Butterworth Filter

Spring 2009
Ammar Abu-Hudrouss - Islamic University Gaza

Filter types

What are the function of Filters?

A filter is a system that allow certain frequency to pass to its output and reject all other signals

Filters can be classified according to range of signal frequencies in the passband

- Lowpass filter
- Highpass filter
- Bandpass filter
- Stopband (bandreject) filter
Filter types according to its frequency response

- Butterworth filter
- Chebychev I filter
- Chebychev II filter
- Elliptic filter
Butterworth filter

Ideal lowpass filter is shown in the figure

The passband is normalised to one.
Tolerance in passband and stopband are allowed to enable the construction of the filter.

Lowpass prototype filter

Lowpass prototype filter: it is a lowpass filter with cutoff frequency $\Omega_p = 1$.

The frequency scale is normalized by ω_p. We use $\Omega = \omega / \omega_p$.
Lowpass prototype filter

Notation
In analogue filter design we will use

- s to denote complex frequency
- ω to denote analogue frequency
- p to denote complex frequency at lowpass prototype frequencies.
- Ω to denote analogue frequency at the lowpass prototype frequencies.

Magnitude Approximation of Analog Filters

- The transfer function of analogue filter is given as rational function of the form
 \[H(s) = \frac{c_0 + c_1 s + c_2 s^2 + \cdots + c_m s^m}{d_0 + d_1 s + d_2 s^2 + \cdots + d_n s^n} \quad m \leq n \]

- The Fourier transform is given by
 \[H(\omega) = H(s) \Big|_{s=j\omega} = \frac{c_0 + j c_1 \omega - c_2 \omega^2 + \cdots + (j)^m c_m \omega^m}{d_0 + j d_1 \omega - d_2 \omega^2 + \cdots + (j)^n d_n \omega^n} \]
 \[H(\omega) = |H(j\omega)| e^{j\phi(\omega)} \]
Magnitude Approximation of Analog Filters

- Analogue filter is usually expressed in term of
 \[|H(j\omega)|^2 = H(j\omega)H^*(j\omega) \]
 \[\angle H(j\omega) = -2\phi(\omega) \]

- Example
 Consider the transfer function of analogue filter, find
 \[H(s) = \frac{s + 1}{s^2 + 2s + 2} \]
 \[|H(j\omega)|^2 = H(s)H(-s) = \frac{s + 1}{s^2 + 2s + 2} \frac{-s + 1}{s^2 - 2s + 2} \]
 \[|H(j\omega)|^2 = \frac{s^2 + 1}{s^2 - 2s + 4} \]

Butterworth filter

\[|H(j\omega)|^2 \] Will have only even powers of \(\omega \) or
\[|H(\omega)|^2 = \frac{C_2 + C_4\omega^2 + C_6\omega^4 + \cdots + C_{2n}\omega^{2n}}{1 + D_2\omega^2 + D_4\omega^4 + \cdots + D_{2n}\omega^{2n}} \]

In order to approximate the ideal filter

1) The magnitude at \(\omega = 0 \) is normalized to one
2) The magnitude monotonically decreases from this value to zero as \(\omega \to \infty \).
3) The maximum number of its derivatives evaluated at \(\omega = 0 \) are zeros.
 This can be satisfied if
 \[|H(\omega)|^2 = \frac{1}{1 + D_{2n}\omega^{2n}} \]
Butterworth filter

The following specification is usually given for a lowpass Butterworth filter is:

1) The magnitude of H_0 at $\omega = 0$
2) The bandwidth ω_p
3) The magnitude at the bandwidth ω_p
4) The stopband frequency ω_s
5) The magnitude at the stopband frequency ω_s
6) The transfer function is given by

$$|H(\Omega)|^2 = \frac{H_0}{1 + D_{2N}(\Omega)^{2\epsilon}}$$

Butterworth filter

To achieve the equivalent lowpass prototype filter

1) We scale the cutoff frequency to one using transformation $\Omega = \omega / \omega_p$.
2) We scale the magnitude to 1 to 1 by dividing the magnitude by H_0.

The transfer function become

$$|H(\Omega)|^2 = \frac{1}{1 + D_{2N}(\Omega)^{2\epsilon}}$$

We denotes D_{2N} as ϵ^2 where ϵ is the ripple factor, then

$$|H(\Omega)|^2 = \frac{1}{1 + \epsilon^2(\Omega)^2}$$
Butterworth filter

If the magnitude at the bandwidth $\Omega = \Omega_p = 1$ is given as $(1 - \delta_p)^2$ or $-A_p$ decibels, the value of ε^2 is computed by:

$$20 \log |H(\omega)|_{\omega = \Omega_p} = -2A_p$$
$$10 \log \frac{1}{1 + \varepsilon^2} = -A_p$$
$$\varepsilon^2 = 10^{A_p/20} - 1$$

