Islamic University of Gaza

ECOM 2125 Assembly Language Lab

Eng. Eihab S. El-Radie

2014/2015

Date: May 13, 2015, Duration: 120 minutes

Final Exam

<table>
<thead>
<tr>
<th>Student Name:</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Id:</td>
<td>1 2 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/15</td>
</tr>
<tr>
<td>2</td>
<td>/10</td>
</tr>
<tr>
<td>3</td>
<td>/20</td>
</tr>
<tr>
<td>4</td>
<td>/50</td>
</tr>
<tr>
<td>Bonus</td>
<td>/5</td>
</tr>
<tr>
<td>Total</td>
<td>/100</td>
</tr>
</tbody>
</table>
(Q1) [15 Points] Write true or false for the following statements:

[F] 1. Int 16h and Int 10h are a MS-Dos-level access interrupts, while Int 21h is an Bios-level Access interrupt.

[F] 2. The PROC directive begins a procedure and END directive ends a procedure.

[T] 3. It is possible to call a procedure inside an existing procedure.

[T] 4. Given the same task to accomplish, a nonrecursive procedure usually uses less memory than a recursive one.

[F] 5. Function 01 Int 16h Check which key is pressed, and store the ASCII code in AL.

[T] 6. LODSB, LODSW, and LODSD load a byte, word, or doubleword from memory at ESI into AL/AX/EAX, respectively.

[F] 7. ESP is often called the base pointer or frame pointer because it holds the base address of the stack frame.

[T] 8. The ROL (rotate left) instruction shifts each bit to the left. The highest bit is copied into the Carry flag and the lowest bit position.

[T] 9. A subroutine’s stack frame always contains the caller’s return address and the subroutine’s local variables.

[F] 10. When a macro is invoked, the CALL and RET instructions are automatically inserted into the assembled program.

[F] 11. The PUSH instruction cannot have an immediate operand.

[F] 12. The JG instruction is used when comparing unsigned integers.

[T] 13. No flags are affected by the NOT instruction.

[T] 14. The TEST instruction does not alter the destination operand.

[T] 15. The JO instruction is used after an operation involving signed integers.
(Q2) [10 Points] Choose the correct answer:

1. What is the content of Stack Pointer?
 - a. Address of the current instruction
 - b. Address of the next instruction
 - c. Address of the top element of the stack
 - d. None of the above

2. The content of AH register after the following operation is:
 - `mov ax,95h`
 - `mov bl,10h`
 - `div bl`
 - (A). 05h
 - (B). 09h
 - (C). 00h
 - (D). none

3. Which index register is used by the STOSD instruction?
 - (A). esp
 - (B). esi
 - (C). ebp
 - (D). edi

4. Suppose we want to convert the value 6Fh in AL to the value F6h. Which of the following instructions will do this:
 - (A). rol al,12
 - (B). rol al,4
 - (C). ror al,4
 - (D). all the previous

5. What will be the hexadecimal value of AX after the following instructions have executed?
 - `mov ax,6009h`
 - `stc`
 - `rcr ax,1`
 - (A). B004h
 - (B). 3004h
 - (C). 9600h
 - (D). 0096h

6. What will be the hexadecimal value of DX after the following instructions have executed?
 - `mov dx,0095h`
 - `clc`
 - `rcl dx,1`
 - (A). 004Ah
 - (B). 012Ah
 - (C). 008Ah
 - (D). 012Bh
Example 1

1: .data
2: str1 BYTE "1324A2342424",0
3: .code
4: mov edi,OFFSET str1
5: mov al,'A'
6: cld
7: repne scasb
8: mov bl,[edi]

7. In Example 1, assume that str1 is located at offset 00040010h. What will be the value of EDI after line 7 executes?
 - a. 00040011h
 - b. 00040013h
 - c. 00040014h
 - d. 00040015h

8. In Example 1, if we change line 6 to "std", what value will be moved to BL after line 8 executes?
 - a. ASCII code of "4"
 - b. ASCII code of "A"
 - c. ASCII code of "2"
 - d. cannot be determined

9. In Example 1, if we change line 7 to "repe scasb", what value will be moved to BL after line 8 executes?
 - a. ASCII code of "3"
 - b. ASCII code of "1"
 - c. ASCII code of "A"
 - d. ASCII code of "2"

10. The content of AH register after the following operation is:
    ```
        mov ax,95h
        mov bl,10h
        div bl
    ```
 - a. 09h
 - b. 05h
 - c. 00h
 - d. none

(Q3) [20 Points]: Answer the following Questions:

1. In the following instruction sequence, show the changed values of AL where indicated, in hexadecimal:
   ```
   mov al,9Ch
   not al
   mov al,4Bh
   and al,74h
   mov al,86h
   or al,42h
   mov al,72h
   xor al,0A5h
   ```
 - a. 63h
 - b. 40h
 - c. C6h
 - d. D7h
2. In the following instruction sequence, show the values of the Carry, Zero, and Sign flags where indicated:

```
mov al,00110011b
test al,2 ; a. CF= 0  ZF= 0  SF= 0
mov al,6
cmp al,5 ; b. CF= 0  ZF= 0  SF= 0
mov al,5
cmp al,7 ; c. CF= 1  ZF= 0  SF= 1
```

