Number theory lectures

By Dr. Mohammed M. AL-Ashker
Associated professor
Mathematics Department
E.mail:mashker @ mail.iugaza.edu
Islamic University of Gaza P.O.Box 108, Gaza, Palestine
Contents

1 Divisibility Theory of integers
 1.1 The Division Algorithm ... 3
 1.2 The greatest common divisor 4
 1.3 The Euclidean algorithm ... 8
 1.4 The Diophantine equation $ax + by = c$ 11

2 Primes and their distributions 14
 2.1 Fundamental theorem of arithmetics 14
 2.2 The sieve of Eratosthenes 16
 2.3 The Goldbach conjecture ... 17

3 The theory of congruences ... 19
 3.1 Basic properties of congruence 19
 3.2 Special divisibility tests 23
 3.3 Linear congruences ... 25

4 Fermat’s theorem ... 31
 4.1 Fermat’s little theorem ... 31
 4.2 Wilson’s theorem ... 32
Chapter 1

Divisibility Theory of integers

1.1 The Division Algorithm

Theorem 1.1.1. Given integers a and b, with $b > 0$, there exist unique integers q and r satisfying, $a = qb + r$, $0 \leq r < b$. The integers q and r are called, respectively, the quotient and remainder in the division of a and b.

Proof. We first show r and q exist. Let $S = \{a - xb : a - xb \geq 0, \ x \in \mathbb{Z}\}$. We will show that $S \neq \emptyset$. Since $b > 0$ and $b \in \mathbb{Z} \implies b \geq 1 \implies |a|b \geq |a|$. Let $x = -|a| \implies a - xb \geq a + |a|b \geq a + |a| \geq 0 \implies S \neq \emptyset$ (since S not empty), so S contains a least non-negative integer call it r. Then r will be in the form $r = a - qb$, then r exists and also q exists corresponding to r.

We will also show that $r < b$.

Suppose $r \geq b$ and $r = r' + b$ where $r' \geq 0$ and $r' + b = a - qb \implies r' = a - (q + 1)b \geq 0 \implies r' \in S$.

Contradiction, (because $r' < r$ and r the smallest non-negative element in S) $\implies 0 \leq r < b$.

We will now prove the uniqueness of r and q. Assume $\exists r_1, q_1$ satisfying the conditions of the theorem such that $r < r_1$ and $a = q_1b + r_1$ then $r_1 = a - q_1b$...(1) but $a = qb + r$ then $r = a - qb$...(2), from (1) and (2) by subtraction, we have $(r_1 - r) = (q - q_1)b \implies b|r_1 - r$.

Contradiction, because $r_1 < b$ and $r < b \implies r_1 - r = 0 \implies r_1 = r$ and $q_1 = q$. \hfill \Box

Example 1.1.1. If $a = 592$, $b = 7$ then $592 = 84(7) + 4$ then $q = 84$ and $r = 4$.

3
Corollary 1.1.2. If a and b are integers, with $b \geq 0$, then there exist unique integers q and r such that,

$$a = qb + r, \quad 0 \leq r < |b|.$$

Proof. If $b < 0$, then $|b| > 0$ and by the above theorem $\exists q'$ and $r \exists a = q'|b| + r, \quad 0 \leq r < |b|$.
Since $|b| = -b$, we may take $q = -q'$ to arrive $a = (−q)(−b) + r = qb + r$ with $0 \leq r < |b|$. \qed

Example 1.1.2. Let $b = -7, \quad a = 1$ then $1 = 0(−7) + 1, \quad \text{where } 0 \leq r = 1 < |b| = 7.$
Let $b = -7, \quad a = -2$ then $-2 = 1(−7) + 5, \quad \text{where } 0 \leq r = 5 < |b| = 7.$
Let $b = -7, \quad a = 61$ then $61 = (-8)(−7) + 5, \quad \text{where } 0 \leq r = 5 < |b| = 7.$
Let $b = -7, \quad a = -59$ then $-59 = 9(−7) + 4, \quad \text{where } 0 \leq r = 4 < |b| = 7.$

If a is even integer then $a = 2q$ and $a^2 = 4q^2 = 4k$ where $k = q^2$. If a is odd then $a = 2q+1$ and $a^2 = 4q^2+4q+1 = 4(q^2+q)+1 = 4k'+1$ where $k' = q^2+q$.

Example 1.1.3. The square of any odd integer is of the form $8k + 1$

Proof. By division algorithm, any integer is represented as one of the four following forms: $4q, \ 4q + 1, \ 4q + 2, \ 4q + 3$. In this classification, only those integers of the forms $4q + 1$ and $4q + 3$ are odd. Then $(4q + 1)^2 = 16q^2 + 8q + 1 = 8(2q^2 + q) + 1 = 8k + 1$, where $k = 2q^2 + q$, and $(4q + 3)^2 = 16q^2 + 24q + 9 = 8(2q^2 + 3q + 1) + 1 = 8k' + 1$, where $k' = 2q^2 + 3q + 1$.

Let $a = 7$ then $a^2 = 49 = 8 \cdot 6 + 1$. \qed

1.2 The greatest common divisor

Definition 1.2.1. An integer b is said to be divisible by an integer $a \neq 0$, in symbols $a | b$, if there exists some integer c such that $b = ac$. We write $a \nmid b$ to indicate that such b is not divisible by a.

Example 1.2.1. $3 | -12$ because $-12 = 4(-3)$ but $3 \nmid 10$ \exists $c \in Z \ni 10 = 3c$. If $a | b \implies -a | b$ because if $b = ac \implies b = -a(-c) \implies -a | b$.

Theorem 1.2.1. For integers a, b and c the following hold :
1) \(a \mid 0,\ 1 \mid a,\ a \mid a. \)

2) \(a \mid 1 \text{ if and only if } a = \pm 1. \)

3) If \(a \mid b \text{ and } c \mid d, \text{ then } ac \mid bd. \)

4) If \(a \mid b \text{ and } b \mid c, \text{ then } a \mid c. \)

5) \(a \mid b \text{ and } b \mid a \text{ if and only if } a = \pm b. \)

6) If \(a \mid b \text{ and } b \neq 0 \text{ then } |a| \leq |b|. \)

7) If \(a \mid b \text{ and } a \mid c \text{ then } a \mid bx + cy \text{ for arbitrary integers } x \text{ and } y. \)

Proof.

1) For \(a \mid 0, \text{ exists } x = 0 \Rightarrow x = \pm 1 \text{ or } a = \pm 1. \)

2) If \(a \mid 1, \text{ then } \exists x \in Z \Rightarrow 1 = ax \Rightarrow x = \pm 1 \text{ or } a = \pm 1. \)

3) If \(a \mid b \text{ and } c \mid d \), then \(\exists x, y \in Z \Rightarrow b = xa,\ d = cy \Rightarrow bd = xyca \Rightarrow ca \mid bd. \)

4) If \(a \mid b \text{ and } b \mid c \), then \(\exists x, y \in Z \Rightarrow b = xa,\ c = by \Rightarrow c = axy \Rightarrow a \mid c. \)

5) If \(a \mid b \text{ and } b \mid a \), then \(\exists x, y \in Z \Rightarrow b = xa,\ a = by \Rightarrow b = byx \Rightarrow 1 = yx \Rightarrow y = \pm 1,\ x = \pm 1 \Rightarrow b = \pm a. \)

6) If \(a \mid b \), then there exists \(c \in Z \) such that \(b = ac, \text{ also } b \neq 0 \text{ then } c \neq 0, \text{ and } |b| = |ac| = |a||c|, \text{ since } c \neq 0 \text{ then } |c| \geq 1 \text{ and } |b| \geq |a||c| \geq |a|. \)

7) If \(a \mid b \text{ and } a \mid c \), then there exists \(t \in Z, r \in Z, \exists b = at \text{ and } c = ar \Rightarrow bx = atx,\ cy = ary \Rightarrow bx + cy = a(tx + ry) \Rightarrow a \mid bx + cy. \)

In general if \(a \mid b_k \) for \(k = 1, 2, \ldots, n \) then \(a \mid bx_1 + b_2x_2 + \cdots + b_nx_n. \)

\[\square \]

Definition 1.2.2. The integer \(d \) is a common divisor of \(a \) and \(b \) in case \(d \mid a, \) and \(d \mid b. \)

since \(1 \mid a \) for any integer \(a \) then 1 is a common divisor of \(a \) and \(b, \) so the set of common divisors of any integers \(a \) and \(b \) is non-empty.

Remark 1.2.1. If \(a = b = 0, \) then every integer is a common divisor of \(a \) and \(b, \) so in this case the set of common divisors of \(a \) and \(b \) is infinite.

If at least one of \(a \) or \(b \) is not zero then there are only a finite number of positive common divisors.
Let \(d \) be the positive divisors of \(a \) and \(b \). If \(\text{gcd}(a, b) \) denotes by \(\text{gcd}(a, b)\), the greatest common divisor which is called the greatest common divisor which is denoted by \(\text{gcd}(a, b) \).

Definition 1.2.3. Let \(a \) and \(b \) be given integers with at least one of them different from zero. The \(\text{gcd}(a, b) \) is the positive integer \(d \) satisfying:

1. \(d \mid a \) and \(d \mid b \).
2. If \(c \mid a \) and \(c \mid b \), then \(c \leq d \).

Example 1.2.2. The positive divisors of \(-12\) are 1, 2, 3, 4, 6, 12 while those of 30 are 1, 2, 3, 5, 6, 10, 15, 30. the \(\text{gcd}(30, -12) = 6 \).

\(\text{gcd}(-5, 5) = 5, \text{gcd}(8, 17) = 1 \) and \(\text{gcd}(-8, -36) = 4 \).

If \(a = b = 0 \) there is no greatest common divisor.

If we have \(a_1, a_2, \ldots, a_n \) such that at least one of \(a_i \neq 0 \) for \(i = 1, 2, \ldots, n \) then \(\text{gcd} \) of \(a_i \neq 0 \) for \(i = 1, 2, \ldots, n \) is denoted by \(\text{gcd}(a_1, a_2, \ldots, a_n) \).

