Chapter 6

Section 6.2

6.2.1 (a) Reject \(H_0 \) if \(\frac{\bar{y} - 120}{18/\sqrt{25}} \leq -1.41; z = -1.61; \) reject \(H_0 \).

(b) Reject \(H_0 \) if \(\frac{\bar{y} - 42.9}{3.2/\sqrt{16}} \) is either 1) \(\leq -2.58 \) or 2) \(\geq 2.58; z = 2.75; \) reject \(H_0 \).

(c) Reject \(H_0 \) if \(\frac{\bar{y} - 14.2}{4.1/\sqrt{9}} \geq 1.13; z = 1.17; \) reject \(H_0 \).

6.2.3 (a) No, because the observed \(z \) could fall between the 0.05 and 0.01 cutoffs.

(b) Yes. If the observed \(z \) exceeded the 0.01 cutoff, it would necessarily exceed the 0.05 cutoff.

6.2.5 No, because two-sided cutoffs (for a given \(\alpha \)) are further away from 0 than one-sided cutoffs.

6.2.7 (a) \(H_0 \) should be rejected if \(\frac{\bar{y} - 12.6}{0.4/\sqrt{30}} \) is either 1) \(\leq -1.96 \) or 2) \(\geq 1.96 \). But \(\bar{y} = 12.76 \) and \(z = 2.19 \), suggesting that the machine should be readjusted.

(b) The test assumes that the \(y_i \)'s constitute a random sample from a normal distribution. Graphed, a histogram of the 30 \(y_i \)'s shows a mostly bell-shaped pattern. There is no reason to suspect that the normality assumption is not being met.

6.2.9 \(P \)-value = \(P(Z \leq -0.92) + P(Z \geq 0.92) = 0.3576 \); \(H_0 \) would be rejected if \(\alpha \) had been set at any value greater than or equal to 0.3576.

6.2.11 \(H_0 \) should be rejected if \(\frac{\bar{y} - 145.75}{9.50/\sqrt{25}} \) is either 1) \(\leq -1.96 \) or 2) \(\geq 1.96 \). Here, \(\bar{y} = 149.75 \) and \(z = 2.10 \), so the difference between $145.75 and $149.75 is statistically significant.

Section 6.3

6.3.1 (a) Given that the technique worked \(k = 24 \) times during the \(n = 52 \) occasions it was tried, \(z = \frac{24 - 52(0.40)}{\sqrt{52}(0.40)(0.60)} = 0.91 \). The latter is not larger than \(z_{.05} = 1.64 \), so \(H_0 \): \(p = 0.40 \) would not be rejected at the \(\alpha = 0.05 \) level. These data do not provide convincing evidence that transmitting predator sounds helps to reduce the number of whales in fishing waters.

(b) \(P \)-value = \(P(Z \geq 0.91) = 0.1814 \); \(H_0 \) would be rejected for any \(\alpha \geq 0.1814 \).
6.3.3 Let \(p = P(\text{current supporter is male}) \). Test \(H_0: p = 0.65 \) versus \(H_1: p < 0.65 \). Since \(n = 120 \) and \(k = \text{number of male supporters} = 72, z = \frac{72 - 120(0.65)}{\sqrt{120(0.65)(0.35)}} = -1.15 \), which is not less than or equal to \(-z_{0.05} = -1.64\), so \(H_0: p = 0.65 \) would not be rejected.

6.3.5 Let \(p = P(Y \leq 0.69315) \). Test \(H_0: p = \frac{1}{2} \) versus \(H_1: p \neq \frac{1}{2} \). Given that \(k = 26 \) and \(n = 60 \),
\[P\text{-value} = P(X \leq 26) + P(X \geq 34) = 0.3030. \]

6.3.7 Reject \(H_0 \) if \(k \geq 4 \) gives \(\alpha = 0.50 \); reject \(H_0 \) if \(k \geq 5 \) gives \(\alpha = 0.23 \); reject \(H_0 \) if \(k \geq 6 \) gives \(\alpha = 0.06 \); reject \(H_0 \) if \(k \geq 7 \) gives \(\alpha = 0.01 \).

6.3.9 (a) \[\alpha = P(\text{reject } H_0 \mid H_0 \text{ is true}) = P(X \leq 3 \mid p = 0.75) = \sum_{k=0}^{3} \binom{7}{k}(0.75)^k(0.25)^{7-k} = 0.07 \]

(b) \[
\begin{array}{cc}
0.75 & 0.07 \\
0.65 & 0.20 \\
0.55 & 0.39 \\
0.45 & 0.61 \\
0.35 & 0.80 \\
0.25 & 0.93 \\
0.15 & 0.99 \\
\end{array}
\]

