. The main goal of the chapter is to introduce analytic functions, which play a central role in complex analysis.

11 FUNCTIONS OF A COMPLEX VARIABLE

Definition:
Let S be a set of complex numbers. A function f defined on S is a rule that assigns to each z in S a complex number w.

The number w is called the **value** of f at z and is denoted by $f(z)$; that is, $w = f(z)$.

The set S is called the **domain of definition** of f.

EXAMPLE 1.
Real and imaginary part of the function:

Suppose that \(w = u + iv \) is the value of a function \(f \) at \(z = x + iy \), so that \(u + iv = f(x + iy) \)

Each of the real numbers \(u \) and \(v \) depends on the real variables \(x \) and \(y \), and it follows that \(f(z) \) can be expressed in terms of a pair of real-valued functions of the real variables \(x \) and \(y \):

\[
f(z) = u(x, y) + iv(x, y).
\]

If the polar coordinates \(r \) and \(\theta \), instead of \(x \) and \(y \), are used, then \(u + iv = f(re^{i\theta}) \),

where \(w = u + iv \) and \(z = re^{i\theta} \). In that case, we may write

\[
f(z) = u(r, \theta) + iv(r, \theta).
\]

Definitions:

1) If \(n \) is zero or a positive integer and if \(a_0, a_1, a_2, \ldots a_n \) are complex constants, where \(a_n \neq 0 \), the function

\[
P(z) = a_0 + a_1z + a_2z^2 + \cdots + a_nz^n.
\]

is a polynomial of degree \(n \).

Note: the sum here has a finite number of terms and that the domain of definition is the entire \(z \) plane.

2) Quotients \(\frac{P(z)}{Q(z)} \) of polynomials are called rational functions and are defined at each point \(z \) where \(Q(z) \neq 0 \).

Examples:
Definition: Multiple-valued function:

A multiple valued function is a rule that assigns more than one value to a point z in the domain of definition.

Notes:

1) These *multiple-valued functions* occur in the theory of functions of a complex variable, just as they do in the case of real variables.

2) When multiple-valued functions are studied, usually just one of the possible values assigned to each point is taken, in a systematic manner, and a (single-valued) function is constructed from the multiple-valued function.

Example:
14. LIMITS

Let a function \(f \) be defined at all points \(z \) in some deleted neighborhood of \(z_0 \). The statement that the limit of \(f(z) \) as \(z \) approaches \(z_0 \) is a number \(w_0 \),

or means that the point \(w = f(z) \) can be made arbitrarily close to \(w_0 \) if we choose the point \(z \) close enough to \(z_0 \) but distinct from it. We now express the definition of limit in a precise and usable form.

Definition:

\[
\lim_{z \to z_0} f(z) = w_0,
\]

1) means that, for each positive number \(\varepsilon \), there is a positive number \(\delta \) such that

\[|f(z) - w_0| < \varepsilon \text{ whenever } 0 < |z - z_0| < \delta. \]

2) When a limit of a function \(f(z) \) exists at a point, it is unique.

Note: Definition (1) requires that \(f \) be defined at all points in some deleted neighborhood of \(z_0 \). Such a deleted neighborhood, of course, always exists when \(z_0 \) is an interior point of a region on which \(f \) is defined.
We can extend the definition of limit to the case in which \(z_o \) is a boundary point of the region by agreeing that the first of inequalities in (1) need be satisfied by only those points \(z \) that lie in both the region and the deleted neighborhood.

2) If \(z_o \) is an interior point of the domain of definition of \(f \), and limit (1) is to exist, the first of inequalities (1) must hold for all points in the deleted neighborhood

\[0 < |z - z_o| < \delta. \]

Thus the symbol \(z \to z_o \) implies that \(z \) is allowed to approach \(z_o \) in an arbitrary manner, not just from some particular direction.

EXAMPLE 1: Show that if \(f(z) = iz/2 \) in the open disk \(|z| < 1 \), then

\[
\lim_{z \to 1} f(z) = \frac{i}{2},
\]

EXAMPLE 2: Show that

If

\[
f(z) = \frac{z}{\overline{z}},
\]

then

\[
\lim_{z \to 0} f(z) \quad \text{does not exist.}
\]
15. THEOREMS ON LIMITS

We can expedite our treatment of limits by establishing a connection between limits of functions of a complex variable and limits of real-valued functions of two real variables. Since limits of the latter type are studied in calculus, we use their definition and properties freely.