Theorem 1.2.2. Given integers \(a \) and \(b \) not both of which are zero, there exist integers \(x \) and \(y \) such that \(\text{gcd}(a, b) = ax + by \).

Proof. Let \(g = \text{gcd}(a, b) \), let \(S = \{ax + by : x, y \in \mathbb{Z} \text{ and } ax + by > 0 \} \). Since \(-a+b, a-b, -a-b, a+b\) are integers, so at least one of them must be in \(S \implies S \neq \emptyset \). Let \(l = \) the smallest positive integer in \(S \) chose \(x_0, y_0 \). So that \(l = ax_0 + by_0 \) we will show that \(l \mid a \), and \(l \mid b \). Assume that \(l \nmid a \implies \exists q \text{ and } r \in \mathbb{Z} \exists a = lq + r, 0 < r < l \implies r = a - lq = a - q(ax_0 + by_0) = a(1 - qx_0) + b(-qy_0) \implies r \in S \), Contradiction, because \(r < l \) and \(l \) is the smallest integer in \(S \implies r = 0 \) and \(l \mid a \ldots(1) \).

By the same way we can prove that \(l \mid b \ldots(2) \) then from (1) and (2) \(l \) is a common divisor of \(a \) and \(b \).

Since \(g = \text{gcd}(a, b) \implies g \mid a \), \(g \mid b \implies g \mid ax_0 + by_0 = l \implies g \mid l, g \leq l \), but \(l \) is a common divisor of \(a \) and \(b \) cannot be greater than the \(\text{gcd} \) \(g \implies g = l \). \(\square \)

Corollary 1.2.3. If \(a \) and \(b \) are given integers, not both zeros, then the set \(T = \{ax + by : x, y \text{ are integers} \} \) is precisely the set of all multiples of \(g = \text{gcd}(a, b) \).

Proof. Since \(g \mid a \), and \(g \mid b \implies g \mid ax + by \) for all integers \(x, y \in \mathbb{Z} \). Then every member of \(T \) is a multiple of \(g \). If \(g = ax_0 + by_0 \) for suitable integers \(x_0 \) and \(y_0 \). So that any multiple \(ng \) of \(g \) is of the form \(ng = n(ax_0 + by_0) = a(nx_0) + b(ny_0) \).
If an integer \(g\) is expressible in the form \(g = ax + by\) then it is not necessary that \(g\) is the g.c.d of \((a, b)\). But it follows from such an equation g.c.d \((a, b)|g\).

If \(ax + by = 1\) for some integers \(x\) and \(y\) then g.c.d\((a, b) = 1\).

Definition 1.2.4. Two integers \(a\) and \(b\), not both of which are zeros, are said to be relatively prime whenever g.c.d\((a, b) = 1\).

Example 1.2.3. \(g.c.d(2, 5) = g.c.d(-9, 16) = g.c.d(-27, -35) = 1\)

Theorem 1.2.4. Let \(a\) and \(b\) integers not both zeros, then \(a\) and \(b\) are relatively prime if and only if there exist integers \(x\) and \(y\) such that \(1 = ax + by\).

Proof. If g.c.d\((a, b) = 1, then \(\exists x, y \in \mathbb{Z} \ni 1 = ax + by\). Conversely if \(1 = ax + by\) for some \(x, y \in \mathbb{Z},\) and \(g = g.c.d(a, b) \implies g|a, g|b \implies g|ax + by \implies g|1 \implies g = 1 \implies a \text{ and } b \text{ are relatively prime.} \)

Corollary 1.2.5. If g.c.d\((a, b) = d, then g.c.d\((\frac{a}{d}, \frac{b}{d}) = 1.

Proof. \(d|a, d|b \implies \frac{a}{d}, \frac{b}{d} \text{ are integers since } d = g.c.d(a, b) \implies \exists x, y \in \mathbb{Z} \ni d = ax + by \implies 1 = \frac{a}{d}x + \frac{b}{d}y, \text{ by previous theorem } (\frac{a}{d}, \frac{b}{d}) = 1 \).

Example 1.2.4. \(g.c.d(-12, 30) = 6 \implies g.c.d(-\frac{12}{6}, \frac{30}{6}) = g.c.d(-2, 5) = 1\)

Remark 1.2.3. It is not true that if \(a|c\) and \(b|c \implies ab|c.\) For example 6|24, and 8|24 \implies 48 \nmid 24.

Corollary 1.2.6. If \(a|c\) and \(b|c\) with g.c.d\((a, b) = 1 \implies ab|c.

Proof. If \(a|c, b|c, \exists r\) and \(s \in \mathbb{Z} \ni c = ar = bs, \text{ since } g.c.d(a, b) = 1 \text{ then there exist } x, y \in \mathbb{Z} \ni 1 = ax + by \implies c = cax + cby = acx + bcy \implies c = a(bs)x + b(ar)y = ab(ax + ry) \implies ab|c.\)

Theorem 1.2.7. If \(ab|c\) with g.c.d\((a, b) = 1, \text{ then } a|c.

Proof. Since \(g.c.d(a, b) = 1 \implies \exists x, y \in \mathbb{Z} \ni 1 + ax + by \implies c = acx + bcy\) since \(a|ac\) and \(a|bc \implies a|acx + bcx \implies a|c(ax + by) \implies a|c \cdot 1 \implies a|c.\)

Remark 1.2.4. If g.c.d\((a, b) \neq 1 \text{ then } a \nmid c.\)
Example 1.2.5. \(12|9 \cdot 8 \implies 12 \nmid 9, \ 12 \nmid 8\).

Theorem 1.2.8. Let \(a, b\) be integers, no both zero. For a positive integer \(d\), \(d = \gcd(a, b)\) if and only if

1. \(d|a\) and \(d|b\),
2. whenever \(c|a\) and \(c|b\), then \(c|d\).

Proof. Let \(d = \gcd(a, b) \implies d|a\) and \(d|b\), so (1) holds. Also \(\exists x, y \in \mathbb{Z} \mid d = ax + by\). If \(c|a\), \(c|b\) then \(c|ax + by \implies c|d \implies \) condition (2) holds.

Conversely, let \(d\) be any positive integer satisfying the stated conditions and let \(c\) be any common divisor of \(a\) and \(b\) then \(c|d\) by condition (2). This implies that \(d \geq c\), so \(d\) is the greatest common divisor of \(a\) and \(b\). \(\square\)

1.3 The Euclidean algorithm

Lemma 1.3.1. If \(a = qb + r\), then \(\gcd(a, b) = \gcd(b, r)\).

Proof. If \(d = \gcd(a, b) \implies d|a, d|b \implies d|a−qb = r, \implies d|r \implies d|\gcd(b, r)\), let \(c = \gcd(b, r) \implies d|c\ldots (1)\).

\(c|b, c|r \implies c|bq+r \implies c|a \implies c|\gcd(b, a) = d \implies c|d\ldots (2)\). From (1), (2) \implies \ c = d. \(\square\)

Theorem 1.3.2. The Euclidean algorithm.

Let \(a\) and \(b\) be two integers whose greatest common divisor is desired. Assume that \(a \geq b > 0\). Apply the division algorithm to \(a\) and \(b\) to get,

\[a = q_1b + r_1, \ 0 \leq r_1 < b. \]

If \(r_1 = 0 \implies b|a\) and \(\gcd(a, b) = b\).

If \(r_1 \neq 0\) divide \(b\) by \(r_1\) to produce integers \(q_2\) and \(r_2\) satisfying

\[b = q_2r_1 + r_2, \ 0 \leq r_2 < r_1. \]

If \(r_2 = 0\), then we stop; otherwise, proceed as before to obtain

\[r_1 = q_3r_2 + r_3, \ 0 \leq r_3 < r_2. \]

This division process continues until some zero remainder appears, say at the \((n+1)\)th stage where \(r_{n−1}\) is divided by \(r_n\) (a zero remainder occurs sooner or
later, since the decreasing sequence \(b > r_1 > r_2 > \cdots \geq 0 \) cannot contain more than \(b \) integers.

The result is the following system of equations.

\[
\begin{align*}
 a &= q_1 b + r_1, \quad 0 < r_1 < b \\
 b &= q_2 r_1 + r_2, \quad 0 < r_2 < r_1 \\
 r_1 &= q_3 r_2 + r_3, \quad 0 < r_3 < r_2 \\
 &\vdots \\
 r_{n-2} &= q_n r_{n-1} + r_n, \quad 0 < r_n < r_{n-1} \\
 r_{n-1} &= q_{n+1} r_n + 0.
\end{align*}
\]

We argue that \(r_n \), the last nonzero remainder which appears in this manner is equal to \(\text{g.c.d}(a, b) \).

Proof. By lemma

\[
\text{g.c.d}(a, b) = \text{g.c.d}(b, r_1) = \cdots = \text{g.c.d}(r_{n-1}, r_n) = \text{g.c.d}(r_n, 0) = r_n.
\]

The \(\text{g.c.d}(a, b) \) can be expressed in the form \(ax + by \). For this, we fall back on Euclidean algorithm. Starting with the next-to-last equation arising from the algorithm, we write

\[
r_n = r_{n-2} - q_n r_{n-1}.
\]

Now solve the proceeding equation in the algorithm for \(r_{n-1} \) and substitute to obtain,

\[
r_n = r_{n-2} - q_n(r_{n-3} - q_{n-1}r_{n-2}) = (1 + q_n q_{n-1})r_{n-2} + (-q_n)r_{n-3}.
\]

This represents \(r_n \) as a linear combination of \(r_{n-2} \) and \(r_{n-3} \). Continuing backwards through the system of equations, we successively eliminate the remainders \(r_{n-1}, r_{n-2}, \cdots, r_2, r_1 \) until a stage is reached where \(r_n = \text{g.c.d}(a, b) \) is expressed as a linear combination of \(a \) and \(b \).