Section 6.4

6.4.1 (a) As described in Example 6.2.1, \(H_0: \mu = 494 \) is to be tested against \(H_1: \mu \neq 494 \) using \(\pm 1.96 \) as the \(\alpha = 0.05 \) cutoffs. That is, \(H_0 \) is rejected if \(\frac{\bar{Y} - 494}{124/\sqrt{86}} \leq -1.96 \) or if \(\frac{\bar{Y} - 494}{124/\sqrt{86}} \geq 1.96 \). Equivalently, the null hypothesis is rejected if \(\bar{Y} \leq 467.8 \) or if \(\bar{Y} \geq 520.2 \). Therefore, \(1 - \beta = P(\text{reject } H_0 \mid \mu = 500) = P(\bar{Y} \leq 467.8 \mid \mu = 500) + P(\bar{Y} \geq 520.2 \mid \mu = 500) = \)
\[
P\left(Z \leq \frac{467.8 - 500}{124/\sqrt{86}} \right) + P\left(Z \geq \frac{520.2 - 500}{124/\sqrt{86}} \right) = P(Z \leq -2.41) + P(Z \geq 1.51) =
0.0080 + 0.0655 = 0.0735.
\]

6.4.3 The null hypothesis in Question 6.2.2 is rejected if \(\bar{Y} \) is either 1) \(\leq 89.0 \) or 2) \(\geq 101.0 \).
Suppose \(\mu = 90 \). Since \(\sigma = 15 \) and \(n = 22 \), \(1 - \beta = P(\bar{Y} \leq 89.0) + P(\bar{Y} \geq 101.0) = \)
\[
P\left(Z \leq \frac{89.0 - 90}{15/\sqrt{22}} \right) + P\left(Z \geq \frac{101.0 - 90}{15/\sqrt{22}} \right) = P(Z \leq -0.31) + P(Z \geq 3.44) = 0.3783 + 0.0003 =
0.3786.\]

Chapter 6
6.4.5 \(H_0 \) should be rejected if \(z = \frac{\bar{y} - 240}{50/\sqrt{25}} \leq -2.33 \) or, equivalently, if \(\bar{y} \leq 240 - 2.33 \cdot \frac{50}{\sqrt{25}} = 216.7 \). Suppose \(\mu = 220 \). Then \(\beta = P(\text{accept } H_0 \mid H_1 \text{ is true}) = P(\bar{Y} > 216.7 \mid \mu = 220) = P\left(Z > \frac{216.7 - 220}{50/\sqrt{25}}\right) = P(Z > -0.33) = 0.6293.\)

6.4.7 For \(\alpha = 0.10, H_0: \mu = 200 \) should be rejected if \(\bar{y} \leq 200 - 1.28 \cdot \frac{15.0}{\sqrt{n}} \). Also, \(1 - \beta = P\left(\bar{Y} \leq 200 - 1.28 \cdot \frac{15.0}{\sqrt{n}} \mid \mu = 197\right) = 0.75, \) so \(P\left(\frac{200 - 1.28 \cdot 15.0/\sqrt{n} - 197}{15.0/\sqrt{n}}\right) = 0.75. \) But \(P(Z \leq 0.67) = 0.75, \) implying that \(\frac{200 - 1.28 \cdot 15.0/\sqrt{n} - 197}{15.0/\sqrt{n}} = 0.67. \) It follows that the smallest \(n \) satisfying the conditions placed on \(\alpha \) and \(1 - \beta \) is 95.

6.4.9 Since \(H_1 \) is one-sided, \(H_0 \) is rejected when \(\bar{y} \geq 30 + \frac{9}{\sqrt{16}}. \) Also, \(1 - \beta = \text{power} = P\left(\bar{Y} \geq 30 + \frac{9}{\sqrt{16}} \mid \mu = 34\right) = 0.85. \) Therefore, \(1 - \beta = P\left(Z \geq \frac{30 + \frac{9}{\sqrt{16}} - 34}{9/\sqrt{16}}\right) = 0.85. \) But \(P(Z \geq -1.04) = 0.85, \) so \(\frac{30 + \frac{9}{\sqrt{16}} - 34}{9/\sqrt{16}} = -1.04, \) implying that \(z_{\alpha} = 0.74. \) Therefore, \(\alpha = 0.23. \)

6.4.11 In this context, \(\alpha \) is the proportion of incorrect decisions made on innocent suspects—that is, \(\frac{9}{140}, \) or 0.064. Similarly, \(\beta \) is the proportion of incorrect decisions made on guilty suspects—here, \(\frac{15}{140}, \) or 0.107. A Type I error (convicting an innocent defendant) would be considered more serious than a Type II error (acquitting a guilty defendant).

6.4.13 For a uniform pdf, \(f_{\text{max}}(y) = \frac{5}{\theta^4}, \) \(0 \leq y \leq \theta \) when \(n = 5. \) Therefore,

\[
\alpha = P(\text{reject } H_0 \mid H_0 \text{ is true}) = P(Y_{\text{max}} \geq k \mid \theta = 2) = \int_{2}^{7} \frac{5}{y^4} \frac{1}{25} dy = 1 - \frac{k^5}{32}. \]

For \(\alpha \) to be 0.05, \(k = 1.98. \)

6.4.15 \(\beta = P(\text{accept } H_0 \mid H_1 \text{ is true}) = P(X \leq n - 1 \mid p) = 1 - P(X = n \mid p) = 1 - \left(\frac{n}{n}\right) p^n (1 - p)^0 = 1 - p^n. \) When \(\beta = 0.05, p = \sqrt[3]{0.95}. \)
6.4.17 \(1 - \beta = P(\text{reject } H_0 \mid H_1 \text{ is true}) = P \left(Y \leq \frac{1}{2} \mid \theta \right) = \int_0^{\theta/2} (1 + \theta) y^{\theta-1} dy = \left(\frac{1}{2} \right)^{\theta+1} \frac{1}{\theta} \frac{1}{2} \frac{1}{8} = 7.18 \).

