PIC Microcontroller and Embedded Systems
Muhammad Ali Mazidi, Rolin McKinlay and Danny Causey

Eng. Husam Alzaq
The Islamic Uni. Of Gaza
Chapter 1: The PIC Microcontrollers: History and Features

- Microcontroller and Embedded Processors
- Overview of the PIC18 Family
Objective

- Compare and contrast uP and uC
- Describe the advantages of uC
- Explain the concept of ES
- Describe criteria for considering a uC
- Compare and contrast the various of the PIC Family
- Compare the PIC with uC offered by others
Microcontroller and Embedded Processors

- Microcontroller VS General purpose uP
- uC for embedded systems
- X86 PC Embedded Application
Figure 1-1. Microprocessor System Contrasted With Microcontroller System
Choosing a uController

- The major 8-bit
 - Freescale Semiconductor’s (formerly Motorola) 68HC08/68HC11
 - Intel’s 8051
 - Atmel’s AVR
 - Zilog’s Z8
 - PIC from Microchip Technology
Criteria for Choosing uController

1. Meeting the computing needs of the task at hand efficiently and cost effectively

2. Availability of SW and HW development tools
 - Compilers
 - Assemblers
 - Debuggers
 - Emulators

3. Wide availability and reliable source
Criteria for Choosing uController

- Meeting the computing needs of the task at hand efficiently and cost effectively
 - Determine its type, 8-bit, 16-bit or 32-bit
 - Speed
 - Packaging (40-Pin or QFP)
 - Power consumption
 - The amount of RAM and ROM
 - The number of I/O pins and the timer
 - Cost per unit
 - Ease of upgrade.
uC Data width

- 8-bit Microcontrollers
 - PIC10, PIC12, PIC14
 - PIC16, PIC17, PIC18
- 16-bit Microcontrollers
 - PIC24F, PIC24H
- 32-bit Microcontrollers
 - PIC32
- 16-bit Digital Signal Controllers
 - dsPIC30, dsPIC33F
Overview of the PIC18 Family

- An 8-bit uController called PIC is introduced in 1989 by Microchip Technology Corporation
- It includes
 - Small Data Ram
 - Few bytes of Rom
 - One timer
 - I/O ports
PIC 18 Feathers

- RISC Architecture
- On-chip program, Code, ROM
- Data EEPROM
- Timers
- ADC
- USART
- I/O Ports
Figure 1-2. Simplified View of a PIC Microcontroller
PIC18 Features

- RISC Architecture
- On chip Code ROM and Data RAM, Data EEPROM
- Timers
- ADC
- USART
- I/O ports
Figure 1-3. PIC18 Block Diagram
Figure 1-3. PIC18 Block Diagram (continued)

Note 1: Many of the general purpose I/O pins are multiplexed with one or more peripheral module functions. The multiplexing combinations are device dependent.
Figure 1-4. PIC16 Block Diagram
Figure 1-4. PIC16 Block Diagram (continued)

Note 1: The high order bit(s) of the Direct Address for the RAM are from the STATUS register.
2: Not all devices have this feature, please refer to device data sheet.
3: Many of the general purpose I/O pins are multiplexed with one or more peripheral module functions.
The multiplexing combinations are device dependent.
The PIC uCs
PIC uC program ROM

- PIC exists in terms of different speed and the amount of on-chip RAM/ROM
- Compatibility is restricted as far as the instructions are concerns.
PIC uC Program ROM

- PIC 18 can support up to 2MB
- Generally, they come with 4KB – 128KB
- Available in flash, OTP, UV-EPROM, and masked.
UV-EPROM

Figure 2: PIC16C5x SERIES BLOCK DIAGRAM

The PIC uCs
PIC18Fxxxx with flash

- Used for product development
PIC18Cxxxx and Masked PIC

- **OTP**
 - One time programmable
 - C indicates the OTP RPM
 - Used for mass production
 - Cheaper

- **Masked**
 - Program will be burned into the PIC chip during the fabrication process
PIC uC data RAM and EEPROM

- Max. 4096 Bytes (4 kB) of data RAM space.
- Data RAM space has two components
 - Varied GPR, General Purpose RAM
 - For read/write and data manipulation
 - Divided into banks of 256 B
 - Fixed SFR, Special Function Registers
- Some of PICs have a small amount of EEPROM
 - Used for critical data storing
PIC18 Microcontroller Family