Example 1.3.1. Use Euclidean algorithm to find the greatest common divisor of 7469 and 2464.

solution:

\[
\begin{align*}
7469 &= 3(2464) + 77 \\
2464 &= 32(77) + 0
\end{align*}
\]

\[\therefore \text{g.c.d}(7469, 2464) = 77.\]

Also \(77 = 7469 - 3(2464) \), so \(x = 1, \ y = -3. \)
Theorem 1.3.3. If \(k > 0 \), then \(\gcd(ka, kb) = k \gcd(a, b) \).

Proof. Let \(g = \gcd(a, b) \) then \(g = \) the least positive value of \(ax + by \). So for \(k > 0 \), \(\gcd(ka, kb) = \) least positive value of \((kax + kby) = k \) (least positive value of \(ax + by \)) = \(k \gcd(a, b) = kg \).

\[\square \]

Corollary 1.3.4. For any integer \(k \neq 0 \), \(\gcd(ka, kb) = \lvert k \rvert \gcd(a, b) \).

Proof. If \(k < 0 \implies \lvert k \rvert = -k \implies \gcd(ak, bk) = \gcd(-ak, -bk) = \gcd(a|k|, b|k|) = \lvert k \rvert \gcd(a, b) \).

\[\square \]

Example 1.3.2. \(\gcd(12, 30) = 3 \gcd(4, 10) = (3) \cdot 2 \gcd(2, 5) = 6 \).

Definition 1.3.1. An integer \(c \) is said to be a common multiple of two nonzero integers \(a \) and \(b \) whenever \(a|c \) and \(b|c \). Evidently \(0 \) is a common multiple of \(a \) and \(b \).

Example 1.3.3. For \(a = -12, b = 30 \), all of the integers \(0, 60, 120, 180, \cdots \) are common multiple of \(-12 \) and \(30 \). The least positive common multiple \(\text{l.c.m}(-12, 30) = 60 \).

Definition 1.3.2. The Least common multiple of two nonzero integers \(a \) and \(b \), denoted by \(\text{l.c.m}(a, b) \), is the positive integer \(m \) satisfying:

1. \(a|m \) and \(b|m \).
2. if \(a|c \) and \(b|c \), with \(c > 0 \), then \(m \leq c \).

Remark 1.3.1. If \(a, b \neq 0 \) then \(\text{l.c.m}(a, b) \) exists and \(\text{l.c.m}(a, b) \leq \lvert ab \rvert \).

Theorem 1.3.5. For positive integers \(a \) and \(b \), \(\gcd(a, b) \text{l.c.m}(a, b) = ab \).

Proof. Let \(d = \gcd(a, b) \implies d|a, d|b \implies \exists r, s \in \mathbb{Z} \ni a = dr, b = ds \). If \(m = \frac{ab}{d} \), then \(m = as = br \) because \(m = \frac{dcds}{d} = as = br \implies a|m, b|m \implies m \) is a common multiple of \(a \) and \(b \).

Now let \(c \) be any positive integer that is a common multiple of \(a \) and \(b \) then \(a|c \) and \(b|c \implies c = au = bv \) for some \(u, v \in \mathbb{Z} \implies u = \frac{c}{a}, v = \frac{c}{b} \).

Since \(d = \gcd(a, b) \implies \exists x, y \in \mathbb{Z} \ni d = ax + by \), then \(\frac{c}{m} = \frac{cd}{ab} = \frac{c(ax + by)}{ab} = \frac{cax + cby}{ab} = \frac{vx + uy}{x} \in \mathbb{Z} \implies m|c \implies m \leq c \implies m = \text{l.c.m}(a, b) \) and \(m = \frac{ab}{d} = \frac{ab}{\gcd(a, b)} \implies ab = md = \text{l.c.m}(a, b)\gcd(a, b) \).

\[\square \]

Corollary 1.3.6. Given positive integers \(a \) and \(b \), \(\text{l.c.m}(a, b) = ab \) if and only if \(\gcd(a, b) = 1 \).
Proof. \(\text{l.c.m}(a, b) \cdot \text{g.c.d}(a, b) = ab \) if \(\text{g.c.d}(a, b) = 1 \) then \(\text{l.c.m}(a, b) \cdot 1 = ab \).

Conversely, let \(\text{l.c.m}(a, b) \cdot \text{g.c.d}(a, b) = ab \) and \(\text{l.c.m}(a, b) = ab \) then \(ab \cdot \text{g.c.d}(a, b) = ab \implies \text{g.c.d}(a, b) = 1. \)

\[\square \]

Example 1.3.4. Find \(\text{l.c.m}(7469, 2464) \).

 SOLUTION: \(\text{g.c.d}(7469, 2464) \) by Euclidean algorithm is equal 77

So \(\text{l.c.m}(7469, 2464) = \frac{(7469)(2464)}{\text{g.c.d}(7469, 2464)} = 239008 \)

Definition 1.3.3. If \(a, b, c \in \mathbb{Z} \) not all zero then the \(\text{g.c.d}(a, b, c) \) is defined to be the positive integer \(d \) having the properties:

1. \(d \) is a divisor of each \(a, b, c \)
2. If \(e \) divides the integers \(a, b, c \) then \(e \leq d \).

Example 1.3.5. \(\text{g.c.d}(39, 42, 54) = 3 \).

Definition 1.3.4. Three integers are said to be relatively prime as a triple if \(\text{g.c.d}(a, b, c) = 1 \), yet not relatively primes in pairs.

1.4 The Diophantine equation \(ax + by = c \)

Theorem 1.4.1. The linear diophantine equation \(ax + by = c \) has a solution if and only if \(d|c \), where \(d = \text{g.c.d}(a, b) \). If \(x_0, y_0 \) is any particular solution of this equation, then all other solutions are given by

\[x = x_0 + \frac{b}{d} t, \quad y = y_0 - \frac{a}{d} t \quad \text{for varying integer } t. \]

Proof. Let \(d = \text{g.c.d}(a, b) \implies d|a, \quad d|b \implies \exists r, s \in \mathbb{Z} \ni a = dr, \quad b = ds \).

If \(ax + by = c \) has a solution then there exists \(x_0, y_0 \) such that \(ax_0 + by_0 = c \implies drx_0 + dsy_0 = c \implies d(rx_0 + sy_0) = c \implies d|c. \)

Conversely if \(d|c \implies \exists t \in \mathbb{Z} \ni c = dt \), but \(d = \text{g.c.d}(a, b) \implies \exists x_0, y_0 \in \mathbb{Z} \ni ax_0 + by_0 = d \implies atx_0 + bty_0 = td \implies a(tx_0) + b(ty_0) = c. \) If \(x = tx_0, \quad y = ty_0 \), then the diophantine equation \(ax + by = c \) has a solution \(x = tx_0, \quad y = ty_0. \)

To proof the second assertion of the theorem, let \(x_0, y_0 \) be a solution of the diophantine equation \(ax + by = c \implies ax_0 + by_0 = c \).

Let \(x', y' \) be any other solution, then \(ax' + by' = c \implies ax_0 + by_0 = ax' + by' = c \implies a(x' - x_0) = b(y_0 - y'). \)
But $d|a,$ and $d|b \iff \exists r, s \in Z, \exists a = rd, b = ds \implies d = g.c.d(a, b) = g.c.d(dr, ds) = dg.c.d(r, s) \implies g.c.d(r, s) = 1 \implies rd(x' - x_0) = sd(y_0 - y') \implies r|s(y_0 - y')$ but $g.c.d(r, s) = 1 \implies r|(y_0 - y') \implies \exists t \in Z, \exists y_0 - y' = tr.$

By substituting we have,

$$r(x' - x_0) = str \implies x' - x_0 = st \implies x' = x_0 + st = x_0 + \left(\frac{b}{d}\right)t$$

and

$$y' = y_0 - rt = y_0 - \left(\frac{a}{d}\right)t.$$

It is only to show that these values satisfy the diophantine equation $ax + by = c.$

$$ax' + by' = a[x_0 + \left(\frac{b}{d}\right)t] + b[y_0 - \left(\frac{a}{d}\right)t] = ax_0 + by_0 + \left(\frac{ab}{d} - \frac{ab}{d}\right)t = ax_0 + by_0 = c.$$

Therefore there are infinite number of solutions of the given equation, one for each value of $t.$ □

Example 1.4.1. Determine all solutions in integers of the following Diophantine equation

$$56x + 72y = 40.$$

Solution: we apply Euclidian algorithm to find $g.c.d(56, 72).$

$$72 = 56 \cdot 1 + 16$$

$$56 = 16 \cdot 3 + 8$$

$$16 = 8 \cdot 2 + 0.$$

Then $g.c.d(56, 72) = 8,$ since $8|40,$ then the Diophantine equation has solution.

$$8 = 56 - 16 \cdot 3$$

$$= 56 - (72 - 56)3$$

$$= 56(1 + 3) - 3(72)$$

$$= 4(56) - 3(72).$$

Then $40 = 20(56) - 15(72).$ Then $x_0 = 20,$ $y_0 = -15$ are the particular solutions and all solutions are $x = 20 + 9t,$ $y = -15 - 7t,$ where $t \in Z.$

Corollary 1.4.2. If $g.c.d(a, b) = 1$ and if x_0, y_0 is a particular solution of the linear diophantine equation $ax + by = c,$ then all solutions are given by

$$x = x_0 + bt,$$
$$y = y_0 - at$$

for integral values of $t.$
Example 1.4.2. Find all solutions of the diophantine equation,

\[30x + 17y = 300. \]

Solution

\[30 = 17 \cdot 1 + 13 \]
\[17 = 13 \cdot 1 + 4 \]
\[13 = 4 \cdot 3 + 1 \]
\[4 = 4 \cdot 1 + 0. \]

Then the \(g.c.d(30, 17) = 1 \). Then

\[1 = 13 - 4(3) = 13 - (17 - 13)(3) = 13(4) - 3(17) = (30 - 17)4 - 3(17) \]

\[1 = 4(30) - 7(17). \]

Then \(300 = 1200(30) - 2100(17) \).

Then the particular solutions are \(x_0 = 1200, \ y_0 = -2100 \) and all solutions are \(x = 1200 + 17t, \ y = -2100 - 30t. \)
Chapter 2

Primes and their distributions

2.1 Fundamental theorem of arithmetics

Definition 2.1.1. An integer \(p > 1 \) is called a prime number, or simply a prime, if its only positive divisors are 1 and \(p \). An integer greater than 1 which is not a prime termed composite.

