Design of Reinforced Concrete Structures (I)
ECIV 3316

Instructor’s Name: Prof. Samir M. Shihada
E-Mail: sshihada@iugaza.edu.ps or, sshihada@gmail.com
Office: Administration Building, Room B243
Office Phone: +970 8 2644400 - Ext. No. 2814
Office Hours: 11:00-12:00, Saturdays through Wednesdays.

Course Description:
Strength of reinforced concrete; design of short columns; beam in flexure and shear; one-way slabs; development and anchorage of reinforcement and isolated footings.

Objectives:
1. Students will gain a basic understanding of the integration of analysis and design.
2. Students will learn how to design reinforced concrete members, including short columns, beams, one-way slabs, and isolated footings for applicable strength and serviceability limit states according to ACI 318-2008.
3. Students will ultimately learn how to design a reinforced concrete building frame system.

Instructional Methods:
1. Three lecture hours per week covering theoretical background in addition to solving numerical examples.
2. One discussion hour per week focusing on a comprehensive design project. This design project will be completed throughout the semester. Design groups will be assigned by the Teaching Assistant.

Textbook:
Reinforced Concrete Design, draft of third edition (available on my webpage).

References:
1. Building Code Requirements for Reinforced Concrete, ACI 318-08, Farmington Hills, MI, USA.
Course Outline:

1- Introduction:

2- Materials and Properties:
 - Concrete
 - Steel reinforcement

3- Design Requirements:

4- Design of Columns:
 - Axially Loaded Short Columns

5- Design for Flexure:
 - Singly Reinforced Rectangular Sections
 - T-Shaped Sections
 - Irregular Sections

6- Design for Shear:

7- Design of One-way Slabs:
 - Solid
 - Ribbed

8- Development of Reinforcement:
 - Development lengths
 - Lap Splices
 - Bar Cutoffs

9- Design of Isolated Footings (Concentrically Loaded):
 - Square
 - Rectangular

10- Applications
 - Comprehensive Design Project

Attendance:

 - Regular attendance is strongly recommended for maintaining pace with the lectures and the progress of the class.

Grading Policy:
The students will be evaluated by a mid-term exam, a final exam and assigned comprehensive project. The final grades for this course will be based on the following percentages:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exam</td>
<td>25 %</td>
</tr>
<tr>
<td>Final Comprehensive Exam</td>
<td>60 %</td>
</tr>
<tr>
<td>Design Project</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>100 %</td>
</tr>
</tbody>
</table>