Digital Electronics – EELE 3321

Lecture 1

Eng. Monther Abusultan, MSEE
Computer Engineering Department
Islamic University of Gaza
Digital Logic

- Basic Logic Gates
- Combinational Logic
- Sequential Logic
Logic Gates

NOT (Inverting-buffer)

\[\text{out} = \text{in}' = \overline{\text{in}} \]

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

OR

\[\text{out} = a + b \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

AND

\[\text{out} = a \cdot b \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logic Gates

NOR

\[
\text{out} = \overline{a+b}
\]

\[
\begin{array}{c|c|c}
 A & B & \text{Out} \\
\hline
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 0 \\
\end{array}
\]

NAND

\[
\text{out} = \overline{a \cdot b}
\]

\[
\begin{array}{c|c|c}
 A & B & \text{Out} \\
\hline
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 0 \\
\end{array}
\]

Non-Inverting Buffer

[Diagrams of logic gates and non-inverting buffer]
Ideal Logic Elements

- **Ideal Static and power characteristics**
 - Operates with a single power supply (V_{cc})
 - Ideal I_{cc} drawn from V_{cc} is zero.
 - $P_{cc} = V_{cc} \times I_{cc} = 0$ (zero power dissipation)

- $0 < V_{in} < V_{cc}/2 \rightarrow$ logical ‘0’ input
 - \rightarrow gives logical ‘1’ output

- $V_{cc}/2 < V_{in} < V_{cc} \rightarrow$ logical ‘1’ input
 - \rightarrow gives logical ‘0’ output

- The transition ideally occurs at $V_{cc}/2$
 - Result here is unpredictable (Avoided)
Ideal Logic Elements

- **Ideal Static and power characteristics**
 - Upon transition in the input, the output instantaneously switches to the corresponding output voltage.

- CMOS logic family is the closest logic family to meeting these ideal characteristics.

![Diagram of transient response](image)

Transient Response
Ideal input and output Gate Impedance

- The driving ability of the gate (Fan-out) and the transient response of the gate (gate timings) are directly dependent upon the impedance of the gate.
Ideal input and output Gate Impedance

- The driving gate must provide enough current (I_{out}) to drive all the load gates.

$$I_{out} = N I'_{IN}$$

When R_{in} increases then I'_{IN} decreases which causes N to increase.

So,

$\checkmark \quad R_{in} = \infty$ is desired
Ideal input and output Gate Impedance

- The input Capacitance (\dot{C}_{in}) of the load gates must be charged through the output resistance (R_{out}) of the driving gate.

- We desire $R_{out} \downarrow$ to get $I_{out} \uparrow$ to charge faster \rightarrow switch faster. *We ideally want $R_{out} = 0$.***

- Also $\dot{C}_{in} \downarrow$ speeds up switching (fewer load gates)
Inverter Voltage Transfer Characteristic (VTC)

- V_{OH} (Output High Voltage)
- V_{OL} (Output Low Voltage)
- V_{IL} (Input Low): maximum input voltage that provides high out.
- V_{IH} (Input High): minimum input voltage that provides low out.
- V_M (Midpoint Voltage)

Logic Swing (LS):

$$V_{LS} = V_{OH} - V_{OL}$$

Transition width (TW):

$$V_{TW} = V_{IH} - V_{IL}$$
Inverter Voltage Transfer Characteristic (VTC)

V_{OH}, V_{OL}, V_{IL}, V_{IH} are called the critical voltages of a VTC.

At V_{M}: $V_{IN} = V_{OUT}$

We always want,

- $V_{OH} > V_{IH}$
- $V_{OL} < V_{IL}$

Now that we have high/low, we need to consider that for Fan-out,

$$N(\text{high}) = \frac{I_{out}(\text{high})}{I'_{IN}(\text{high})}$$

$$N(\text{low}) = \frac{I_{out}(\text{low})}{I'_{IN}(\text{low})}$$

(We take the smaller of both)
Noise in Digital Circuits

- **Noise Margins**: They represent a safety margin for the high and low voltage levels. We want \(\text{NM} > \text{Actual Noise} \).

 \[
 V_{\text{NMH}} = V_{\text{OH}} - V_{\text{IH}} \\
 V_{\text{NML}} = V_{\text{IL}} - V_{\text{OL}}
 \]

- **Noise Sensitivity**: Effect of input variations

 \[
 V_{\text{NSH}} = V_{\text{OH}} - V_{\text{M}} \\
 V_{\text{NSL}} = V_{\text{M}} - V_{\text{OL}}
 \]

- **Noise Immunity**: Ability to reject noise

 \[
 V_{\text{NIH}} = V_{\text{NSH}} / V_{\text{LS}} \\
 V_{\text{NIL}} = V_{\text{NSL}} / V_{\text{LS}}
 \]
Transient Characteristics

V_{OH} doesn’t necessarily reach V_{CC}. Similarly, V_{IL} doesn’t necessarily reach 0.

- **Switching speed**
 - t_d: delay time
 - t_r: rise time
 - t_s: storage time
 - t_f: fall time
 - $t_{ON} = t_d + t_r$
 - $t_{OFF} = t_s + t_f$

t_r and t_f are associated with charging and discharging load capacitance
t_d and t_s are associated with stored charge of PN Junction
Transient Characteristics

- **Propagation Delay:** Time required for the output to respond to the input which is measured at the 50% point.

 - t_{PLH}: low-to-high propagation delay
 - t_{PHL}: high-to-low propagation delay

Overall Prop. Delay:

$$t_p(\text{avg}) = \frac{t_{PLH} + t_{PHL}}{2}$$
Power Dissipation

• Power dissipation differs depending on the state of the output, so we specify the average.

\[
P_{cc}(avg) = \frac{P_{cc}(OH) + P_{cc}(OL)}{2}
\]

\[
P_{cc}(avg) = \frac{I_{cc}(OH) + I_{cc}(OL)}{2} \frac{V_{cc}}{V_{cc}}
\]

• If we have two power supplies, then:

\[
P_{Diss}(avg) = P_{cc}(avg) + P_{EE}(avg)
\]
Both low power dissipation & short propagation delays are desirable for logic circuits

Faster propagation delay \rightarrow increased power dissipation
Lower power dissipation \rightarrow longer propagation delay

So we use the product to characterize digital logic gates

$$PD = P_{\text{DISS}}(\text{avg}) \times t_p(\text{avg})$$ joules