Example 2.1.1. \(2, 3, 5, 7 \) are primes but \(4, 6, 8, 9, 10 \) are composite. \(2 \) is the only even prime, and all other primes are odd.

Theorem 2.1.1. If \(p \) is a prime and \(p|ab \), then \(p|a \) or \(p|b \).

Proof. Assume that \(p \nmid a \implies \gcd(a, p) = 1 \implies \text{if } p|ab \implies p|b \). if \(g.c.d(a, p) = p \implies p|a \). \(\Box \)

Corollary 2.1.2. If \(p \) is a prime and \(p|a_1a_2\cdots a_n \), then \(p|a_k \) for some \(k \), where \(1 \leq k \leq n \).

Proof. Assume that \(p \nmid a_k \) for \(1 \leq k \leq n \implies g.c.d(p, a_k) = 1 \) for \(1 \leq k \leq n \implies g.c.d(p, a_1a_2\cdots a_n) = 1 \implies p \nmid a_1a_2\cdots a_n \) contradiction. So there exists some \(k \), \(1 \leq k \leq n \) such that \(p|a_k \). \(\Box \)

Corollary 2.1.3. If \(p, q_1, q_2, \ldots, q_n \) are all primes and \(p|q_1q_2\cdots q_n \) then \(p = q_k \) for some \(k \), where \(1 \leq k \leq n \).

Proof. By previous corollary (2.1.2) \(\exists k, 1 \leq k \leq n \; \exists p|q_k \), being a prime, \(q_k \) is not divisible by any positive integer other than 1 or \(q \) itself, since \(p > 1 \) then \(p = q_k \). \(\Box \)
Theorem 2.1.4. (Fundamental theorem of arithmetic) Every positive integer \(n > 1 \) can expressed as a product of primes, this representation is unique, a part from the order in which the factors occur.

Proof. If \(n \) is prime then done.
If \(n \) is composite then there exists a prime \(p_1 \) such that,
\[n = p_1 n_1, \quad 1 < n_1 < n. \]
If \(n_1 \) is prime done, if not there exists \(p_2 \) and \(n_2 \) such that
\[n_1 = p_2 n_2, \quad 1 < n_2 < n_1 < n \implies n = p_1 p_2 n_2. \]
After \(k - 1 \) times we have,
\[n = p_1 p_2 \cdots p_{k-1} n_{k-1} \text{ and } 1 < n_k < \cdots < n_2 < n_1 < n, \]
the sequence cannot be infinite, so after \(n_{k-1} \) steps, \(n_{k-1} \) must be prime say \(n_{k-1} = p_k \implies n = p_1 p_2 \cdots p_k. \)
To establish the uniqueness, suppose that \(n \) has two representations as a product of primes, say
\[n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_s, \]
where \(k \leq s \) and \(p_i, q_j \) are primes and \(p_1 \leq p_2 \leq \cdots p_k, \)
\[q_1 \leq q_2 \cdots \leq q_s. \]
Since \(p_1 | q_1 q_2 \cdots q_s \), there exists \(i, 1 \leq i \leq s \) such that \(p_1 = q_i \geq q_1, \)
similarly \(q_1 \geq p_1 \) then \(q_1 = p_1. \)
If \(s = k \) after repeated the same process \(k \) times we have unique representation of \(n. \) If \(k < s \) then after \(k \) times we have \(p_1 p_2 \cdots p_k = p_1 p_2 \cdots p_k q_{k+1} q_{k+2} \cdots q_s \)
and by cancelling the common factors we obtain
\[1 = q_{k+1} q_{k+2} \cdots q_s \text{ which is a contradiction. Since } q_i > 1 \text{ then } k = s \text{ and } p_1 = q_1, \cdots p_k = q_k. \text{ So } n \text{ has unique representation.} \]

Corollary 2.1.5. Any positive integer \(n > 1 \) can be written uniquely in a canonical form
\[n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}, \]
where, for \(i = 1, 2, \cdots, r, \) each \(k_i \) is positive integer and each \(p_i \) is a prime, with \(p_1 < p_2 < \cdots < p_r. \)

Example 2.1.2.
\[360 = 2^3 \cdot 3^2 \cdot 5, \quad 4725 = 3^3 \cdot 5^2 \cdot 7, \text{ and } 17460 = 2^3 \cdot 3^2 \cdot 5 \cdot 7^2. \]

Theorem 2.1.6. The number \(\sqrt{2} \) is irrational number.

Proof. Suppose that \(\sqrt{2} \) is rational number say \(\sqrt{2} = \frac{a}{b}, \) where \(a \) and \(b \) are both integers with \(\text{g.c.d}(a, b) = 1. \)
Then $a^2 = 2b^2 \implies b|a^2$. If $b > 1$, then by the fundamental theorem of arithmetic, there exists a prime $p \nmid b \implies p|b \implies p|a^2 \implies p|a \implies g.c.d(a,p) \geq p$, contradiction unless $b = 1$. If $b = 1 \implies a^2 = 2$ which is impossible because no integer can be multiplied by itself to give 2. \hfill \Box

Theorem 2.1.7. Suppose a and b are positive integers. Let the distinct primes dividing a or b (or both) be p_1, p_2, \ldots, p_n. Suppose $a = p_1^{j_1} p_2^{j_2} \cdots p_n^{j_n}$ and $b = p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n}$ (some of the j’s and the k’s may be zero). Let m_i be the smaller and M_i be the larger of j_i and k_i for $i = 1, 2, \ldots, n$.

(a) $a | b$ if and only if $j_i \leq k_i$ for $i = 1, 2, \ldots, n$.

(b) $\text{g.c.d}(a, b) = p_1^{m_1} p_2^{m_2} \cdots p_n^{m_n}$.

(c) $\text{l.c.m}(a, b) = p_1^{M_1} p_2^{M_2} \cdots p_n^{M_n}$.

2.2 The sieve of Eratosthenes

Theorem 2.2.1. If n is composite it must have a prime factor $p \leq \sqrt{n}$.

Proof. Let n be composite, then $n = d_1 d_2$ where d_1 and $d_2 > 1$. If d_1 and $d_2 > \sqrt{n}$ then $n = d_1 d_2 > (\sqrt{n})^2 = n$ which impossible. Suppose $d \leq \sqrt{n}$, then d_1 is either prime or else has a prime divisor $p \leq \sqrt{n}$. \hfill \Box

Corollary 2.2.2. If the integer $n > 1$ has no prime divisor $\leq \sqrt{n}$, then n is prime.

Example 2.2.1. Determine whether $n = 1999$ is prime number or composite number.

Solution: $\sqrt{n} = \sqrt{1999} < 45$, then all of the primes $2, 3, 5, \ldots, 43 < 45$ are not divisors of 1999 so $n = 1999$ is prime.

Theorem 2.2.3. (Euclid) There are an infinite number of primes.

Proof. Suppose that p_1, p_2, \ldots, p_r are a finite number of primes. Let $n = 1 + p_1 p_2 \cdots p_r$. Since $n > 1$, then if p is a prime number and $p \nmid n$, then p is one of the primes p_1, p_2, \ldots, p_r because $p \nmid p_1 p_2 \cdots p_r \implies p \nmid n - p_1 p_2 \cdots p_r \implies p | 1 \implies p = 1$, a contradiction because $p > 1$. So p does not belong to set of primes p_1, p_2, \ldots, p_r, so the number of primes is infinite. \hfill \Box
Remark 2.2.1. If \(p_n \) is the \(n \)th prime number in the natural order then
\[
p_{n+1} \leq p_1p_2 \cdots p_n + 1 \quad \text{for} \quad n \geq 1.
\]
For example if \(n = 3 \) then \(p_4 = 7 \leq p_1p_2p_3 + 1 = (2) \cdot (3) \cdot (5) + 1 = 31 \).

The above estimation is wide; a sharper limitation to this size of \(p_n \) is given in the following theorem.

Theorem 2.2.4. If \(p_n \) is the \(n \)th prime number, then \(p_n \leq 2^{2^{n-1}} \).

Proof. By induction on \(n \). If \(n = 1 \), then \(p_1 = 2^{2^0} = 2^1 = 2 \implies p_1 \leq 2 \).
Assume that the result is true for \(n > 1 \), then \(p_n \leq 2^{2^{n-1}} \). We will show the result is true for \(n + 1 \).
Since
\[
p_{n+1} \leq p_1p_2 \cdots p_n + 1
\leq 2 \cdot 2^2 \cdot 2^{2^2} \cdots 2^{2^{n-1}} + 1 = 2^{1+2+2^2+ \cdots + 2^{n-1}} + 1.
\]
And since \(1 + 2 + 2^2 + \cdots + 2^{n-1} = 2^n - 1 \), then
\[
p_{n+1} \leq 2^{2^n - 1} + 1.
\]
But \(1 \leq 2^{2^{n-1}} \) for all \(n > 1 \), then,
\[
p_{n+1} \leq 2^{2^n - 1} + 2^{2^n - 1} = 2 \cdot 2^{2^n - 1} = 2^{2^n}.
\]
So the result is true for \(n + 1 \).

Corollary 2.2.5. For \(n \geq 1 \), there are at least \(n + 1 \) primes less than \(2^{2^n} \).

Proof. \(p_1, p_2, \cdots, p_{n+1} \) are all less than \(2^{2^n} \).

2.3 The Goldbach conjecture

Lemma 2.3.1. The product of two or more integers of the form \(4n+1 \) is of the same form.

Proof. Let \(k = 4n + 1 \) and \(k' = 4m + 1 \) then \(k \cdot k' = (4n + 1)(4m + 1) = 16nm + 4n + 4m + 1 = 4(4nm + n + m) + 1 \) which is of the desired form.