6.4.19 \(P(\text{Type II error}) = \beta = P(\text{accept } H_0 \mid H_1 \text{ is true}) = P \left(X \leq \frac{3}{2} \mid \theta = 2 \right) = \sum_{k=1}^{3} \frac{1 - \frac{1}{2}}{2} \left(\frac{1}{2} \right)^k \frac{1}{8} = 0.04 \).

6.4.21 \(\alpha = P(\text{reject } H_0 \mid H_0 \text{ is true}) = P(Y_1 + Y_2 \leq k \mid \theta = 2). \) When \(H_0 \) is true, \(Y_1 \) and \(Y_2 \) are uniformly distributed over the square defined by \(0 \leq Y_1 \leq 2 \) and \(0 \leq Y_2 \leq 2 \), so the joint pdf of \(Y_1 \) and \(Y_2 \) is a plane parallel to the \(Y_1Y_2 \)-axis at height \(\frac{1}{4} \left(f_{Y_1}(y_1) \cdot f_{Y_2}(y_2) = \frac{1}{2} \cdot \frac{1}{2} \right) \). By geometry, \(\alpha \) is the volume of the triangular wedge in the lower left-hand corner of the square over which \(Y_1 \) and \(Y_2 \) are defined. The hypotenuse of the triangle in the \(Y_1Y_2 \)-plane has the equation \(y_1 + y_2 = k \). Therefore, \(\alpha = \text{area of triangle} \times \text{height of wedge} = \frac{1}{2} \cdot k \cdot \frac{1}{4} = k^2/8 \). For \(\alpha \) to be 0.05, \(k = \sqrt{0.04} = 0.63 \).

Section 6.5

6.5.1 \(L(\hat{\omega}) = \prod_{i=1}^{n} (1 - p_0) y_i^{-1} p_0 = p_0^{\sum_{i=1}^{n} k_i - n} = p_0^{(1 - p_0)^{k - n}}, \) where \(k = \sum_{i=1}^{n} k_i \). From the comment following Example 5.2.1, the maximum likelihood estimate for \(p \) is \(p = \frac{n}{k} \).

Therefore, \(L(\hat{\omega}) = \left(\frac{n}{k} \right)^{\sum_{i=1}^{n} k_i - n} \), and the generalized likelihood ratio for testing \(H_0: p = p_0 \) versus \(H_1: p \neq p_0 \) is the quotient \(L(\hat{\omega}) / L(\hat{\omega}) \).

6.5.3 \(L(\hat{\omega}) = \prod_{i=1}^{n} (1/\sqrt{2\pi}) e^{-\frac{1}{2}(\gamma_i - \mu_0)^2} = (2\pi)^{-n/2} e^{\frac{1}{2} \sum_{i=1}^{n} (\gamma_i - \mu_0)^2}. \) Since \(\bar{y} \) is the maximum likelihood estimate for \(\mu \) (recall the first derivative taken in Example 5.2.4),\(L(\bar{\omega}) = (2\pi)^{-n/2} e^{\frac{1}{2} \sum_{i=1}^{n} (\gamma_i - \gamma)^2}. \) Here the generalized likelihood ratio reduces to \(\lambda = L(\bar{\omega}) / L(\hat{\omega}) = e^{-\frac{1}{2} (\bar{\gamma} - \mu_0)^2 (1/\sqrt{n})^2}. \) The null hypothesis should be rejected if \(e^{-\frac{1}{2} (\bar{\gamma} - \mu_0)^2 (1/\sqrt{n})^2} \leq \lambda^* \) or, equivalently, if \(|(\bar{\gamma} - \mu_0) / (1/\sqrt{n}) > \lambda^{**} \), where values for \(\lambda^{**} \) come from the standard normal pdf, \(f(x) \).
6.5.5 (a) \[\lambda = \left(\frac{1}{2} \right)^n \text{e}^{[\{x/n\}^n (1 - x/n)^{n-x}] = 2^n x^n (n-x)^{n-n}.} \] Rejecting \(H_0 \) when \(0 < \lambda \leq \lambda^* \) is equivalent to rejecting \(H_0 \) when \(x \ln x + (n-x) \ln(n-x) \geq \lambda^* \).

(b) By inspection, \(x \ln x + (n-x) \ln(n-x) \) is symmetric in \(x \). Therefore, the left-tail and right-tail critical regions will be equidistant from \(p = \frac{1}{2} \), which implies that \(H_0 \) should be rejected if \(\left| x - \frac{1}{2} \right| \geq k \), where \(k \) is a function of \(\alpha \).