Properties of DFT

Periodicity and Linearity

1) Periodicity
If $x(n)$ and $X(k)$ are an N-point DFT pair, then

$$x(n + N) = x(n) \text{ for all } n$$

$$X(k + N) = X(k) \text{ for all } k$$

2) Linearity

If $x_1(n) \xrightarrow{\text{DFT}} X_1(k)$ and $x_2(n) \xrightarrow{\text{DFT}} X_2(k)$

Then $a_1x_1(n) + a_2x_2(n) \xrightarrow{\text{DFT}} a_1X_1(k) + a_2X_2(k)$
Symmetry Property

Let us assume that \(x(n) \) is a real signal and \(X(k) \) is expressed as

\[
X(k) = X_e(k) + jX_i(k) \quad 0 \leq n \leq N - 1
\]

Then the DFT can be written as

\[
X_e(k) = \sum_{n=0}^{N-1} x(n) \cos \left(\frac{2\pi kn}{N} \right) \\
X_i(k) = -\sum_{n=0}^{N-1} x(n) \sin \left(\frac{2\pi kn}{N} \right)
\]

The IDFT can be written as

\[
x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_e(k) \cos \left(\frac{2\pi kn}{N} \right) - X_i(k) \sin \left(\frac{2\pi kn}{N} \right)
\]

3-Symmetry Property

Let us assume that \(x(n) \) is a *real and even* signal

Then the DFT can be written as

\[
X_e(k) = \sum_{n=0}^{N-1} x(n) \cos \left(\frac{2\pi kn}{N} \right) \\
X_i(k) = 0
\]

The IDFT can be written as

\[
x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_e(k) \cos \left(\frac{2\pi kn}{N} \right)
\]

Symmetry Property

Let us assume that \(x(n) \) is a real and odd signal.

Then the DFT can be written as

\[
X_s(k) = 0
\]

\[
X_i(k) = -\sum_{n=0}^{N-1} x(n) \sin \left(\frac{2\pi kn}{N} \right)
\]

The IDFT can be written as

\[
x(n) = -\frac{1}{N} \sum_{k=0}^{N-1} X_i(k) \sin \left(\frac{2\pi kn}{N} \right)
\]

Circular Convolution

Circular convolution in the time domain

If \(x_1(m) = x_1(n) \odot x_2(n) \)

\[
X_s(k) = X_1(k)X_2(k)
\]

Circular convolution in the frequency domain

If \(x_1(m) = x_1(n)x_2(n) \)

\[
X_s(k) = \frac{1}{N} X_1(k) \odot X_2(k)
\]
Circular Convolution

Example: Perform the circular convolution of the following two sequences
\[x_1(n) = \{2,1,2,1\} \text{ and } x_2(n) = \{1,2,3,4\} \]

Solution

The DFT for the first sequence
\[X_1(k) = \sum_{n=0}^{N-1} x_1(n) e^{-j \frac{2\pi nk}{N}} \]
\[X_1(k) = 2 + e^{-j\pi/2} + 2e^{-j\pi} + e^{-j3\pi/2} \]
\[X_1(0) = 6 \quad X_1(1) = 0 \quad X_1(2) = 2 \quad X_1(3) = 0 \]

The DFT for the second sequence
\[X_2(k) = \sum_{n=0}^{N-1} x_2(n) e^{-j \frac{2\pi nk}{N}} \]
\[X_2(k) = 1 + 2e^{-j\pi/2} + 3e^{-j\pi} + 4e^{-j3\pi/2} \]

The DFT of the solution is
\[X_3(k) = X_1(k)X_2(k) \]
\[X_3(0) = 10 \quad X_3(1) = -2 + 2j \quad X_3(2) = -2 \quad X_3(3) = -2 - 2j \]

Then
\[X_3(k) = X_1(k)X_2(k) \]
\[X_3(0) = 60 \quad X_3(1) = 0 \quad X_3(2) = -4 \quad X_3(3) = 0 \]

Now the IDF of \(X_3(k) \) is
\[x_3(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_3(k) e^{j \frac{2\pi nk}{N}} = \frac{1}{4} (60 - 4e^{j\pi}) \]
\[x_3(0) = 14 \quad x_3(1) = 16 \quad x_3(2) = 14 \quad x_3(3) = 16 \]
Circular Shift