Theorem 2.3.2. There is infinite number of primes of the form \(4n + 3 \)
Proof. Assume that there exist only finitely many primes of the form $4n+3$, call them q_1, q_2, \ldots q_s. Consider the positive integer

$$N = 4q_1q_2\cdots q_s - 1 = 4(q_1q_2\cdots q_s - 1) + 3$$

and let $N = r_1r_2\cdots r_t$ be its prime factorization. Since N is odd integer, we have $r_k \neq 2$ for all k, so that each r_k is either of the form $4n+1$ or $4n+3$. By previous lemma, the product of any number of primes of the form $4n+1$ is again an integer of this type. For N to take the form $4n+3$, as it clearly does, N must contain at least one prime factor r_i of the form $4n+3$. But r_i cannot be found among the listing q_1, q_2, \ldots q_s for this would lead to the contradiction that $r_i|1$. The only possible conclusion is that there are infinitely many primes of this form $4n+3$.

\[
\text{Theorem 2.3.3. If } a \text{ and } b \text{ are relatively prime positive integers then the arithmetic progression}
\]

$$a, \; a+b, \; a+2b, \cdots$$

contains infinitely many primes.

Proof. Suppose that $p = a+nb$, where p is prime. If $n_k = n + kp$, for $k = 1, \; 2, \; 3, \cdots$ then the n_kth term in the progression is

$$a + n_kb = a + (n + kp)b = (a + nb) + kpb = p + kpb \Rightarrow p|a + n_kb.$$

So the arithmetic progression must contain infinitely many composite numbers which are divisible by infinitely prime numbers.

\[
18
\]
Chapter 3

The theory of congruences

3.1 Basic properties of congruence

Definition 3.1.1. Let \(n \) be a fixed positive integer. Two integers \(a \) and \(b \) are said to be congruent modulo \(n \), symbolized by \(a \equiv b \pmod{n} \) if \(n \) divides the difference \(a - b \); that is provided that \(a - b = kn \) for some integer \(k \).

Example 3.1.1. If \(n = 7 \) then \(3 \equiv 24 \pmod{7} \), and \(-31 \equiv 11 \pmod{7} \).

If \(n \nmid (a - b) \), then we say that \(a \) is not incongruent to \(b \) modulo \(n \) and in this case we write \(a \not\equiv b \pmod{n} \). For example \(25 \not\equiv 12 \pmod{7} \) since \(7 \nmid (25 - 12) = 13 \).

Remark 3.1.1.

1. Any two integers are congruent modulo 1.
2. Two integers are congruent modulo 2 when they are both even or both odd.
3. Given integer \(a \), let \(q \) and \(r \) be its quotient and remainder upon division by \(n \), so that

\[
a = nq + r, \quad 0 \leq r < n \implies a - r = nq \implies n|a - r \implies a \equiv r \pmod{n}.
\]

There are \(n \) choices of \(r \), \(r = 0, 1, \ldots, n - 1 \). So every integer \(a \) is congruent modulo \(n \) to exactly one of the numbers \(0, 1, 2, \ldots, n - 1 \). and \(a \equiv 0 \pmod{n} \iff n|a \).

The set of \(n \) integers \(0, 1, 2, \ldots n - 1 \) is called the set of least positive residues modulo \(n \).
Definition 3.1.2. The set of \(n \) integers \(a_1, a_2, a_3, \ldots a_n \) is said to form a complete residues set (or a complete residue system) modulo \(n \) if every integer \(y \) is congruent modulo \(n \) to one and only one of the \(a_i \) for \(1 \leq i \leq n \); i.e. the set \(\{a_1, a_2, a_3, \ldots a_n\} \) is called complete residue set modulo \(n \) if \(\forall y \in \mathbb{Z}, \exists \) one and only one \(a_i, 1 \leq i \leq n \) \(\ni y \equiv a_i \pmod{n} \).

Example 3.1.2. Any integers \(a_1, a_2, \ldots a_n \) are congruent modulo to \(0, 1, 2, \ldots n-1 \), taken in some order.

Example 3.1.3. \(-12, -4, 11, 13, 22, 82, 91\) constitute a complete set of residues modulo 7, because \(-12 \equiv 2, -4 \equiv 3, 11 \equiv 4, 13 \equiv 6, 22 \equiv 1, 82 \equiv 5 \) and \(91 \equiv 0 \) all modulo 7.

Remark 3.1.2. Any \(n \) integers from a complete residue set modulo \(n \) if and only if no two of the integers are congruent modulo \(n \).

Theorem 3.1.1. For arbitrary integers \(a \) and \(b \), \(a \equiv b \pmod{n} \) if and only if \(a \) and \(b \) leave the same nonnegative remainder when divided by \(n \).

Proof. Let \(a \equiv b \pmod{n} \implies n|a-b \), so \(\exists k \in \mathbb{Z} \ni a-b = nk \implies a = b + nk \) by division algorithm

\[
b = qn + r, \quad 0 \leq r < n \text{ so } n \text{ leaves the remainder } r,
\]

then

\[
a = b + kn = (qn + r) + kn = (q + k)n + r \implies a \text{ has the same remainder as } b.
\]

Conversely, suppose that

\[
a = q_1n + r, \quad b = q_2n + r \ni 0 \leq r < n.
\]

Then

\[
a - b = (q_1n + r) - (q_2n + r) = (q_1 - q_2)n \implies n|a - b \implies a \equiv b \pmod{n}.
\]

Example 3.1.4.

\[-56 \equiv (-7)9 + 7 \]
\[-11 \equiv (-2)9 + 7,\]

then by the above theorem (3.1.1)

\[-56 \equiv -11 \pmod{9}.\]
Theorem 3.1.2. Let $n > 0$ be fixed and a, b, c, d be arbitrary integers. Then the following properties hold:

(1) $a \equiv a \pmod{n}$.

(2) If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.

(3) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

(4) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.

(5) If $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$ and $ac \equiv bc \pmod{n}$.

(6) If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for any positive integer k.

Proof. (1) $a - a = 0 \implies n|a - a \implies a \equiv a \pmod{n}$.

(2) $n|a - b \implies \exists k \in Z \ni a - b = nk \implies b - a = -kn \implies n|b - a \implies b \equiv a \pmod{n}$.

(3) Suppose that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then there exist integers h and k satisfying $a - b = nk$ and $b - c = kn$. It follows that $a - c = (a - b) + (b - c) = hn + kn = (h + k)n$, so $n|a - c \implies a \equiv c \pmod{n}$.

(4) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $\exists k_1, k_2 \in Z \ni a - b = k_1n$, $c - d = k_2n \implies (a + c) - (b + d) = k_1n + k_2n = (k_1 + k_2)n \implies a + b \equiv (b + d) \pmod{n}$.

For the second assertion of (4)

$ac = (b + k_1n)(d + k_2n) = bd + (bk_2 + dk_1 + k_1k_2)n \implies ac \equiv bd \pmod{n}$.

(5) $a \equiv b \pmod{n}$, then $n|a - b \implies n|(a + c) - (b + c)$ also $n|ca - cb \forall c \in Z \implies a + c \equiv b + c \pmod{n}$ and $ca \equiv cb \pmod{n}$.

(6) For $k = 1$ the result holds.

Assume it is true for $n = k \implies a^k \equiv b^k \pmod{n}$, then by (4) since $a \equiv b \pmod{n} \implies a \cdot a^k \equiv b \cdot b^k \pmod{n} \implies a^{k+1} \equiv b^{k+1} \pmod{n}$. So it is true for $n = k + 1$. So the induction step is complete.

\[\square\]
Example 3.1.5. Show that $2^{20} \equiv 1 \pmod{41}$.

Solution: $2^{5} \equiv 32 \equiv -9 \pmod{41} \implies 2^{20} = (2^{5})^{4} \equiv (-9)^{4} \pmod{41} \equiv (81)(81) \equiv (-1)(-1) \equiv 1 \pmod{41}$.

Example 3.1.6. Find the remainder obtained upon dividing the sum $1! + 2! + 3! + 4! + \cdots 99! + 100!$ by 12.

Solution:

fork \geq 4,
4! \equiv 0 \pmod{12} \implies k! \cdot 5 \cdot 6 \cdot \cdots k \equiv 0 \pmod{12}.

1! + 2! + 3! + 4! + \cdots 100! \equiv 1 + 2 + 6 + 0 + \cdots 0 \equiv 9 \pmod{12}.

So the sum leaves a remainder of 9 when divided by 12.

Remark 3.1.3.
If $a \equiv b \pmod{n} \implies ac \equiv bc \pmod{n}$ but the converse need not true. for example $2 \cdot 4 \equiv 2 \cdot 1 \pmod{6}$ but $4 \not\equiv 1 \pmod{6}$.

Theorem 3.1.3. If $ca \equiv cb \pmod{n}$, then $a \equiv b \pmod{\frac{n}{d}}$ where $d = \gcd(c, n)$.

Proof. If $ca \equiv cb \pmod{n}$, then $n|ca - cb \implies \exists k \in \mathbb{Z} \ni c(a - b) = kn$ but $\gcd(c, n) = d \implies \gcd\left(\frac{c}{d}, \frac{n}{d}\right) = 1 \implies \frac{c}{d}(a - b) = k\frac{n}{d} \implies \frac{n}{d}|\frac{c}{d}(a - b)$.

But $\gcd\left(\frac{c}{d}, \frac{n}{d}\right) = 1$, so by previous theorem $\frac{n}{d}|(a - b) \implies a \equiv b \pmod{\frac{n}{d}}$. □

Corollary 3.1.4. If $ca \equiv cb \pmod{n}$ and $\gcd(c, n) = 1$ then $a \equiv b \pmod{n}$.

Proof. If $ca \equiv cb \pmod{n}$ then $n|ca - cb = c(a - b)$ but $\gcd\left(n, c\right) = 1 \implies n|a - b \implies a \equiv b \pmod{n}$. □

Corollary 3.1.5. If $ca \equiv cb \pmod{p}$, where p is prime number and $p \nmid c$ then $a \equiv b \pmod{p}$.

