Answer the following questions:

Q.1 Choose the correct answer for each of the following items:

(i) One of the following statements is false:
 (a) If $2 < -2$, then $2 = 0$.
 (b) 7 is an odd number and 7 is not divisible by 2.
 (c) $0 \in \mathbb{N}$ or $0 \in \mathbb{Z}$
 (d) $3 > 1$ if and only if $2 = 1 + 1$.

(ii) If t is a tautology, c is a contradiction, and p is any statement, then then
 (a) $t \land p \equiv t$
 (b) $t \lor p \equiv p$
 (c) $c \land p \equiv p$
 (d) $c \lor p \equiv p$.

(iii) If $A = \{R\}$, then
 (a) $A = \mathbb{R}$
 (b) $\mathbb{R} \subseteq A$
 (c) $\mathbb{R} \in A$
 (d) $A \subseteq \mathbb{R}$.

(iv) If $A = \{a_1, a_2, a_3, a_4\}$, then the number of elements in $\wp(A)$ equals
 (a) 16
 (b) 4
 (c) 256
 (d) 8.

(v) Let U be a universal set and let A and B be subsets of U. Then
 (a) $(A \cap B)' = A' \cup B'$
 (b) $A \cup U = A$
 (c) $A \cap U = U$
 (d) $A' = U$.
Q.2 (a) Use deductive reasoning to prove the tautology \((p \lor q) \land \sim p \equiv q \land \sim p\)

(b) Give a proof of validity for the following argument:
1. \(p \lor (q \rightarrow s)\)
2. \(p \rightarrow r\)
3. \(\sim r \rightarrow (s \rightarrow u)\)
4. \(\sim r / q \rightarrow u\)
Q.3 (a) Use mathematical induction to prove that for all natural numbers n,

$$1.2.3 + 2.3.4 + 3.4.5 + \ldots + n(n + 1)(n + 2) = \frac{1}{4}n(n + 1)(n + 2)(n + 3)$$

(b) Prove that for any sets A, B, and C, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Q.4 (a) Prove that \((A \cap B) \subseteq B\).

(b) Prove that \(A \cup B = A \cup (B - A)\). "\textbf{Hint: } p \lor \sim p \equiv \text{tautology}"