Discrete Mathematics

Chapter 8

Relations
8.1: Relations and there prosperities:

- Definitions:
 1. Let A and B be sets. A binary relation from A to B is a subset of A x B.
 2. A relation on the set A is a relation from A to A.
 3. A relation R on a set A is called reflexive if (a, a) ∈ R for every element a ∈ A.
 4. A relation R on the set A is irreflexive if for every a ∈ A, (a, a) /∈ R.
 5. A relation R on a set A is called symmetric if (b, a) ∈ R whenever (a, b) ∈ R, for all a, b ∈ A. A relation R on a set A such that for all a, b ∈ A, if (a, b) ∈ R and (b, a) ∈ R, then a = b is called antisymmetric.
 6. A relation R on a set A is called transitive if whenever (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A.
 7. Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where a ∈ A, c ∈ C, and for which there exists an element b ∈ B such that (a, b) ∈ R and (b, c) ∈ S. We denote the composite of R and S by S o R.
Exercises

1. 8.1.3 For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.

 a. \{ (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4) \}
 b. \{ (1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4) \}
 c. \{ (2, 4), (4, 2) \}
 d. \{ (1, 2), (2, 3), (3, 4) \}
 e. \{ (1, 1), (2, 2), (3, 3), (4, 4) \}
 f. \{ (1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4) \}

 Solution:

<table>
<thead>
<tr>
<th></th>
<th>reflexive</th>
<th>irreflexive</th>
<th>symmetric</th>
<th>antisymmetric</th>
<th>asymmetric</th>
<th>transitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>b</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>c</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>d</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>e</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>f</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

2. 8.1.30 Let R be the relation \{ (1, 2), (1, 3), (2, 3), (2, 4), (3, 1) \}, and let S be the relation \{ (2, 1), (3, 1), (3, 2), (4, 2) \}. Find S o R.

 Solution:

 \[
 \begin{array}{ccc}
 1 & 2 & 1 \\
 1 & 3 & 1 \\
 1 & 3 & 2 \\
 2 & 3 & 1 \\
 2 & 3 & 2 \\
 2 & 4 & 2 \\
 3 & 1 & \\
 \end{array}
 \]

 The result contain S o R = \{ (1, 1), (1, 2), (2, 1), (2, 2) \}
8.3: Representing Relations:

- The relation \(R \) can be represented by the matrix \(M_R = [m_{ij}] \), where:
 \[
 m_{ij} = \begin{cases}
 1 & \text{if } (a_i, b_j) \in R, \\
 0 & \text{if } (a_i, b_j) \notin R.
 \end{cases}
 \]

- A directed graph, or digraph, consists of a set \(V \) of vertices (or nodes) together with a set \(E \) of ordered pairs of elements of \(V \) called edges (or arcs). The vertex \(a \) is called the initial vertex of the edge \((a, b)\), and the vertex \(b \) is called the terminal vertex of this edge.

![Diagrams showing reflexive, irreflexive, symmetric, and antisymmetric properties of relations.](image_url)
Exercises

1. 8.3.4 List the ordered pairs in the relations on \{1, 2, 3, 4\} corresponding to these matrices (where the rows and columns correspond to the integers listed in increasing order).

\[
a) \begin{bmatrix}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
\end{bmatrix} \\
b) \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Solution:

a) \{ (1,1), (1,2), (1,4), (2,1), (2,3), (3,2), (3,3), (3,4), (4,1), (4,3), (4,4) \}

b) \{ (1,1), (1,2), (1,3), (2,2), (3,3), (3,4), (4,1), (4,4) \}

<table>
<thead>
<tr>
<th></th>
<th>reflexive</th>
<th>irreflexive</th>
<th>symmetric</th>
<th>antisymmetric</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>b</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

2. 8.3.23-26 List the ordered pairs in the relations represented by the directed graphs.

Solution:

1. \{ (a, c), (a, b), (b, c), (c, b) \}

2. \{ (a, a), (a, b), (b, b), (b, a), (c, c), (c, a), (c, d), (d, d) \}

<table>
<thead>
<tr>
<th></th>
<th>reflexive</th>
<th>irreflexive</th>
<th>symmetric</th>
<th>antisymmetric</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>b</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>
8.4: Closures of Relations

- For any property X, the “X closure” of a set A is defined as the “smallest” superset of A that has the given property.
- The reflexive closure of a relation R on A is obtained by adding (a, a) to R for each $a \in A$. I.e., it is $R \cup I_A$.
- The symmetric closure of R is obtained by adding (b, a) to R for each (a, b) in R. I.e., it is $R \cup R^{-1}$.
- The transitive closure or connectivity relation of R is obtained by repeatedly adding (a, c) to R for each $(a, b), (b, c)$ in R.

- A path from a to b in the directed graph G is a sequence of edges $(x_0, x_1), (x_1, x_2), (x_2, x_3), \ldots, (x_{n-1}, x_n)$ in G, where n is a nonnegative integer, and $x_0 = a$ and $x_n = b$, that is, a sequence of edges where the terminal vertex of an edge is the same as the initial vertex in the next edge in the path. This path is denoted by $x_0, x_1, x_2, \ldots, x_{n-1}, x_n$ and has length n. We view the empty set of edges as a path from a to a. A path of length $n \geq 1$ that begins and ends at the same vertex is called a circuit or cycle.

- A path of length $n \geq 1$ from a to a is called a circuit or a cycle.
- There exists a path of length n from a to b in R if and only if $(a, b) \in R^n$.
Exercises

1. Let R be the relation on the set $\{0, 1, 2, 3\}$ containing the ordered pairs $(0, 1), (1, 1), (1, 2), (2, 0), (2, 2),$ and $(3, 0)$. Find the

 a. Reflexive closure of R.
 b. Symmetric closure of R.

Solution:

a. Reflexive closure of $R = R \cup I_A = \{(0, 0), (0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)\}$

b. Symmetric closure of $R = R \cup R^{-1} = \{(0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0)\}$
8.5: Equivalence Relations:

- An equivalence relation (e.r.) on a set A is simply any binary relation on A that is reflexive, symmetric, and transitive.
- Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. The equivalence class of a with respect to R is denoted by $[a]_R$. When only one relation is under consideration, we can delete the subscript R and write $[a]$ for this equivalence class.
- A partition of a set A is the set of all the equivalence classes $\{A_1, A_2, \ldots \}$ for some e.r. on A.

Exercises

1. 8.5.1 Which of these relations on $\{0, 1, 2, 3\}$ are equivalence relations? Determine the properties of an equivalence relation that the others lack.

 a. $\{(0, 0), (1,1), (2, 2), (3, 3)\}$
 b. $\{(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)\}$
 c. $\{(0, 0), (1,1), (1, 2), (2,1), (2, 2), (3, 3)\}$
 d. $\{(0, 0), (1,1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$
 e. $\{(0, 0), (0,1), (0, 2), (1, 0), (1,1), (1, 2), (2, 0), (2, 2), (3, 3)\}$

Solution:

<table>
<thead>
<tr>
<th>Equivalence Relation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a True</td>
<td></td>
</tr>
<tr>
<td>b False</td>
<td>not reflexive, (1,1) not exist</td>
</tr>
<tr>
<td>c True</td>
<td></td>
</tr>
<tr>
<td>d False</td>
<td>Not transitive, (1,3) and (3,2) but no (1,2)</td>
</tr>
<tr>
<td>e False</td>
<td>Not symmetric, (1,2) but no (2,1)</td>
</tr>
</tbody>
</table>