Proof. $p \nmid c \implies \gcd(p, c) = 1$ and $p|ca - cb = c(a - b) \implies p|a - b \implies a \equiv b \pmod{p}$. □

Example 3.1.7. $33 \equiv 15 \pmod{9} \implies 3 \cdot 11 \equiv 3 \cdot 5 \pmod{9}$ and $\gcd(3, 9) = 3 \implies 11 \equiv 5 \pmod{3}$.

Example 3.1.8. $-35 \equiv 45 \pmod{8}$ then $5(-7) \equiv 5(9) \pmod{8}$, since $\gcd(5, 8) = 1$ then $-7 \equiv 9 \pmod{8}$.
Remark 3.1.4. (1) If \(a \cdot b \equiv 0 \pmod{n} \) then it is not necessarily true that \(a \equiv 0 \pmod{n} \) and \(b \equiv 0 \pmod{n} \). For example \(4 \cdot 3 \equiv 0 \pmod{12} \) but \(3 \not\equiv 0 \pmod{12} \) and \(4 \not\equiv 0 \pmod{12} \).

(2) If \(a \cdot b \equiv 0 \pmod{n} \) and \(\gcd(a, n) = 1 \) then \(b \equiv 0 \pmod{n} \).

(3) If \(p \) is prime and \(a \cdot b \equiv 0 \pmod{p} \) then either \(a \equiv 0 \pmod{p} \) or \(b \equiv 0 \pmod{p} \).

3.2 Special divisibility tests

Given an integer \(b > 1 \), any positive integer \(N \) can be written uniquely in terms of powers of \(b \) as

\[
N = a_mb^m + a_{m-1}b^{m-1} + \cdots + a_2b^2 + a_1b + a_0.
\]

Where the coefficient \(a_k \) can take on the \(b \) different values \(0, 1, 2, \cdots, b - 1 \).

By division algorithm

\[
N = q_1b + a_0, \quad 0 \leq a_0 < b.
\]

If \(q_1 \geq b \), we can divide once more, obtaining

\[
q_1 = q_2b + a_1, \quad 0 \leq a_1 < b_1.
\]

Now substitute for \(q_1 \) in the earlier equation to get

\[
N = (q_2b + a_1)b + a_0 = q_2b^2 + a_1b + a_0.
\]

As long as \(q_2 \geq b \), we can continue in the same fashion, going one more step: \(q_2 = q_3b + a_2 \), where \(0 \leq a_2 < b \), we hence

\[
N = q_3b^3 + a_2b^2 + a_1b + a_0.
\]

Since \(N > q_1 > q_2 > \cdots \geq 0 \) is a strictly decreasing sequence of integers, this process must eventually terminate say, at the \((m-1) \)th stage, where \(q_{m-1} = q_mb + a_{m-1}, \quad 0 \leq a_{m-1} < b \) and \(0 \leq q_m < b \). Setting \(a_m = q_m \), we reach the representation

\[
N = a_mb^m + a_{m-1}b^{m-1} + \cdots + a_1b + a_0.
\]
Which was our aim.
The number
\[
N = a_m b^m + a_{m-1} b^{m-1} + \cdots + a_1 b + a_0
\]
may be replaced by the simpler symbol
\[
N = (a_m \ldots a_2 a_1 a_0)_{b}.
\]
We call this the base \(b\) place value notation for \(N\).
If \(b = 2\) the resulting system of enumeration is called the binary number system.

Example 3.2.1. \(a = 105\) can be written in binary system as
\[
105 = 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2 + 1 = 2^6 + 2^5 + 2^3 + 1.
\]
Or in abbreviated form
\[
105 = (1101001)_{2}.
\]
And \((1001111)_{2}\) translates into
\[
1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 = 2^6 + 2^3 + 2^2 + 2 + 1 = 79.
\]

decimal system: If the base \(b = 10\) then we can represent any integer with this base.

Example 3.2.2. \(a = 1492 = 1 \cdot 10^3 + 4 \cdot 10^2 + 9 \cdot 10 + 2\).
The integers 1, 4, 9, 2 are called the digits of the given number.
1 is called the thousands digit, 4 the hundreds digits, 9 the tens digit, and 2 the unit digit.

Theorem 3.2.1. Let \(P(x) = \sum_{k=0}^{m} c_k x^k\) be a polynomial function of \(x\) with integral coefficients \(c_k\). If \(a \equiv b \pmod{n}\), then \(P(a) \equiv P(b) \pmod{n}\).

Proof. Since \(a \equiv b \pmod{n}\) then \(a^k \equiv b^k \pmod{n}\) for \(k = 0, 1, 2, \ldots, m\) therefore \(c_k a^k \equiv c_k b^k \pmod{n}\) for all such \(k\). Adding these congruences, we conclude that
\[
\sum_{k=0}^{m} c_k a^k \equiv \sum_{k=0}^{m} c_k b^k \pmod{n}.
\]
or \(P(a) \equiv P(b) \pmod{n}\) \(\Box\)

Definition 3.2.1. If \(P(x)\) is a polynomial with integral coefficients, one says that \(a\) is a solution of the congruence \(P(x) \equiv 0 \pmod{n}\) if \(P(a) \equiv 0 \pmod{n}\).
Corollary 3.2.2. If \(a \) is a solution of \(P(x) \equiv 0 \pmod{n} \) and \(a \equiv b \pmod{n} \), then \(b \) is also a solution.

Proof. From previous theorem \(P(a) \equiv P(b) \pmod{n} \). Hence if \(a \) is a solution of \(P(x) \equiv 0 \pmod{n} \), then \(P(b) \equiv P(a) \equiv (mod n) \), making \(b \) a solution.

Theorem 3.2.3. Let \(N = a_m 10^m + a_{m-1} 10^{m-1} + \cdots + a_1 10 + a_0 \), be the decimal expansion of the positive integer \(N \), \(0 \leq a_k < 10 \), and let \(S = a_0 + a_1 + \cdots + a_m \). Then \(9 | N \) if and only if \(9 | S \).

Proof. Consider \(P(x) = \sum_{k=0}^{m} a_k x^k \), a polynomial with integral coefficients. \(10 \equiv 1 \pmod{9} \Rightarrow P(10) \equiv P(1) \pmod{9} \), but \(P(10) = N \) and \(P(1) = a_0 + a_1 + \cdots + a_m = S \Rightarrow N \equiv S \pmod{9} \). It follows that \(N \equiv 0 \pmod{9} \) if and only if \(S \equiv 0 \pmod{9} \).

Which is the wanted prove.

Theorem 3.2.4. Let \(N = a_m 10^m + a_{m-1} 10^{m-1} + \cdots + a_1 10 + a_0 \), be the decimal expansion of the positive integer \(N \), \(0 \leq a_k < 10 \), and let \(T = a_0 - a_1 + a_2 - \cdots + (\pm 1)^m a_m \). Then \(11 | N \) if and only if \(11 | T \).

Proof. Put \(P(x) = \sum_{k=0}^{m} a_k x^k \). Since \(10 \equiv -1 \pmod{11} \), we get \(P(10) \equiv P(-1) \pmod{11} \).

But \(N = P(10) \), \(T = P(-1) = a_0 - a_1 + a_2 - \cdots + (\pm 1)^m a_m \). So \(N \equiv T \pmod{11} \), it follows that \(N \equiv 0 \pmod{11} \) if and only if \(T \equiv 0 \pmod{11} \).

Example 3.2.3. Let \(N = 1571724 \) then \(1 + 5 + 7 + 1 + 7 + 2 + 4 = 27 \) is divisible by \(9 \Rightarrow 9 | N \).

And it divisible by \(11 \) because \(4 - 2 + 7 - 1 + 7 - 5 + 1 = 11 \) is divisible by \(11 \Rightarrow 11 | N \).

3.3 Linear congruences

Definition 3.3.1. An equation \(ax \equiv b \pmod{n} \) is called a linear congruence and \(x_0 \) is a solution of this congruence if \(ax_0 \equiv b \pmod{n} \).

Theorem 3.3.1. The linear congruence \(ax \equiv b \pmod{n} \) has a solution if and only if \(d | b \), where \(d = \gcd(a, n) \). If \(d | b \), then it has \(d \) mutually incongruent solutions modulo \(n \).
Proof. Let \(ax \equiv b \pmod{n} \) has a solution the there exists \(x_0 \in \mathbb{Z} \ni ax_0 \equiv b \pmod{n} \) \(\Rightarrow n|ax_0 - b \Rightarrow y \in \mathbb{Z} \ni ax_0 - b = ny \Rightarrow ax_0 - ny = b, \) but this equation has a solution, then \(\gcd(a, n) = d|b. \)

Conversely, let \(d|b \) and let \(ax \equiv b \pmod{n} \) \(\Rightarrow n|ax - b \Rightarrow \exists y \in \mathbb{Z} \ni ax - b = ny \Rightarrow \frac{ax}{n} - \frac{ny}{n} = b, \) since \(\gcd(a, n) = d|b. \)

Let now \(x = x_0 + \frac{n}{d}t \) be all solutions for the congruence, where \(0 \leq t \leq d - 1. \) We will show that the solutions \(x_0, x_0 + \frac{n}{d}, \ldots, x_0 + \frac{(d-1)n}{d} \) are not congruent modulo \(n. \)

Suppose that \(x_0 + \frac{n}{d}t_1 \equiv x_0 + \frac{n}{d}t_2 \pmod{n}, \) where \(0 \leq t_1 < t_2 \leq d - 1. \) We have \(\frac{n}{d}t_1 \equiv \frac{n}{d}t_2 \pmod{n}, \) but \(\gcd(\frac{n}{d}, n) = \frac{n}{d} \Rightarrow t_1 \equiv t_2 \pmod{\frac{n}{d}} \Rightarrow t_1 \equiv t_2 \pmod{d} \Rightarrow d|t_2 - t_1 \Rightarrow d < t_2 - t_1, \) but \(0 \leq t_2 - t_1 < d, \) contradiction.

Then \(x_0 + \frac{n}{d}t_1 \not\equiv x_0 + \frac{n}{d}t_2 \pmod{n}. \)

It remains to show that any other solution \(x_0 + \frac{n}{d}t \) is congruent modulo \(n \) to one of the \(d \) integers listed above.