If we choose $A_p = -3$ dB $\Rightarrow \varepsilon^2 = 1$, this is the most common case and gives

$$|H(\omega)|^2 = \frac{1}{1 + (\omega/\Omega)^2}$$

Butterworth filter

If we use the complex frequency representation

$$|H(p)|^2 = |H(\omega)|^2 \bigg|_{\omega = \Omega} = \frac{1}{1 + (p/\Omega)^2}$$

The poles of this function occurs at

$$p_k = \begin{cases} e^{\pm \frac{2\pi j k}{2N}} & k = 1, 2, ..., 2N, \text{ n odd} \\ e^{\pm \frac{\pi j (2N-k)}{2N}} & k = 1, 2, ..., 2N, \text{ n even} \end{cases}$$

Or in general

$$p_k = e^{\pm \frac{2\pi j (N-1)k}{2N}} \quad k = 1, 2, ..., 2N$$

Poles occurs in complex conjugates

Poles which are located in the LHP are the poles of $H(s)$

$$p_k = e^{\pm \frac{2\pi j (N-1)k}{2N}} \quad k = 1, 2, ..., N$$
When we found the N poles we can construct the filter transfer function as

$$H(p) = \frac{1}{D(p)}$$

The denominator polynomial $D(p)$ is calculated by

$$D(p) = \prod_{k=1}^{N} (p - p_k)$$

Another method to calculate $D(p)$ using

$$D(p) = \prod_{k=1}^{N} (p - p_k)$$

$$D(p) = 1 + d_1 p + d_2 p^2 + \cdots + d_N p^N$$

$$d_k = \frac{\cos\left(\frac{(k-1)\pi}{2}\right)}{\sin\left(\frac{k\pi}{2N}\right)} d_{k-1}, \quad k = 1, 2, 3, \ldots, N$$

The coefficients d_k is calculated recursively where $d_0 = 1$.
Butterworth filter

The minimum attenuation as dB is usually given at certain frequency Ω_s.

The order of the filter can be calculated from the filter equation:

$$10 \log |H(\Omega_s)|^2 = -A_s$$

$$-10 \log (1 + \Omega_s^{2N})$$

$$N \geq \log \left[\frac{10^{-A_s/10} - 1}{2 \log(\Omega_s)} \right]$$

Design Steps of Butterworth Filter

1. Convert the filter specifications to their equivalents in the lowpass prototype frequency.
2. From A_p determine the ripple factor ε.
3. From A_s determine the filter order, N.
4. Determine the left-hand poles, using the equations given.
5. Construct the lowpass prototype filter transfer function.
6. Use the frequency transformation to convert the LP prototype filter to the given specifications.
Butterworth filter

Example:
Design a lowpass Butterworth filter with a maximum gain of 5 dB and a cutoff frequency of 1000 rad/s at which the gain is at least 2 dB and a stopband frequency of 5000 rad/s at which the magnitude is required to be less than −25 dB.

Solution:

\[\omega_p = 1000 \text{ rad/s} \quad \omega_s = 5000 \text{ rad/s} \]

By normalization,

\[\Omega_p = \frac{\omega_p}{\omega_s} = 1 \text{ rad/s} \]
\[\Omega_s = \frac{\omega_s}{\omega_p} = 5 \text{ rad/s} \]

And the stopband attenuation \(A_s = 25 + 5 = 30 \text{ dB} \)

The filter order is calculated by

\[N = \frac{\log(10^{5/3}) - 1}{2\log(10)} = [2.146] = 3 \]

Hence the transfer function of the normalized prototype filter of third order is

\[H(p) = \frac{1}{p^3 + 2p^2 + 2p + 1} \]
Butterworth filter

To restore the magnitude, we multiply be H_0

$$H(p) = \frac{H_0}{p^3 + 2p^2 + p + 1}$$

$20\log H_0 = 5\text{dB}$ which leads $H_0 = 1.7783$

To restore the frequency we replace p by $s/1000$

$$H(s) = H(p)\bigg|_{p=s/1000} = \frac{1.7783}{\left(\frac{s}{1000}\right)^3 + 2\left(\frac{s}{1000}\right)^2 + 2\left(\frac{s}{1000}\right) + 1}$$

$$H(s) = \frac{1.7783 \times 10^9}{s^3 + 2000s^2 + 2 \times 10^7 s + 10^5}$$

Butterworth filter

If the passband edge is defined for $A_p \neq 3\text{ dB}$ (i.e. $\varepsilon \neq 1$).

The design equation needs to be modified. The formula for calculating the order will become

$$N \geq \frac{\log\left[10^{4.10^{-1}} - 1\right]\varepsilon}{2\log(\Omega_p)}$$

And the poles are given by

$$p_k = e^{-jN/k} e^{j(2N+3\pi)/2N} \quad k = 1,2,\ldots,N$$

Home Study: Repeat the previous example if $A_p = 0.5\text{ dB}$