Electric Circuits
lecture #1

Eng. Abd Al-Shami H. Abn Jabri

Chapter 1: One e-

The goal of this course is to enable you to determine all variables of any electric circuit.

- Electric Charge Characteristics:
 1. The charge is bipolar (positive, -ve).
 2. Charge exists in discrete quantities. (Multiple of the electron charge)
 electron charge: \(1.6022 \times 10^{-19} \text{ C} \)
 3. Electrical effects are attributed to both the separation of charge and charge in motion.

- Separation of charge creates \(\Rightarrow \) Voltage.
- Motion of charge creates \(\Rightarrow \) Current.

\[
V = \frac{\Delta W}{\Delta q}, \quad V = \text{voltage (volts)}, \quad \Delta W = \text{energy per unit charge},
\]
\[
\Delta q = \text{energy (joules)},
\]
\[
q = \text{charge (coulombs)}.
\]

\[
i = \frac{\Delta q}{\Delta t}, \quad i = \text{current (amperes)}, \quad \Delta q = \text{rate of charge flow},
\]
\[
\Delta t = \text{time (seconds)}.
\]

- Current will always flow from the higher potential difference to the lower potential difference.
- The assignments of the reference polarity for voltage and the reference direction for current are entirely Arbitrary.
Passive Sign Convention

The current flows from the positive terminal to the negative terminal. (outside the battery).

The current flows from negative to positive inside the generator (battery).

There is NO negative current, if you face any negative value of a current, then the direction you assumed must be inverted.

Examples

\(i = 20 e^{-5000t} \) A, \(t \geq 0 \) so otherwise

1. **Calculate total charge??**

So

\[I = \frac{dq}{dt} \Rightarrow dq = I \, dt \]

\[Q = \int_0^\infty I \, dt = \text{area under the curve} \]

\[Q = \int_{-5000}^{0} 20 \, e^{-5000t} \, dt = 20 \left[\frac{-e^{-5000t}}{-5000} \right]_{-5000}^{0} = 20 \left[\frac{-e^{-5000} - e^0} {-5000} \right] \]

\[Q = \frac{20}{-5000} [1 - 1] = 4,000 \text{ mC} \]

2. **Find \(W \) (energy)??**

Hint - \(f(a) \)

\(f(b) \)

\[\int_{a}^{b} f(x) \, dx = \frac{b - a}{2} (f(a) + f(b)) \]

\[W = \frac{\int_{-100}^{0} (10 - q) \, dq + \int_{200}^{100} (5 + 300 - 200 \cdot 0 + 10) \, dq}{2} = 1650 \text{ J} \]
\[q = \frac{1}{x^2} - \left(\frac{t}{x} + \frac{1}{x^2} \right) e^{-\alpha t} + C \]

Find max. current? \(\alpha = 0.036795 s^{-1} \)

So \[I = \frac{dq}{dt} \]

\[q = \frac{1}{x^2} - \frac{t}{x} e^{\alpha t} - \frac{1}{x^2} e^{\alpha t} \]

\[\frac{dq}{dt} = 0 - \frac{1}{x^2} \left[\alpha t + 1 \right] e^{\alpha t} - \frac{1}{x^2} e^{\alpha t} \]

\[= -\frac{\alpha t}{x^2} e^{\alpha t} + \frac{e^{\alpha t}}{x^2} \]

\[= \frac{-\alpha t + 1}{x^2} e^{\alpha t} \]

\[I = t e^{\alpha t} \]

To find max. of \(I \), diff. it and equal with zero

\[\frac{dI}{dt} = \left(1 - \alpha t \right) e^{\alpha t} = 0 \]

\[1 - \alpha t = 0 \quad \Rightarrow \quad e^{\alpha t} = 0 \]

\[\alpha t = 1 \quad \Rightarrow \quad t = \frac{1}{\alpha} \]

\[I = t e^{-\alpha t} = \frac{1}{\alpha} e^{-\alpha/\alpha} = \frac{1}{\alpha} e^{-1} = \frac{1}{\alpha e} \]

\[I = 9.9 \approx 10 A \]

\[x \text{ Power and Energy} \]

- If \(P > 0 \), the component absorbs power.
- If \(P < 0 \), the component delivers power.

\[P = \frac{dw}{dt} \quad P = \text{power (watts)} \]

\[W = \text{energy (Joules)} \]

\[t = \text{time (seconds)} \]

\[P = IU = I^2R = \frac{U^2}{R} \]
Example 2: \(I(t) = 1 \)

\[V \]

\[E_1 \]

\[R_1 \]

\[5 \]

\[15 \]

\[20 \]

\[t(\text{s}) / \]

\[12 \]

\[8 \]

\[\int_0^t I(t) dt \]

(a) Find total charge?

\[q = \int_0^t I(t) dt \]

As you can notice, the current graph is divided into 3 regions \(R_1, R_2, R_3 \)

\[\int_{0}^{5} R_1, \quad y_1 = \frac{20 - 14}{t - 5} \]

\[I_1 = \int_0^5 -1.2t + 2 dt = \left[-0.6t^2 + 2t + \right]_0^5 = 8.5 \]

\[\int_{5}^{15} R_2, \quad y_2 = \frac{14 - 8}{5 - 5} = 0.6t + 17 \]

\[I_2 = \int_5^{15} -0.6t + 17 dt = \left[-0.3t^2 + 17t \right]_5^{15} = 110 \]

\[\int_{15}^{20} R_3, \quad y_3 = \frac{8 - 0}{15 - 15} = -1.6t + 32 \]

\[I_3 = \int_{15}^{20} -1.6t + 32 dt = \left[-0.8t^2 + 32t \right]_{15}^{20} = 20 \]

\[q = I \text{ total} = I_1 + I_2 + I_3 = 8.5 + 110 + 20 = 155 \text{ C} \]

(b) Calculate total energy \(W \)?

\[P = \frac{dW}{dt} \Rightarrow W = \int P \, dt \]

First calculate \(P \) from \(I, V \) graphs and then integrate it to calculate \(W \).
First if $0 < t \leq 5$
\[
p_1 = TV = (-1.2t + 20)(0.2t + 8) = 160 - 5.6t - 0.24t^2
\]
\[
W_1 = \int_5^5 p \, dt = \int_5^5 (160 - 5.6t - 0.24t^2) \, dt = 720 \text{ J}
\]

Second if $5 < t \leq 15$
\[
p_2 = TV = (-0.6t + 17)(0.2t + 8)
\]
\[
W_2 = \int_5^{15} p \, dt = \int_5^{15} (-0.6t + 17)(0.2t + 8) \, dt
\]

Third if $15 < t \leq 20$
\[
p_3 = TV = (-1.6t + 32)(0.2t + 8)
\]
\[
W_3 = \int_{15}^{20} p \, dt = \int_{15}^{20} (-1.6t + 32)(0.2t + 8) \, dt
\]

\[W_{\text{total}} = W_1 + W_2 + W_3\]

\[W \text{ Questions Due to 2/18/2011}\]

1.1, 1.9, 1.15, 1.17, 1.19, 1.21, 1.22, 1.23