Chapter Two

Force Vectors
APPLICATION OF VECTOR ADDITION

There are four concurrent cable forces acting on the bracket.

How do you determine the resultant force acting on the bracket?
2.1 Scalars and Vectors

<table>
<thead>
<tr>
<th></th>
<th>Scalars</th>
<th>Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>mass, volume</td>
<td>force, velocity</td>
</tr>
<tr>
<td>Characteristics</td>
<td>It has a magnitude</td>
<td>It has a magnitude</td>
</tr>
<tr>
<td></td>
<td>(positive or negative)</td>
<td>and direction</td>
</tr>
<tr>
<td>Addition rule</td>
<td>Simple arithmetic</td>
<td>Parallelogram law</td>
</tr>
<tr>
<td>Special Notation</td>
<td>None</td>
<td>Bold font, a line, an</td>
</tr>
<tr>
<td></td>
<td></td>
<td>arrow or a “carrot”</td>
</tr>
</tbody>
</table>
2.2 VECTOR OPERATIONS

Multiplication and Division of a vector by a scalar
Vector Addition and Subtraction

Parallelogram Law:

Triangle method (always ‘tip to tail’):

Vector subtraction $\mathbf{R}' = \mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$
Sine law:
\[\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c} \]

Cosine law:
\[C = \sqrt{A^2 + B^2 - 2AB \cos c} \]
“Resolution” of a vector is breaking up a vector into components. It is kind of like using the parallelogram law in reverse.
2.3 Vector Addition of Forces
2.4 Addition of a system of coplanar forces

Scalar Notation. The rectangular components of force \mathbf{F} shown in Fig. 2–15a are found using the parallelogram law, so that $\mathbf{F} = F_x + F_y$. Because these components form a right triangle, their magnitudes can be determined from

$$F_x = F \cos \theta \quad \text{and} \quad F_y = F \sin \theta$$
VECTOR NOTATION

• We ‘resolve’ vectors into components using the x and y axes system.

• Each component of the vector is shown as a magnitude and a direction.

• The directions are based on the x and y axes. We use the “unit vectors” \mathbf{i} and \mathbf{j} to designate the x and y axes.
For example,

\[\mathbf{F} = F_x \mathbf{i} + F_y \mathbf{j} \quad \text{or} \quad \mathbf{F}' = F'_x \mathbf{i} + F'_y \mathbf{j} \]

The x and y axes are always perpendicular to each other. Together, they can be directed at any inclination.
ADDITION OF SEVERAL VECTORS

- Step 1 is to resolve each force into its components.
- Step 2 is to add all the x components together and add all the y components together. These two totals become the resultant vector.
- Step 3 is to find the magnitude and angle of the resultant vector.
Example of this process,

\[
F_R = F_1 + F_2 + F_3 \\
= F_{1x}i + F_{1y}j - F_{2x}i + F_{2y}j + F_{3x}i - F_{3y}j \\
= (F_{1x} - F_{2x} + F_{3x})i + (F_{1y} + F_{2y} - F_{3y})j \\
= (F_{Rx})i + (F_{Ry})j
\]
You can also represent a 2-D vector with a magnitude and angle.

\[F_R = \sqrt{F_{R_x}^2 + F_{R_y}^2} \]

\[\theta = \tan^{-1} \left(\frac{F_{R_y}}{F_{R_x}} \right) \]
EXAMPLE

Given: Three concurrent forces acting on a bracket.

Find: The magnitude and angle of the resultant force.

Plan:

a) Resolve the forces in their x-y components.
b) Add the respective components to get the resultant vector.
c) Find magnitude and angle from the resultant components.
EXAMPLE (continued)

\[F_1 = \{ 15 \sin 40^\circ \mathbf{i} + 15 \cos 40^\circ \mathbf{j} \} \text{ kN} \]
\[= \{ 9.642 \mathbf{i} + 11.49 \mathbf{j} \} \text{ kN} \]

\[F_2 = \{ -(12/13)26 \mathbf{i} + (5/13)26 \mathbf{j} \} \text{ kN} \]
\[= \{ -24 \mathbf{i} + 10 \mathbf{j} \} \text{ kN} \]

\[F_3 = \{ 36 \cos 30^\circ \mathbf{i} - 36 \sin 30^\circ \mathbf{j} \} \text{ kN} \]
\[= \{ 31.18 \mathbf{i} - 18 \mathbf{j} \} \text{ kN} \]
EXAMPLE
(continued)
Summing up all the i and j components respectively, we get,

$$F_R = \{ (9.642 - 24 + 31.18) \, i + (11.49 + 10 - 18) \, j \} \, \text{kN}$$

$$= \{ 16.82 \, i + 3.49 \, j \} \, \text{kN}$$

$$F_R = ((16.82)^2 + (3.49)^2)^{1/2} = 17.2 \, \text{kN}$$

$$\phi = \tan^{-1}(3.49/16.82) = 11.7^\circ$$
\[F_1 = \{ (4/5) \times 850 \ i - (3/5) \times 850 \ j \} \ N \]
\[= \{ 680 \ i - 510 \ j \} \ N \]
\[F_2 = \{ -625 \sin(30^\circ) \ i - 625 \cos(30^\circ) \ j \} \ N \]
\[= \{ -312.5 \ i - 541.3 \ j \} \ N \]
\[F_3 = \{ -750 \sin(45^\circ) \ i + 750 \cos(45^\circ) \ j \} \ N \]
\[\{ -530.3 \ i + 530.3 \ j \} \ N \]
GROUP PROBLEM SOLVING (continued)

Summing up all the i and j components respectively, we get,

\[F_R = \{ (680 - 312.5 - 530.3) \, i + (-510 - 541.3 + 530.3) \, j \} \, N \]

\[= \{ -162.8 \, i - 521 \, j \} \, N \]

\[F_R = ((162.8)^2 + (521)^2)^{\frac{1}{2}} = 546 \, N \]

\[\phi = \tan^{-1}(521/162.8) = 72.64^\circ \quad \text{or} \]

From Positive x axis \(\theta = 180 + 72.64 = 253^\circ \)