1) Time Circular Shift
 If \(x(n) \leftarrow \text{DFT} \rightarrow X(k) \)
 Then \(x((n-l) \mod N) \leftarrow \text{DFT} \rightarrow X(k)e^{-j2\pi l/N} \)

2) Frequency Circular Shift
 If \(x(n) \leftarrow \text{DFT} \rightarrow X(k) \)
 Then \(x(n)e^{j2\pi l/N} \leftarrow \text{DFT} \rightarrow X((k-l) \mod N) \)

Circular Correlation

If \(x(n) \leftarrow \text{DFT} \rightarrow X(k) \) and \(y(n) \leftarrow \text{DFT} \rightarrow Y(k) \)
Then \(r_y(l) \leftarrow \text{DFT} \rightarrow R_y(k) = X(k)Y^*(k) \)

Linear Filtering

Use of DFT in linear Filtering

Assume we have a finite duration \(x(n) \) of Length \(L \) as an input to a system with Finite Impulse Response (FIR) of length \(M \)

\[
x(n) = 0 \quad n < 0 \text{ and } n \geq L
\]
\[
h(n) = 0 \quad n < 0 \text{ and } n \geq M
\]

The output sequence

\[
y(n) = x(n) * h(n) \quad \text{or} \quad Y(\omega) = X(\omega)H(\omega)
\]

\(y(n) \) has a finite length which equals \(N = L+M-1 \)
which mean that we can calculate the DFT as

\[
Y(k) = X(\omega) \big|_{\omega=2\pi k/N} \quad k = 0,1,\ldots, N-1
\]
\[
= X(\omega)H(\omega) \big|_{\omega=2\pi k/N} \quad k = 0,1,\ldots, N-1
\]
\[
Y(k) = X(k)H(k) \quad k = 0,1,\ldots, N-1
\]
Linear Filtering

This means that we need to pad each of \(x(n) \) and \(h(n) \) by zeros to make them of length \(N \), this won’t change the frequency response for them as \(N > M \) and \(N > L \).

Example: By means of DFT and IDFT, determine the frequency response of the FIR filter with impulse response and input as

\[
h(n) = \{1, 2, 3\} \quad x(n) = \{1, 2, 2, 1\}
\]

Solution

\(L = 4 \) and \(M = 3 \) which means that \(L \cdot M - 1 = 6 \)

This means that we need to take DFT of \(N = 6 \) at the least. For simplicity of calculating DFT of size of power 2 as we shall see, we take \(N = 8 \)

The DFT of \(x(n) \) is

\[
X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N} = 1 + 2e^{-j\pi/4} + 2e^{-j\pi/2} + e^{-j3\pi/4}
\]

\[
X(0) = 6 \quad X(1) = 1.707 - j4.12132
X(2) = -1 - j \quad X(3) = 0.2929 - j0.12132
X(4) = 0 \quad X(5) = 0.2929 + j0.12132
X(6) = -1 + j \quad X(7) = 1.707 + j4.12132
\]

The DFT of \(h(n) \) is

\[
H(k) = \sum_{n=0}^{N-1} h(n) e^{-j2\pi kn/N} = 1 + 2e^{-j\pi/4} + 2e^{-j\pi/2}
\]
Linear Filtering

\[
\begin{align*}
H(0) &= 6 & H(1) &= 2.4142 - j4.4142 \\
H(2) &= -2 - j2 & H(3) &= -0.4142 + j1.5858 \\
H(4) &= 2 & H(5) &= -0.4142 - j1.5858 \\
H(6) &= -2 + j2 & H(7) &= 2.4142 + j4.4142
\end{align*}
\]

The product of these two sequences yields \(Y(k)\)

\[
\begin{align*}
Y(0) &= 36 & Y(1) &= -14.07 - j17.48 \\
Y(2) &= j4 & Y(3) &= 0.07 + j0.515 \\
Y(4) &= 0 & Y(5) &= 0.07 - j0.515 \\
Y(6) &= -j4 & Y(7) &= -14.07 + j17.48
\end{align*}
\]

Finally, the eight point IDFT is

\[
y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) e^{2\pi i n k / N}, \quad n = 0, 1, \ldots, 7
\]

Calculating for each value of \(n\)

\[
y(n) = (1, 4, 9, 11, 8, 3, 0, 0)
\]
Self Study

Students are encouraged to solve the following questions from the textbook:

5.4, 5.5, 5.11, and 5.13.