3. What is the binary value of AL after the following instructions have executed?

```
mov al,10000101b
clc
rcr al,1
```

Ans:

```
0100 0010
```

4. What is the binary value of AX after the following instructions have executed?

```
mov ax,0000000010011101b
mov bx,1010101010000000b
shld ax,bx,1
```

Ans:

```
0000 0001 0011 1011
```

5. Write a series of instructions that will multiply EAX by 18, using a combination of shift, MOV, and ADD instructions.

Ans:

```
mov ebx,eax ; make copy
shl eax,4 ; eax * 16
shl ebx,1 ; ebx * 2
add eax,ebx ; answer
```

6. Implement the following expression in assembly language.

\[ax = word1 \times (word3 \% word2) \]

Ans.:

```
mov ax,word3
mov dx,0
div word2
mov cx,dx
mov ax,word1
mul cx
```
7. If SS=0200h and SP=00FEh. What will be the value of SP, AX and EBX after executing the following code?

 POP AX
 POP EBX

Data stored in the stack segment is shown in the table below:

<table>
<thead>
<tr>
<th>Value of SP</th>
<th>Value stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>108h</td>
<td>8Bh</td>
</tr>
<tr>
<td>107h</td>
<td>54h</td>
</tr>
<tr>
<td>106h</td>
<td>8Ch</td>
</tr>
<tr>
<td>105h</td>
<td>8Ah</td>
</tr>
<tr>
<td>104h</td>
<td>78h</td>
</tr>
<tr>
<td>103h</td>
<td>5Bh</td>
</tr>
<tr>
<td>102h</td>
<td>2Ah</td>
</tr>
<tr>
<td>101h</td>
<td>12h</td>
</tr>
<tr>
<td>100h</td>
<td>8Ch</td>
</tr>
<tr>
<td>0FFh</td>
<td>5Bh</td>
</tr>
<tr>
<td>0FEh</td>
<td>11h</td>
</tr>
</tbody>
</table>

SP=104h
AX=5B11h
BX=5B2A128Ch
(Q4) Programming [45 Points]
A. [10 Points] Write a macro code named *Copy_Bytes* taking three arguments *sourceAddress, DestAddress, numOfBytes*. This macro copy the first ten bytes from memory at address A3330h to address 14005h. Save this macro in a file named *exam.lib*, include it in your code and then invoke the macro.

```
exam.lib:

#include exam.lib
.model small
.386
.stack 100h
.code
main:
    mov ax,@data
    mov ds,ax
    Copy_Bytes 0h3330h,14005h,10
    mov ah,4ch
    int 21h
end main
```

The Code:
B. **[15 Points]** Write an assembly procedure that emulates the sumMid series:

\[
\text{SumMid} (n) = n + \text{sumMid} \left(\frac{n}{2} \right) \quad \text{where sumMid} (I) = 0 \text{ where } I \leq 0
\]

```c
static int sumMid (int n){
    if (n<=0) return 0;
    else return n+sumMid(n/2);
}
```

Solution:

```
.model small
.386
.stack 180h
.data
.code
main:
    mov ax,@data
    mov ds,ax

    mov eax,8
    push eax
    call sumMid
    mov ah,4ch
    int 21h ; terminate the program

sumMid PROC
    push ebp
    mov ebp,esp
    mov eax,[ebp+6] ; get n
    cmp eax,0 ; n > 0?
    ja L1 ; yes: continue
    mov eax,0 ; no: return 0
    jmp L2
L1:
    shr eax,1 ; get n/2
    push eax ; sumMid(n/2)
    call sumMid
    Return:
    mov ebx,[ebp+6] ; get n
    add eax,ebx ; eax = eax + ebx
L2:
    pop ebp ; return EAX
    ret 4 ; clean up stack
sumMid ENDP
end main
```
C. **[20 Points]** Write an assembly program that takes a sequence of numbers from the user, the program continues to ask for new numbers until the accumulative product of these numbers is greater than 1000 (base 10); if the user enters a non-digit character the program shall skip it.

Solution:
```
.model small
.386
.stack 180h
.data
messg1 db "Enter the sequence :",0dh,0ah,"$"
messg2 db 0ah,0d,"the result is greater than 1000.$"
result dw 1
limit = 1000
.code
main:
    mov ax,@data
    mov ds,ax
    mov ah,9
    mov dx,OFFSET messg1
    int 21h
l1:
    mov ah,8
    int 21h
    sub al,30h  ;convert Ascii to int
    cmp al,9  ;check if it is a number
    ja l1  ;continue the loop if not digit
    mov ah,2  ;show the digit
    mov dl,al
    add dl,30h  ;convert int to Ascii
    int 21h
    sub al,30h  ;again convert Ascii to int
    movzx ax,al
    mov result,ax
    mul result
    cmp result,limit
    jb l1
    mov ah,9
    mov dx,OFFSET messg2
    int 21h
    mov ah,1  ;stop the execution
    int 21h
    mov ah,4ch
    int 21h
end main
```