<table>
<thead>
<tr>
<th>Product</th>
<th>Program Memory</th>
<th>Type</th>
<th>Bytes</th>
<th>RAM</th>
<th>Bytes</th>
<th>EEPROM</th>
<th>Bytes</th>
<th>I/O</th>
<th>Ports</th>
<th>ADC 10-bit</th>
<th>MSSP</th>
<th>USART</th>
<th>Other</th>
<th>CCP/PWM</th>
<th>Timers 8/16-bit</th>
<th>Packages</th>
<th>Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC18F1220</td>
<td>FLASH</td>
<td>4K</td>
<td>256</td>
<td>256</td>
<td>16</td>
<td>7</td>
<td>—</td>
<td>1</td>
<td>6x PMM</td>
<td>2</td>
<td>1/3</td>
<td>DIP, SOIC, SSOP, QFN</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F1320</td>
<td>FLASH</td>
<td>8K</td>
<td>256</td>
<td>256</td>
<td>16</td>
<td>7</td>
<td>—</td>
<td>1</td>
<td>6x PMM</td>
<td>2</td>
<td>1/3</td>
<td>DIP, SOIC, SSOP, QFN</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F2220</td>
<td>FLASH</td>
<td>4K</td>
<td>512</td>
<td>256</td>
<td>23</td>
<td>10</td>
<td>I²C/SPI</td>
<td>1</td>
<td>6x PMM</td>
<td>2</td>
<td>1/3</td>
<td>DIP, SOIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F2320</td>
<td>FLASH</td>
<td>8K</td>
<td>512</td>
<td>256</td>
<td>23</td>
<td>10</td>
<td>I²C/SPI</td>
<td>1</td>
<td>6x PMM</td>
<td>2</td>
<td>1/3</td>
<td>DIP, SOIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18C242</td>
<td>OTP</td>
<td>16K</td>
<td>512</td>
<td></td>
<td>23</td>
<td>5</td>
<td>I²C/SPI</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1/3</td>
<td>DIP, SOIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18C252</td>
<td>OTP</td>
<td>32K</td>
<td>1536</td>
<td></td>
<td>23</td>
<td>5</td>
<td>I²C/SPI</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1/3</td>
<td>DIP, SOIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F242</td>
<td>FLASH</td>
<td>16K</td>
<td>512</td>
<td>256</td>
<td>23</td>
<td>5</td>
<td>I²C/SPI</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1/3</td>
<td>DIP, SOIC, SSOP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F252</td>
<td>FLASH</td>
<td>32K</td>
<td>1536</td>
<td>256</td>
<td>23</td>
<td>5</td>
<td>I²C/SPI</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1/3</td>
<td>DIP, SOIC, SSOP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F258</td>
<td>FLASH</td>
<td>32K</td>
<td>1536</td>
<td>256</td>
<td>22</td>
<td>5</td>
<td>I²C/SPI</td>
<td>1</td>
<td>CAN 2.0B</td>
<td>1</td>
<td>1/3</td>
<td>DIP, SOIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F420</td>
<td>FLASH</td>
<td>4K</td>
<td>512</td>
<td>256</td>
<td>34</td>
<td>13</td>
<td>I²C/SPI</td>
<td>1</td>
<td>6x PMM</td>
<td>2</td>
<td>1/3</td>
<td>DIP, TQFP, QFN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F4320</td>
<td>FLASH</td>
<td>8K</td>
<td>512</td>
<td>256</td>
<td>34</td>
<td>13</td>
<td>I²C/SPI</td>
<td>1</td>
<td>6x PMM</td>
<td>2</td>
<td>1/3</td>
<td>DIP, TQFP, QFN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18C442</td>
<td>OTP</td>
<td>16K</td>
<td>512</td>
<td></td>
<td>34</td>
<td>8</td>
<td>I²C/SPI</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1/3</td>
<td>DIP, PLCC, TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18C452</td>
<td>OTP</td>
<td>32K</td>
<td>1536</td>
<td></td>
<td>34</td>
<td>8</td>
<td>I²C/SPI</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1/3</td>
<td>DIP, PLCC, TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F442</td>
<td>FLASH</td>
<td>16K</td>
<td>512</td>
<td>256</td>
<td>34</td>
<td>8</td>
<td>I²C/SPI</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1/3</td>
