INSTRUCTIONS:

- Do all work on these sheets.
- Show all work.
- No books, calculators, or other electronic devices.
- Answers do not necessarily need to be simplified.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

1. (a) (2 points) State Fermat’s little theorem.

Solution: If \(p \) is a prime and \(a \) is a positive integer such that \(p \nmid a \), then \(a^{p-1} \equiv 1 \pmod{p} \).

(b) (6 points) Use Fermat’s little theorem to compute \(3^{221} \pmod{23} \).

Solution: Since \(221 = 10 \cdot 22 + 1 \) and by Fermat’s theorem \(3^{22} \equiv 1 \pmod{23} \), we have \(3^{221} \equiv (3^{22})^{10} \cdot 3 \equiv 3 \pmod{23} \).

2. (6 points) Suppose that \(p \) and \(q \) are distinct odd primes, that \(a \) is an integer, and that \(\gcd(a, pq) = 1 \). Prove that \(a^{(p-1)(q-1)+1} \equiv a \pmod{pq} \).

Solution: Since \(\gcd(a, pq) = 1 \), we have \(p \nmid a \). Then, by Fermat’s theorem, \(a^{p-1}(a-1)^{+1} \equiv 1^{(q-1)} \cdot a \equiv a \pmod{p} \).

Similarly, Since \(\gcd(a, pq) = 1 \), we have \(q \nmid a \). Then, by Fermat’s theorem, \(a^{q-1}(q-1)^{+1} \equiv 1^{(p-1)} \cdot a \equiv a \pmod{q} \).

Then, by the Chinese Remainder Theorem, we have \(a^{(p-1)(q-1)+1} \equiv a \pmod{pq} \).

3. Use Wilson’s theorem to do this problem.

(a) (2 points) State Wilson’s theorem.

Solution: If \(p \) is a prime, then \((p - 1)! \equiv -1 \pmod{p} \).

(b) (6 points) Compute

\[
7 \cdot 8 \cdot 9 \cdot 15 \cdot 16 \cdot 17 \cdot 23 \cdot 24 \cdot 25 \cdot 32 \pmod{11}
\]

Briefly explain your answer.
Solution: 7 \cdot 8 \cdot 9 \cdot 15 \cdot 16 \cdot 17 \cdot 23 \cdot 24 \cdot 25 \cdot 32 \text{ is equivalent modulo 11 to } 7 \cdot 8 \cdot 9 \cdot 4 \cdot 5 \cdot 6 \cdot 1 \cdot 2 \cdot 3 \cdot 10 \equiv 10! \text{ (mod 11)}. \nBut by Wilson’s theorem 10! \equiv -1 \text{ (mod 11)}. \nTherefore, 7 \cdot 8 \cdot 9 \cdot 15 \cdot 16 \cdot 17 \cdot 23 \cdot 24 \cdot 25 \cdot 32 \equiv -1 \text{ (mod 11)}.

(c) (6 points) Compute 13! \cdot 5! \text{ (mod 19)}.
Show your work.

Solution: By Wilson’s theorem,
\[-1 \equiv (19 - 1)! \equiv 18! \equiv 13! \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \text{ (mod 19)} \n\equiv 13! \cdot (-5) \cdot (-4) \cdot (-3) \cdot (-2) \cdot (-1) \text{ (mod 19)} \n\equiv -(13!5!) \text{ (mod 19)}. \nTherefore, 13!5! \equiv 1 \text{ (mod 19)}.

4. Let \(n \) be a positive integer. Let \(\tau(n) \) denote the number of positive divisors of \(n \), and let \(\sigma(n) \) denote the sum of the positive divisors of \(n \), as usual.

(a) (6 points) Compute the value of \(\tau(2^5 \cdot 5^3 \cdot 11) \).

Solution: \(\tau(2^5 \cdot 5^3 \cdot 11) = (5+1)(3+1)(1+1) = 48 \)

(b) (6 points) Compute the value of \(\sigma(2^5 \cdot 5^3 \cdot 11) \).

Solution:
\[
\sigma(2^5 \cdot 5^3 \cdot 11) = \frac{2^{5+1}}{2-1} \cdot \frac{5^{3+1}}{5-1} \cdot \frac{11^{1+1}}{11-1}.
\]