Chapter 1
Solving Nonlinear Equations

In this chapter we study methods to solve nonlinear equations of the form

\[f(x) = 0. \]

A solution of \(f(x) = 0 \) is also called a root or a zero of \(f \).

1.2. Bisection Method (Interval Halving)

The bisection method is an application of the intermediate value theorem.

Theorem 1. (intermediate value theorem)

Let \(f(x) \) be a continuous function on an closed interval \([a, b]\) and let \(y_0 \) be a number between \(f(a) \) and \(f(b) \). Then there is a number \(c \in (a, b) \) such that \(f(c) = y_0 \).

Our aim is to solve \(f(x) = 0 \). That is to find a number \(c \) such that \(f(c) = 0 \). If we apply Intermediate value theorem with \(y_0 = 0 \), then we must have \(c \in (a, b) \) such that \(f(c) = y_0 = 0 \).

Corollary 1. If \(f(x) \) is continuous on \([a, b]\) with \(f(a)f(b) < 0 \), then there is a number \(c \in (a, b) \) such that \(f(c) = 0 \).

Description of bisection method

1. Find an interval \([a, b]\) such that \(f(a)f(b) < 0 \). This can be done by sketching the graph of \(f \) roughly or by try and error.

2. Define \(c = \frac{a + b}{2} \). Then \(c \) will be an approximation for the solution of \(f(x) = 0 \).

3. To find a better approximation we take a new interval as follows:
 - if \(f(c)f(a) < 0 \), then \(b = c \);
 - if \(f(c)f(a) > 0 \), then \(a = c \).

4. Repeat steps (2) and (3) until the approximation \(c \) is as good as we require.

How to stop the method

We can control the accuracy of the solution by one of the following two methods:

- We may stop when \(|a - b| < 2h \), where \(h \) is the allowed error.
- We may stop when \(|f(c)| < h \) for some small number \(h \). (\(f(c) \approx 0 \)).
Example 1. Use the bisection method to find a root of $f(x) = x^2 - 3$ in the interval $[1, 2]$. Stop when $|b - a| < 0.2$.

Solution:
Example 2. Use the bisection method to find a root of \(f(x) = e^x - 4x^2 \) in the interval \([0, 1]\). Stop when \(|f(x)| < 0.01\).

Solution:
Error analysis

Bisection method is one of the few methods of numerical methods where we know in advance how many steps we must take to reduce the error to a prescribed size.

In order to have $E_a < h$, we have to choose the integer n such that

$$n > \frac{1}{\ln 2} \ln \left(\frac{b - a}{h} \right).$$

Proof:

Example 1. How many steps (iterations) do we need in bisection method to find an approximation for the root of $f(x) = e^x - 4x^2$ with absolute error smaller than 0.01 if we start with the interval $[0, 1]$.

Solution:

Remark. The bisection method converges very slowly.