VLANs

Introduction

By default, routers allow broadcasts to occur only within the originating network, while switches forward broadcasts to all segments. Flat network = one broadcast domain.

That the largest benefit you gain by having a layer 2 switched network is that it creates individual collision domain segments for each device plugged into each port on the switch.

But:

The larger the number of users and devices, the more broadcasts and packets each switch must handle.

Security issue, all users can see all devices by default. And you can’t stop devices from broadcasting or trying to respond to broadcasts.

Solution?

Using: virtual LAN (VLAN)

- By just configuring a port into the appropriate VLAN. You can stop users outside of the VLAN from communicating with user within VLAN.
- Logical grouping of users by function, VLANs can be considered independent from their physical or geographic locations (flexibility).
- VLANs increase the number of broadcast domains while decreasing their size.
"the days when anyone could just plug their workstations into any switch port and gain access to network resources are history because now you get to control each port, plus whatever resources that port can access." 3.1.4.1

What happens if the switch for Sales—for example—is full and we need to add another user to the Sales LAN? Or, what do we do if there’s no more physical space where the Sales team is located for this new employee?

Ok then, why would we need a router since we can break broadcast domains by L2 switches?!

to communicate to a node or host on a different VLAN we need a router ,, straightforward ! : as it's a real LANs.

3.1.4.2
Identifying VLANs

A switch port can belong to only one VLAN if it is an access port or all VLANs if it is a trunk.

Frame tagging

Trunk link can hold frames from all VLANs so we need to tag each frame to know what VLAN it belongs to.

Frame tagging: each frame must be first tagged with the VLAN ID before forwarded into a trunk link.

Frame tagging can be done by either:

Inter-Switch Link (ISL)
- a way of explicitly tagging VLAN information onto an Ethernet frame. This tagging information allows VLANs to be multiplexed over a trunk link through an external encapsulation method (ISL) which allows the switch to identify the VLAN membership of a frame over the trunked link.
- Proprietary to Cisco switches.
IEEE 802.1Q

- Created by the IEEE as a standard method of frame tagging, IEEE 802.1Q actually inserts a field into the frame to identify the VLAN.
- If you’re trunking between a Cisco switched link and a different brand of switch, you’ve got to use 802.1Q for the trunk to work.

Practical Part 1

1. Connect the following topology on Packet Tracer, and don't forget IPs

2. Try pinging devices from each other.
3. Save your work, copy the file for part2.
4. Now let's configure VLANs: Engineers, ITs, and Managers on switch 0 and 1.
Switch 0:

1. Enter global conf. mode (managed switch).
2. Start creating VLANs by the following syntax:

Switch(config)#vlan n
Switch(config-vlan)#name "naaaame 😊"

Where n is VLAN id that range from 1-1005 but

- ID 1 :Default VLAN
- IDs 1002 through 1005 are reserved for Token Ring and FDDI VLANs

For our switch:
Switch(config)#vlan 2
Switch(config-vlan)#name IT
Switch(config-vlan)#vlan 3
Switch(config-vlan)#name ENG
Switch(config-vlan)#vlan 4
Switch(config-vlan)#name managers

** from privileged mode : show vlan

3. Now start adding interfaces to VLANs

For example,
Switch>en
Switch#conf t
Switch(config)#int fa0/1
Switch(config-if)#switchport mode access
Switch(config-if)#switchport access vlan 3

Repeat that for all interfaces connected to the devices.

Ports that connect switch are configured a little bit different:

Switch(config-if)#int fa0/4
Switch(config-if)#switchport mode trunk
Repeat same steps on switch 1

Now try pinging, what did you notice? 😊

For now, you are good to go! But notice that we did some redundant job over the switches! Which is the creation on VLANs.

So, we will introduce VLAN Trunking Protocol (VTP).

What if we delete a VLAN?!

VLAN Trunking Protocol (VTP)

The basic goals of VLAN Trunking Protocol (VTP) are to manage all configured VLANs across a switched internetwork and to maintain consistency throughout that network.

VTP allows a network manager to configure a switch so that it will propagate VLAN configurations to other switches in the network. The switch can be configured in the role of a VTP server or a VTP client.

VTP allows you to add, delete, and rename VLANs—information that is then propagated to all other switches in the VTP domain. Plug and Play VLAN adding.

VTP Components

VTP Domain

Consists of one or more interconnected switches. All switches in a domain share VLAN configuration details using VTP advertisements.

VTP Advertisements

VTP uses a hierarchy of advertisements to distribute and synchronize VLAN configurations across the network.
VTP Modes

A switch can be configured in one of three modes: server, client, or transparent.