<td>DIP, PLCC, TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F452</td>
<td>FLASH</td>
<td>32K</td>
<td>1536</td>
<td>256</td>
<td>34</td>
<td>8</td>
<td>I²C/SPI</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1/3</td>
<td>DIP, PLCC, TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F458</td>
<td>FLASH</td>
<td>32K</td>
<td>1536</td>
<td>256</td>
<td>33</td>
<td>5</td>
<td>I²C/SPI</td>
<td>1</td>
<td>CAN 2.0B</td>
<td>1</td>
<td>1/3</td>
<td>DIP, PLCC, TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18C601</td>
<td>ROMless</td>
<td>1536</td>
<td></td>
<td></td>
<td>31</td>
<td>8</td>
<td>I²C/SPI</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1/3</td>
<td>PLCC, TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18C658</td>
<td>OTP</td>
<td>32K</td>
<td>1536</td>
<td></td>
<td>52</td>
<td>12</td>
<td>I²C/SPI</td>
<td>1</td>
<td>CAN 2.0B</td>
<td>2</td>
<td>1/3</td>
<td>PLCC, TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F620</td>
<td>FLASH</td>
<td>32K</td>
<td>2048</td>
<td>1024</td>
<td>52</td>
<td>12</td>
<td>I²C/SPI</td>
<td>2</td>
<td>—</td>
<td>5</td>
<td>2/3</td>
<td>TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F620</td>
<td>FLASH</td>
<td>64K</td>
<td>3840</td>
<td>1024</td>
<td>52</td>
<td>12</td>
<td>I²C/SPI</td>
<td>2</td>
<td>—</td>
<td>5</td>
<td>2/3</td>
<td>TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F620</td>
<td>FLASH</td>
<td>128K</td>
<td>3840</td>
<td>1024</td>
<td>52</td>
<td>12</td>
<td>I²C/SPI</td>
<td>2</td>
<td>—</td>
<td>5</td>
<td>2/3</td>
<td>TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18C801</td>
<td>ROMless</td>
<td>1536</td>
<td></td>
<td></td>
<td>42</td>
<td>12</td>
<td>I²C/SPI</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1/3</td>
<td>PLCC, TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18C858</td>
<td>OTP</td>
<td>32K</td>
<td>1536</td>
<td></td>
<td>68</td>
<td>16</td>
<td>I²C/SPI</td>
<td>1</td>
<td>CAN 2.0B</td>
<td>2</td>
<td>1/3</td>
<td>PLCC, TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F8520</td>
<td>FLASH</td>
<td>32K</td>
<td>2048</td>
<td>1024</td>
<td>68</td>
<td>16</td>
<td>I²C/SPI</td>
<td>2</td>
<td>EMA</td>
<td>5</td>
<td>2/3</td>
<td>TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F8620</td>
<td>FLASH</td>
<td>64K</td>
<td>3840</td>
<td>1024</td>
<td>68</td>
<td>16</td>
<td>I²C/SPI</td>
<td>2</td>
<td>EMA</td>
<td>5</td>
<td>2/3</td>
<td>TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC18F8720</td>
<td>FLASH</td>
<td>128K</td>
<td>3840</td>
<td>1024</td>
<td>68</td>
<td>16</td>
<td>I²C/SPI</td>
<td>2</td>
<td>EMA</td>
<td>5</td>
<td>2/3</td>
<td>TQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation:
- ADC = Analog-to-Digital Converter
- CCP = Capture/Compare/PWM
- FWM = Pulse Width Modulation
- SPI = Serial Peripheral Interface
- I²C = Inter-Integrated Circuit Bus
- PMM = Power Managed Mode
- USART = Universal Synchronous/Asynchronous Receiver/Transmitter
PIC uC peripherals

- CAN- (Controller Area Network),
- LIN- (Local Interconnect Network),
- USB- (Universal Serial Bus),
- I²C- (Inter-Integrated Circuit),
- SPI- (Serial Peripheral Interface),
- Serial or Ethernet Interface
- ADC - Analog Digital Converter
- USART- Universal Synchronous Asynchronous Receiver Transmitter
Chapter 1: Summary

- We have Compared between uP and uC
- We have described the advantages of uC
- We have given a simple introduction for PIC18

Next:
PIC Architecture and assembly language programming.