Theorem 1. Suppose that

\[f(z) = u(x,y) + iv(x,y), \quad z_0 = x_0 + iy_0, \text{ and } w_0 = u_0 + iv_0. \]

Then

1. \[\lim_{z \to z_0} f(z) = w_0 \]

 if and only if

2. \[\lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0 \quad \text{and} \quad \lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0. \]

Theorem 2. Suppose that

\[\lim_{z \to z_0} f(z) = w_0 \quad \text{and} \quad \lim_{z \to z_0} F(z) = W_0. \]

Then

1. \[\lim_{z \to z_0} [f(z) + F(z)] = w_0 + W_0 \]
2. \[\lim_{z \to z_0} [f(z) F(z)] = w_0 W_0 \quad \text{as } z \to z_0 \]
3. and, if \(W_0 \neq 0 \)
4) **Limits of polynomials:**

\[P(z) = a_0 + a_1 z + a_2 z^2 + \ldots \ldots + a_n z^n. \]

as \(z \) approaches a point \(z_o \) is the value of the polynomial at that point

\[\lim_{z \to z_0} P(z) = P(z_0). \]

Examples:
16. LIMITS INVOLVING THE POINT AT INFINITY

It is sometimes convenient to include with the complex plane the point at infinity, denoted by ∞, and to use limits involving it. The complex plane together with this point is called the extended complex plane.

A stereographic projection:

To visualize the point at infinity, one can think of the complex plane as passing through the equator of a unit sphere centered at the point $z = 0$. To each point z in the plane there corresponds exactly one point P on the surface of the sphere. The point P is determined by the intersection of the line through the point z and the north pole N of the sphere with that surface.

By letting the point N of the sphere correspond to the point at infinity, we obtain a one to one correspondence between the points of the sphere and the points of the extended complex plane. The sphere is known as the **Riemann sphere**, and the correspondence is called a **stereographic projection**.
Definition:
An \(\varepsilon \) neighborhood, or neighborhood, of \(\infty \):
for each small positive number \(\varepsilon \), those points in the
complex plane exterior to the circle \(|z| = 1/\varepsilon\)
correspond to points on the sphere close to \(N\). We thus
call the set \(|z| > 1/\varepsilon\) an \(\varepsilon \) neighborhood.

Theorem. If \(z_0\) and \(w_0\) are points in the \(z\) and \(w\) planes, respectively, then

\[
(1) \quad \lim_{z \to z_0} f(z) = \infty \quad \text{if and only if} \quad \lim_{z \to z_0} \frac{1}{f(z)} = 0
\]
and

\[
(2) \quad \lim_{z \to \infty} f(z) = w_0 \quad \text{if and only if} \quad \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0.
\]

Moreover,

\[
(3) \quad \lim_{z \to \infty} f(z) = \infty \quad \text{if and only if} \quad \lim_{z \to 0} \frac{1}{f(1/z)} = 0.
\]
Proof:

Examples: Show that

\[\lim_{z \to -1} \frac{iz + 3}{z + 1} = \infty \]

\[\lim_{z \to \infty} \frac{2z + i}{z + 1} = 2 \quad \text{since} \]

\[\lim_{z \to \infty} \frac{2z^3 - 1}{z^2 + 1} = \infty \]
17 Continuity

Definition:

A function \(f \) is \textit{continuous} at a point \(z_0 \) if all three of the following conditions are satisfied:

\begin{align*}
(1) & \quad \lim_{z \to z_0} f(z) \text{ exists,} \\
(2) & \quad f(z_0) \text{ exists,} \\
(3) & \quad \lim_{z \to z_0} f(z) = f(z_0).
\end{align*}

Definitions:

1) A function of a complex variable is said to be continuous in a region \(R \) if it is continuous at each point in \(R \).
2) If two functions are continuous at a point, their sum and product are also continuous at that point;
3) their quotient is continuous at any such point where the denominator is not zero.
4) A polynomial is continuous in the entire plane.

\textbf{Theorem 1}: \textit{A composition of continuous functions is itself continuous.}

Proof:

\textbf{Theorem 2}: \textit{If a function } \(f(z) \) \textit{is continuous and nonzero at a point } \(z_0 \), \textit{then } \(f(z) \neq 0 \) throughout some neighborhood of that point.}
Proof:

Propositions:

1) The function $f(z) = u(x,y) + iv(x,y)$ is continuous at a point $z_0 = (x_0, y_0)$ if and only if its component functions are continuous there.