VTP Server

VTP servers advertise the VTP domain VLAN information to other VTP-enabled switches in the same VTP domain. VTP servers store the VLAN information for the entire domain in NVRAM. The server is where VLAN can created, deleted, or renamed for the domain.

VTP Client

VTP clients function the same way as VTP servers, but you cannot create, change, or delete VLANs on a VTP client. A VTP client only stores the VLAN information for the entire domain while the switch is on. A switch reset deletes the VLAN information. You must configure VTP client mode on a switch.

VTP Transparent

Transparent switches forward VTP advertisements to VTP clients and VTP servers. Transparent switches do not participate in VTP. VLANs that are created, renamed, or deleted on transparent switches are local to that switch only.

VTP Revision Number

The configuration revision number is a 32-bit number that indicates the level of revision for a VTP frame. The default configuration number for a switch is zero. Each time a VLAN is added or removed, the configuration revision number is incremented. The switch with higher Revision Number becomes server!

You should know these three requirements for VTP to communicate VLAN information between switches:

- The VTP management domain name of both switches must be set the same.
- One of the switches has to be configured as a VTP server.
- No router is necessary.
Simply: VTP server creates, Clients follows.

VTP in action 4.2.4.2, 4.2.4.3

Configuration

To change status (by default all switches are servers)

Switch(config)# vtp mode server\client\transparent

To change domain name

Switch(config)# vtp domain domain-name

And to check changes use

Switch# show vtp status

And that's it 😊

Remember you still have to add interfaces manually VTP only helps you creating, deleting or renaming VLSNs!

Practical Part 2

Try using VTP on the topology above 😊

Big problem! 4.3.2.5
Configuring Inter-VLAN Routing

As we noticed from practical part1, we cannot ping devices on different VLANs or by other word, we don't have connectivity over them!

The solution is to add a router so it can route between these VLANs.

By default, only hosts that are members of the same VLAN can communicate. To change this and allow inter-VLAN communication, you need a router or a layer 3 switch.

This can be achieved like this:

![Diagram of network setup with routers and switches]

But notice that we lost two interfaces of the router! What if we have 30 VLANs! So we use what is called Router on a stick! (6.1.1.3).
To support ISL or 802.1Q routing on a Fast Ethernet interface, the router's interface is divided into logical interfaces—one for each VLAN. These are called subinterfaces.

It’s really important that you understand that each VLAN is a separate subnet. True, I know—they don’t have to be. But it really is a good idea to configure your VLANs as separate subnets, so just do that.

Practical part 3

Let us now try to route between our VLANs: follow the steps:

1. Add a router to any switch and configure the switch port as trunk.

   ```
   Switch(config)#int fa0/6
   Switch(config-if)#switchport mode trunk
   ```

2. Subnet your topology in a consistent way with your VLANs: You can use normal or VLSM subetting, for simplicity we will use the first one: 2bits to have 4 nets (Don't forget to set Default Gateway for PCs)

<table>
<thead>
<tr>
<th>Subnet</th>
<th>Net ID</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engs</td>
<td>192.168.1.0</td>
<td>255.255.255.192</td>
</tr>
<tr>
<td>ITs</td>
<td>192.168.1.64</td>
<td>255.255.255.192</td>
</tr>
<tr>
<td>Managers</td>
<td>192.168.1.128</td>
<td>255.255.255.192</td>
</tr>
</tbody>
</table>
3. Turn on the router interface and start subinterfacing the interface!

Router>en
Router#conf t
Router(config)#int fa0/0.3 any number, try to put it the same as VLAN ID
Router(config-subif)#encapsulation dot1Q?
 <1005-1> IEEE 802.1Q VLAN ID
Router(config-subif)#encapsulation dot1Q 3 (vlan id for engineers)
Router(config-subif)#ip address 192.168.1.1 255.255.255.192 (ip and mask)

Same work for vlan2(IT) and 4(Managers).

Router(config-subif)#int fa0/0.2
Router(config-subif)#encapsulation dot1Q 2
Router(config-subif)#ip address 192.168.1.65 255.255.255.192

Router(config-subif)#int fa0/0.4
Router(config-subif)#encapsulation dot1Q 4
Router(config-subif)#ip address 192.168.1.129 255.255.255.192

And don't forget to turn on the mother interface :D
Router(config)#int fa0/0
Router(config-if)#no shutdown

Now try pinging PCs in different VLANs 😊 traceroute it, too.

Very important lab