By division algorithm \(t = qd + r \) where \(0 \leq r \leq d - 1. \) Hence

\[
x_0 + \frac{n}{d}t = x_0 + \frac{n}{d}(qd + r) = x_0 + nq + \frac{n}{d}r \equiv x_0 + \frac{n}{d}r \pmod{n},
\]

whith \(x_0 + \frac{n}{d}r \) being one of our \(d \) selected solutions. \(\square \)

Corollary 3.3.2. If \(\gcd(a, n) = 1, \) then the linear congruence \(ax \equiv b \pmod{n} \) has a unique solution modulo \(n. \)

Example 3.3.1. Solve the congruence \(18x \equiv 30 \pmod{42}. \)

Solution \(\gcd(18, 42) = 6 \) and \(6|30 \implies \)

the congruence has exactly six solutions which are incongruent modulo \(42. \)

Then

\[
18x \equiv 30 \pmod{42} \\
3x \equiv 5 \pmod{7} \\
6x \equiv 10 \pmod{7}
\]

26
\[-x \equiv 3 \pmod{7} \implies x \equiv -3 \pmod{7} \]
\[x \equiv 4 \pmod{7} \implies x_0 = 4. \]

All solutions of the original congruence are
\[x = x_0 + \frac{42}{6} t = 4 + 7t, \ 0 \leq t < 6, \]
which are \(x = 4, 11, 18, 25, 32, 39 \pmod{42} \).

Example 3.3.2. Solve the congruence
\[9x \equiv 21 \pmod{30}. \]

Solution \(\gcd(9, 30) = 3 \), \(3 \mid 21 \), so the congruence is solvable, then
\[3x \equiv 7 \pmod{10} \]
\[21x \equiv 49 \pmod{10} \]
\[x \equiv 9 \pmod{0} \implies x_0 = 9. \]

All solutions are \(x = x_0 + t \frac{30}{3} = 9 + 10t \) for \(0 \leq t < 3 \).

Theorem 3.3.3. (*The Chinese Remainder theorem*)

Let \(n_1, n_2, \ldots, n_r \) be positive integers such that \(\gcd(n_i, n_j) = 1 \) for \(i \neq j \).

Then the system of linear congruences
\[x \equiv a_1 \pmod{n_1} \]
\[x \equiv a_2 \pmod{n_2} \]
\[\vdots \]
\[x \equiv a_r \pmod{n_r} \]

has a common solution which is unique modulo \(n_1 n_2 \cdots n_r \).

Proof. Let \(n = \prod_{i=1}^{r} n_i = n_1 n_2 \cdots n_r \) and \(N_k = \frac{n}{n_k} \) for \(1 \leq k \leq r \).

Since \(\gcd(n_i, n_j) = 1 \) for \(i \neq j \), then \(\gcd(N_k, n_k) = 1 \implies \exists \) a unique solution \(x_k \) for the congruence \(N_k x \equiv 1 \pmod{n_k} \) \(\forall k, \ 1 \leq k \leq r \).

\(\implies a_k N_k x_k \equiv a_k \pmod{n_k} \) \(\forall k, 1 \leq k \leq r, \) and \(a_k N_k x_k \equiv 0 \pmod{n_j} \) for \(j \neq k \).

Let
\[\bar{x} = \sum_{k=1}^{r} a_k N_k x_k \equiv a_k N_k x_k \pmod{n_k}. \]
the \bar{x} is a common solution for the original system of congruences.

But x_k was chosen to satisfy the congruence $N_kx \equiv 1 \pmod{n_k}$, which forces
\[\bar{x} \equiv a_k \cdot 1 \equiv a_k \pmod{n_k}. \]

This implies that the solution of the given system of congruences exists.

To show uniqueness,

Suppose that x' is another common solution of the congruences
\[x \equiv a_k \pmod{n_k}, \text{ for } 1 \leq k \leq r. \]

Then $x' \equiv \bar{x} \pmod{n_k}$ for $1 \leq k \leq r$.

Then $\text{lcm}(n_1, n_2, \cdots, n_r)|x' - \bar{x}$, but $\gcd(n_i, n_j) = 1$ for $i \neq j$, then $n|x' - \bar{x}$ then $x' \equiv \bar{x} \pmod{n}$.

\[\square \]

Example 3.3.3. Find the common solution of the system of congruences
\[x \equiv 2 \pmod{3}, \ x \equiv 3 \pmod{5}, \ x \equiv 2 \pmod{7}. \]

Solution

\[a_1 = 2, \ a_2 = 3, \ a_3 = 2 \text{ and } n_1 = 3, \ n_2 = 5, \ n_3 = 7 \]

\[n = 3 \cdot 5 \cdot 7 = 105. \]

\[N_1 = \frac{n}{n_1} = 35, \ N_2 = \frac{n}{n_2} = 21, \ N_3 = \frac{n}{n_3} = 15. \]

The linear congruences

\[35x \equiv 1 \pmod{3}, \ 21x \equiv 1 \pmod{5}, \ 15x \equiv 1 \pmod{7}, \]

has solutions

\[x \equiv 2 \pmod{3}, \ x \equiv 1 \pmod{5}, \ x \equiv 1 \pmod{7}. \]

So $x_1 = 2, \ x_2 = 1, \ x_3 = 1$ respectively.

Thus the common solution of the original system is given by

\[\bar{x} = \sum_{k=1}^{3} a_k N_k x_k = 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1 = 233 \equiv 23 \pmod{105}. \]

The solution of the congruence $ax + by \equiv c \pmod{n}$

The congruence $ax + by \equiv c \pmod{n}$ has a solution if and only $\gcd(a, b, n)|c$. If $\gcd(a, b, n) = 1$, then either $\gcd(a, n) = 1$ or $\gcd(b, n) = 1$.

Let $\gcd(a, b) = 1$. The congruence can be written in the form

\[ax \equiv c - by \pmod{n}. \]
then the congruence has a unique solution x for each of the n incongruent values of y.

Example 3.3.4. Solve the congruence

$$7x + 4y \equiv 5 \pmod{12},$$

then $7x \equiv 5 - 4y \pmod{12}$. Substitution of $y \equiv 5 \pmod{12}$ then $7x \equiv -15 \pmod{12}$. Then

$$-5x \equiv -15 \pmod{12} \implies x \equiv 3 \pmod{12}$$

It follows that $x \equiv 3 \pmod{12}$ and $x \equiv 5 \pmod{12}$ is one of the 12 incongruent solutions of $7x + 4y \equiv 5 \pmod{12}$.

Theorem 3.3.4. The system of linear congruences

$$ax + by \equiv r \pmod{n} \quad \text{(1)}$$

$$cx + dy \equiv s \pmod{n} \quad \text{(2)}$$

has a unique solution modulo n whenever $\gcd(ad - bc, n) = 1$.

Proof. multiply the congruence (1) by d and the congruence (2) by b we get

$$adx + bdy \equiv rd \pmod{n}$$

$$cby + dby \equiv sb \pmod{n}.$$

Now subtract the last equations we get

$$(ad - cb)x \equiv rd - bs \pmod{n} \quad \text{(3)}.$$

Since $\gcd(ad - bc, n) = 1$ then the congruence

$$(ad - bc)z \equiv 1 \pmod{n}$$

has a unique solution; denote the solution by t.

Now multiply the congruence (3) by t we obtain

$$(ad - bc)tx \equiv (dr - bs)t \pmod{n}.$$

Then

$$x \equiv (dr - bs)t \pmod{n}. 29$$
now if we multiply the congruence (1) by c and the congruence (2) by a and subtract we obtain
\[(ad - bc)y \equiv (as - cr)(mod \ n).\]

now multiply the congruence by t we get
\[y \equiv t(as - cr)(mod \ n).\]

So we have get the solution of the congruence. \qed

Example 3.3.5. Solve the system of congruences

\[
\begin{align*}
7x + 3y &\equiv 10 \pmod{16}, \\
2x + 5y &\equiv 9 \pmod{16}
\end{align*}
\]

Solution: Since $gcd(7 \cdot 5 - 2 \cdot 3, 16) = 1$ so there is a solution of the congruences. Multiply the first congruence by 5, the second by 3 and subtract we get
\[29x \equiv 23 (mod \ 16)\]
then
\[13x \equiv 7 (mod \ 16),\]
now multiply by 5 we get
\[65x \equiv 35 \pmod{16} \implies x \equiv 3 (mod \ 16).\]

Now multiply the first congruence by 2 and the second by 7 we get
\[14x + 6y \equiv 20 (mod \ 16)\]
\[14x + 35y \equiv 63 (mod \ 16).\]
now by subtraction we get
\[29y \equiv 43 (mod \ 16) \implies 13y \equiv 11 (mod \ 16),\]
multiply by 5 we get $65y \equiv 55 (mod \ 16) \implies y \equiv 7 (mod \ 16)$.

30
Chapter 4

Fermat’s theorem

4.1 Fermat’s little theorem

Theorem 4.1.1. (Fermat’s theorem)

If \(p \) is a prime and \(p \nmid a \) then \(a^{p-1} \equiv 1 \pmod{p} \).

Proof. Consider the first \(p - 1 \) positive multiples of \(a \); that is the integers

\[a, 2a, 3a, \ldots, (p-1)a. \]

None of these numbers is congruent modulo \(p \) to any other, nor is any congruent to zero, because if \(ra \equiv sa \pmod{p} \), for \(1 \leq r \leq s \leq p - 1 \) and \(\gcd(a, p) = 1 \implies r \equiv s \pmod{p} \). A contradiction.

Therefore, the above set of integers must be congruent modulo \(p \) to 1, 2, 3, \ldots, \(p-1 \), taken in some order. multiplying all these congruences together, we find that

\[a \cdot 2a \cdot 3a \cdots (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdots (p-1) \pmod{p}. \]

Then

\[a^{p-1}(p-1)! \equiv (p-1)! \pmod{p} \]

but \(p \nmid (p-1)! \) then \(\gcd((p-1)!, p) = 1 \implies a^{p-1} \equiv 1 \pmod{p} \). \(\square \)

Corollary 4.1.2. If \(p \) is a prime, then \(a^p \equiv a \pmod{p} \) for any integer \(a \).