2) If f is continuous in a region R that is both closed and bounded then f is **bounded** on R and $|f(z)|$ reaches a maximum value somewhere in R. That is, there exists a nonnegative real number M such that

$$|f(z)| \leq M \quad \text{for all } z \in R,$$

where equality holds for at least one such z.

Examples:
18. DERIVATIVES

Definition:

Let f be a function whose domain of definition contains a neighborhood of a point z_0.

The derivative of f at z_0, written $f'(z_0)$, is defined by the equation

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0},$$

provided this limit exists. The function f is said to be differentiable at z_0 when its derivative at z_0 exists.

By expressing the variable z in definition (1) in terms of the new complex variable $\Delta z = z - z_0$

we can write that definition as

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}.$$
If $\Delta w = f(z + \Delta z) - f(z)$, then

$$\frac{dw}{dz} = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}.$$

Examples:
19. DIFFERENTIATION FORMULAS

Definition:

The derivative of a function f at a point z is denoted by

$$\frac{d}{dz} f(z) \quad \text{or} \quad f'(z),$$

either depending on which notation is more convenient.

Properties:

Let c be a complex constant, and let f be a function whose derivative exists at point z. It is easy to show that

$$(1) \quad \frac{d}{dz} c = 0, \quad \frac{d}{dz} z = 1, \quad \frac{d}{dz} [cf(z)] = cf'(z).$$

Also, if n is a positive integer,

$$(2) \quad \frac{d}{dz} z^n = nz^{n-1}.$$

This formula remains valid when n is a negative integer, provided that $z \neq 0$.

If the derivatives of two functions f and F exist at a point z, then

$$(3) \quad \frac{d}{dz} [f(z) + F(z)] = f'(z) + F'(z),$$

$$(4) \quad \frac{d}{dz} [f(z)F(z)] = f(z)F'(z) + f'(z)F(z);$$

and, when $F(z) \neq 0$,

$$(5) \quad \frac{d}{dz} \left[\frac{f(z)}{F(z)} \right] = \frac{F(z)f'(z) - f(z)F'(z)}{[F(z)]^2}.$$
There is also a chain rule for differentiating composite functions. Suppose that f has a derivative at z_0 and that g has a derivative at the point $f(z_0)$. Then the function $F(z) = g[f(z)]$ has a derivative at z_0, and

$$F'(z_0) = g'[f(z_0)]f'(z_0).$$

If we write $w = f(z)$ and $W = g(w)$, so that $W = F(z)$, the chain rule becomes

$$\frac{dW}{dz} = \frac{dW}{dw} \frac{dw}{dz}.$$

Proof:

Examples:
20. CAUCHY–RIEMANN EQUATIONS

In this section, we obtain a pair of equations that the first-order partial derivatives of the component functions u and v of a function

(1) \[f(z) = u(x, y) + iv(x, y) \]

must satisfy at a point $z_0 = (x_0, y_0)$ when the derivative of f exists there. We also show how to express $f'(z_0)$ in terms of those partial derivatives.

Theorem. Suppose that

\[f(z) = u(x, y) + iv(x, y) \]

and that $f'(z)$ exists at a point $z_0 = x_0 + iy_0$. Then the first-order partial derivatives of u and v must exist at (x_0, y_0), and they must satisfy the Cauchy–Riemann equations

(7) \[u_x = v_y, \quad u_y = -v_x \]

there. Also, $f'(z_0)$ can be written

(8) \[f'(z_0) = u_x + iv_x, \]

where these partial derivatives are to be evaluated at (x_0, y_0).

Proof:

Examples:
21. SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY

Satisfaction of the Cauchy-Riernann equations at a point \(z_0 = (x_0, y_0) \) is not sufficient to ensure the existence of the derivative of a function \(f(z) \) at that point. But, with certain continuity conditions, we have the following useful theorem.

Theorem. Let the function

\[
f(z) = u(x, y) + iv(x, y)
\]

be defined throughout some \(\varepsilon \) neighborhood of a point \(z_0 = x_0 + iy_0 \), and suppose that the first-order partial derivatives of the functions \(u \) and \(v \) with respect to \(x \) and \(y \) exist everywhere in that neighborhood. If those partial derivatives are continuous at \((x_0, y_0) \) and satisfy the Cauchy–Riemann equations

\[
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
\]

at \((x_0, y_0) \), then \(f'(z_0) \) exists.