Proof. when \(p | a \) then \(p | a^p \implies p | a^p - a \implies a^p \equiv a \pmod{p} \).

If \(p \nmid a \), then \(a^{p-1} \equiv 1 \pmod{p} \implies a^p \equiv a \pmod{p} \). \(\square \)

Theorem 4.1.3. \((a + 1)^p \equiv a^p + 1 \equiv (mod \ p) \equiv a + 1 \pmod{p} \).
Proof.

\[(a+1)^p = a^p + \binom{p}{1} a^{p-1} + \cdots + \binom{p}{p-1} a + 1 \equiv a^p + 0 + \cdots + 0 + 1 \pmod{p} \equiv a+1 \pmod{p}.
\]

\[\square\]

Example 4.1.1. Verify that \(5^{38} \equiv 4 \pmod{11}\).

Solution: \(5^{38} = 5^{10\cdot3+8} = (5^{10})^3 \cdot (5^2)^4\) since \(\gcd(5, 11) = 1\) then \(5^{11-1} \equiv 1 \pmod{11}\) \(\implies 5^{10} \equiv 1 \pmod{11}\) \(\implies 5^{38} \equiv 1^3 \cdot (5^2)^4 \equiv 1 \cdot 3^4 \equiv 81 \pmod{11}\) \(\equiv 4 \pmod{11}\).

Note: (1) If \(n\) is composite then it is not necessarily true \(a^n \equiv a \pmod{n}\).

For Example 2 \(117 = 2^{7\cdot16+5} = (2^7)^{16} \cdot 2^5 \pmod{117}\) and \(2^7 = 128 \equiv 11 \pmod{117}\), we have

\[2^{117} \equiv 11^{16} \cdot 2^5 \pmod{117} \equiv (121)^8 \cdot 2^5 \pmod{117} \equiv 4^8 \cdot 2^5 \pmod{117}
\]

\[\equiv 2^{21} \equiv (2^7)^3 \equiv (11)^3 \equiv 121 \cdot 11 \equiv 4 \cdot 11 \equiv 44 \pmod{117} \neq 2 \pmod{117}.
\]

The number 117 = 13 \cdot 9 is a composite number.

(2) If \(a^{n-1} \equiv 1 \pmod{n}\) \(\implies n\) is not necessarily prime.

For example \(2^{341-1} \equiv 1 \pmod{341}\) but 341 = 11 \cdot 31 is not prime.

Lemma 4.1.4. If \(p\) and \(q\) are distinct primes such that \(a^p \equiv a \pmod{q}\) and \(a^q \equiv a \pmod{p}\), then \(a^{pq} \equiv a \pmod{pq}\).

Proof. \((a^q)^p \equiv a^q \pmod{pq}\) \(\forall a \in \mathbb{Z}\). While \(a^q \equiv a \pmod{p}\) \(\implies a^{pq} \equiv a \pmod{p}\) or \(p|a^{pq} - a\), also \(q|a^{pq} - a\). Since \(\text{lcm}(p, q) = pq|a^{pq} - a \implies a^{pq} \equiv a \pmod{pq}\). \(\square\)

Example 4.1.2. Show that \(2^{340} \equiv 1 \pmod{341}\), where 341 = 11(31).

Solution: \(2^{10} = 1024 = 31 \cdot 33 + 1\)

\[2^{11} = 2 \cdot 2^{10} \equiv 2 \pmod{31} \quad \text{and} \quad 2^{31} = 2(2^{10})^3 \equiv 2 \cdot 1^3 \equiv 2 \pmod{11} \implies (2^{11})^{31} \equiv 2 \pmod{11} \cdot 31 \implies 2^{341} \equiv 2 \pmod{341}\]

Since \(\gcd(2, 341) = 1 \implies 2^{340} \equiv 1 \pmod{341}\).

4.2 Wilson’s theorem

Theorem 4.2.1. If \(p\) is a prime then \((p - 1)! \equiv -1 \pmod{p}\).
Proof. If $p = 2$ or $p = 3$ then the proof is trivial.

Let $p > 3$, suppose that a is any one of the $p−1$ positive integers 1, 2, 3, \cdots, $p−1$ and consider the linear congruence $ax \equiv 1 \pmod{p}$, then $\gcd(a, p) = 1$. So the congruence $ax \equiv 1 \pmod{p}$ has a unique solution modulo p, $\exists a' \in \mathbb{Z}$ with $1 \leq a' \leq p−1$, satisfying $aa' \equiv 1 \pmod{p}$.

Since p is prime $a = a'$ if and only if $a = 1$ or $p−1$, because $1 \cdot 1 \equiv 1 \pmod{p}$ and $(p−1)^2 \equiv 1 \pmod{p}$. Or the congruence $a^2 \equiv 1 \pmod{p}$ is equivalent to $(a−1)(a+1) \equiv 0 \pmod{p}$, then either

$$a−1 \equiv 0 \pmod{p} \text{ or } a+1 \equiv 0 \pmod{p} \text{ then } a \equiv 1 \pmod{p} \implies a = 1 \text{ or } a+1 = p \implies a = p−1.$$

If we omit the numbers 1 and $p−1$, the effect is to group the remaining integers 2, 3, \cdots, $p−2$ into pairs a, a', where $a \neq a'$; Such that $aa' \equiv 1 \pmod{p}$. When these $\frac{p−3}{2}$ congruences are multiplied together and the factors rearranged we get

$$2 \cdot 3 \cdots (p−2) \equiv 1 \pmod{p}$$

or

$$(p−2)! \equiv 1 \pmod{p}$$

then

$$(p−1)(p−2)! \equiv (p−1) \equiv −1 \pmod{p}$$

which implies that $(p−1)! \equiv −1 \pmod{p}$. \hfill \square

Solution: We divide the integers 2, 3, \cdots, 11 into $\frac{p−3}{2} = 5$ pairs each of whose products is congruent to 1 modulo 13. Now write out these congruences explicitly we get

$$2 \cdot 7 \equiv 1 \pmod{13}$$

$$3 \cdot 9 \equiv 1 \pmod{13}$$

$$4 \cdot 10 \equiv 1 \pmod{13}$$

$$5 \cdot 8 \equiv 1 \pmod{13}$$

$$6 \cdot 11 \equiv 1 \pmod{13}$$

Multiply the above congruence gives the result

$$11! = (2\cdot7)(3\cdot9)(4\cdot10)(5\cdot8)(6\cdot11) \equiv 1 \pmod{13}.$$

$\implies 12! \equiv 12 \equiv −1 \pmod{13} \implies (p−1)! \equiv −1 \pmod{p}$ with $p = 13$.

Note: The converse of Wilson’s theorem is also true If $(n−1)! \equiv −1 \pmod{n}$, then n must be prime.
To prove this: let \(n \) be not prime, then \(n \) has a divisor \(d \), with \(1 < d < n \). Furthermore, since \(d \leq n - 1 \), \(d \) occurs as one of the factors in \((n - 1)!\), whence \(d|\(n - 1)! \), Now we are assuming that \(n|\(n - 1)! + 1 \) and so \(d|\(n - 1)! + 1 \) too, then \(d|1 \) which is a contradiction. So \(n \) is prime.

Theorem 4.2.2. The quadratic congruence \(x^2 + 1 \equiv 0 \pmod{p} \), where \(p \) is an odd prime, has a solution if and only if \(p \equiv 1 \pmod{4} \).

Proof. Let \(a \) be any solution of \(x^2 + 1 \equiv 0 \pmod{p} \), so that \(a^2 \equiv -1 \pmod{p} \). Since \(p \nmid a \), the outcome of applying Fermat’s Theorem is

\[
1 = a^{p-1} \equiv (a^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} (\pmod{p}).
\]

The possibility that \(p = 4k + 3 \) for \(k \in \mathbb{Z} \) is not arise because

\[
(-1)^{\frac{p-1}{2}} = (-1)^{2k+1} = -1 \implies 1 \equiv -1 (\pmod{p}) \implies p|2 \quad \text{which false. Therefore}
\]

\(p = 4k + 1 \) because \((-1)^{\frac{p+k}{2}} = (-1)^{2k} = 1 \implies 1 \equiv 1 (\pmod{p}) \), so \(p \equiv 1 (\pmod{4}) \). Conversely, Let \(p \equiv 1 (\pmod{4}) \). By Wilson’s theorem, we have \((p - 1)! = 1 \cdot 2 \cdots \left(\frac{p-1}{2}\right) \cdot \left(\frac{p+1}{2}\right) \cdots (p - 2)(p - 1) \), also

\[
p - 1 \equiv -1 (\pmod{p}),
\]

\[
p - 2 \equiv -2 (\pmod{p})
\]

\[
\vdots
\]

\[
\frac{p + 1}{2} \equiv -\left(\frac{p - 1}{2}\right) (\pmod{p}).
\]

Rearranging the factor produces,

\[
(p - 1)! \equiv 1 \cdot (-1) \cdot (2) \cdot (-2) \cdots \left(\frac{p-1}{2}\right) \cdot \left(-\frac{p-1}{2}\right) (\pmod{p}),
\]

then

\[
(p - 1)! \equiv (-1)^{\frac{p-1}{2}} \left(1 \cdot 2 \cdots \left(\frac{p-1}{2}\right)\right)^2 (\pmod{p}).
\]

If \(p \equiv 1 (\pmod{4}) \implies p = 4k + 1 \), then \(-1 \equiv ((\frac{p-1}{2})!)^2 (\pmod{p}) \). The conclusion \((\frac{p-1}{2})! \) satisfies the quadratic congruence \(x^2 + 1 \equiv 0 (\pmod{p}) \).

Example 4.2.2. Solve the congruence \(x^2 + 1 \equiv 0 (\pmod{13}) \).

Solution: Since \(p = 13 \) and \(13 \equiv 1 (\pmod{4}) \) then the congruence has a solution, so \(x = (\frac{p-1}{2})! = 6! = 720 \equiv 5 (\pmod{13}) \) is a solution.

34