Proof:

Examples:
22. POLAR COORDINATES

Assuming that $z_0 \neq 0$, we shall in this section use the coordinate transformation

(1) \[x = r \cos \theta, \quad y = r \sin \theta \]

Theorem. Let the function

\[f(z) = u(r, \theta) + iv(r, \theta) \]

be defined throughout some ε neighborhood of a nonzero point $z_0 = r_0 \exp(i\theta_0)$, and suppose that the first-order partial derivatives of the functions u and v with respect to r and θ exist everywhere in that neighborhood. If those partial derivatives are continuous at (r_0, θ_0) and satisfy the polar form

\[ru_r = v_\theta, \quad u_\theta = -rv_r \]

of the Cauchy–Riemann equations at (r_0, θ_0), then $f'(z_0)$ exists.

The derivative $f'(z_0)$ here can be written (see Exercise 8)

(7) \[f'(z_0) = e^{-i\theta}(u_r + iv_r), \]

where the right-hand side is to be evaluated at (r_0, θ_0).

Proof:

Examples:
23 ANALYTIC FUNCTIONS

Definitions:

1) A function f of the complex variable z is analytic in an open set if it has a derivative at each point in that set.
2) f is analytic at a point z_0 if it is analytic throughout some neighborhood of z_0.
3) An entire function is a function that is analytic at each point in the entire finite plane.
4) Every polynomial is an entire function.
5) If a function f fails to be analytic at a point z_0 but is analytic at some point in every neighborhood of z_0, then z_0 is called a singular point, or singularity, of f.
6) If two functions are analytic in a domain D, their sum and their product are both analytic in D.
7) Similarly, their quotient is analytic in D provided the function in the denominator does not vanish at any point in D.
8) In particular, the quotient $P(z)/Q(z)$ of two polynomials is analytic in any domain throughout which $Q(z) \neq 0$.
9) A composition of two analytic functions is analytic.

That is, function $f(z)$ is analytic in a domain D and that the image of D under the transformation $w = f(z)$ is contained in the domain of definition of a function $g(w)$.
Then the composition \(g[f(z)] \) is analytic in \(D \), with derivative

\[
\frac{d}{dz} g[f(z)] = g'[f(z)] f'(z).
\]

Theorem. If \(f'(z) = 0 \) everywhere in a domain \(D \), then \(f(z) \) must be constant throughout \(D \).
25. HARMONIC FUNCTIONS

Definition: A real-valued function \(H \) of two real variables \(x \) and \(y \) is said to be \textit{harmonic} in a given domain of the \(xy \) plane if, throughout that domain, it has \textit{continuous partial derivatives} of the first and second order \textit{and satisfies} the partial differential equation

\[
H_{xx}(x,y) + H_{yy}(x,y) = 0
\]

known as \textit{Laplace's equation}.

Example:

\textbf{Theorem 1.} If a function \(f(z) = u(x, y) + iv(x, y) \) is \textit{analytic} in a domain \(D \), \textit{then} its component functions \(u \) and \(v \) are \textit{harmonic} in \(D \).

Proof:

Examples:
Theorem 2. A function \(f(z) = u(x, y) + i v(x, y) \) is analytic in a domain \(D \) if and only if \(v \) is a harmonic conjugate of \(u \).

Proof:

Examples:
26. UNIQUELY DETERMINED ANALYTIC FUNCTIONS

Lemma. Suppose that

(i) a function \(f \) is analytic throughout a domain \(D \);
(ii) \(f(z) = 0 \) at each point \(z \) of a domain or line segment contained in \(D \).

Then \(f(z) = 0 \) in \(D \); that is, \(f(z) \) is identically equal to zero throughout \(D \).

Theorem. A function that is analytic in a domain \(D \) is uniquely determined over \(D \) by its values in a domain, or along a line segment, contained in \(D \).

27 REFLECTION PRINCIPLE

The theorem in this section concerns the fact that some analytic functions possess the property that \(\overline{f(z)} = f(\overline{z}) \) for all points \(z \) in certain domains, while others do not. We note, for example, that \(z + 1 \) and \(z^2 \) have that property when \(D \) is the entire finite plane; but the same is not true of \(z + i \) and \(iz^2 \). The theorem, which is known as the refection principle, provides a way of predicting when \(\overline{f(z)} = f(\overline{z}) \).
Theorem. Suppose that a function \(f \) is analytic in some domain \(D \) which contains a segment of the \(x \) axis and whose lower half is the reflection of the upper half with respect to that axis. Then

\[
f(z) = f(\bar{z})
\]

for each point \(z \) in the domain if and only if \(f(x) \) is real for each point \(x \) on the segment.