Chapter 3: Bipolar Junction Transistors

Islamic University of Gaza

Dr. Talal Skaik
Transistor Construction

There are two types of transistors:

- **pnp**
- **nnp**

The terminals are labeled:

- **E** - Emitter
- **B** - Base
- **C** - Collector

• The **nnp** BJT consists of three semiconductor regions: the emitter region (**n** type), the base region (**p** type), and the collector region (**n** type).
• The **pnp** BJT consists of three semiconductor regions: the emitter region (**p** type), the base region (**n** type), and the collector region (**p** type).
The transistor consists of two *pn junctions*, the emitter–base junction (EBJ) and the collector–base junction (CBJ).
Transistor Construction

- **Emitter**: The portion on one side of transistor that supplies charge carriers (i.e. electrons or holes) to the other two portions.
- The emitter is a heavily doped region.
- Emitter of PNP transistor supplies hole charges to its junction with the base. Similarly, the emitter of NPN transistor supplies free electrons to its junction with the base.
Transistor Construction

- **Collector** is the portion on the other side of the transistor (i.e. the side opposite to the emitter) that collects the charge carriers (i.e. electrons or holes).

- The doping level of the collector is in between the heavily doping of emitter and the light doping of the base.

- **Base:** The middle portion which forms two PN junctions between the emitter and the collector is called the base.

- The base of transistor is thin, as compared to the emitter and is a lightly doped portion.

- The function of base is to control the flow of charge carrier.
BJT Modes Of Operation

➢ There are two junctions in bipolar junction transistor.
➢ Each junction can be forward or reverse biased independently.
➢ Thus there are different modes of operations:
 - Forward Active.
 - Cut off.
 - Saturation.

<table>
<thead>
<tr>
<th>Mode</th>
<th>EBJ</th>
<th>CBJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutoff</td>
<td>Reverse</td>
<td>Reverse</td>
</tr>
<tr>
<td>Active</td>
<td>Forward</td>
<td>Reverse</td>
</tr>
<tr>
<td>Saturation</td>
<td>Forward</td>
<td>Forward</td>
</tr>
</tbody>
</table>
BJT Modes Of Operation

FORWARD ACTIVE
- Emitter-base junction is forward biased and collector-base junction is reverse biased.
- The BJT can be used as an amplifier and in analog circuits.

CUTT OFF
- When both junctions are reverse biased it is called cut off mode.
- In this situation there is nearly zero current and transistor behaves as an open switch.

SATURATION
- In saturation mode both junctions are forward biased.
- Large collector current flows with a small voltage across collector base junction.
- Transistor behaves as an closed switch.
Operation of pnp transistor in active mode

Forward-biased junction of a pnp transistor.

Reverse-biased junction of a pnp transistor.
Operation of pnp transistor in active mode

With the external sources, V_{EE} and V_{CC}, connected as shown:

- The emitter-base junction is forward biased
- The base-collector junction is reverse biased

![Diagram of pnp transistor in active mode](image-url)
Currents in a Transistor

Emitter current is the sum of the collector and base currents:

\[I_E = I_C + I_B \]

The collector current is comprised of two currents:

\[I_C = I_{C_{\text{majority}}} + I_{C_{\text{minority}}} \]

The minority current is called the leakage current and is given by the symbol \(I_{CO} \) (\(I_C \) current with emitter terminal Open).
The base is common to both input (emitter–base) and output (collector–base) of the transistor.
Common-Base Configuration

Input Characteristics

This curve shows the relationship between of input current (I_E) to input voltage (V_{BE}) for three output voltage (V_{CB}) levels.

\[V_{BE} = 0.7 \text{ V} \]
Common-Base Configuration

Output Characteristics

This graph demonstrates the output current (I_C) to an output voltage (V_{CB}) for various levels of input current (I_E).
Operating Regions

- **Active** – Operating range of the amplifier. It is noticed that I_E is approximately equal to I_C ($I_C \approx I_E$).

- **Cutoff** – the region where the collector current is approximately 0A ($I_C = I_{CBO}$). The amplifier is basically off. There is voltage, but little current.

- **Saturation** – Region to the left of $V_{CB}=0$. Note the exponential increase in collector current as the voltage V_{CB} increases toward 0 V. There is current but little voltage.
Approximations

Emitter and collector currents:

\[I_C \approx I_E \]

Base-emitter voltage:

\[V_{BE} = 0.7 \text{ V (for Silicon)} \]
Alpha (α)

Alpha (α) is the ratio of I_C to I_E:

$$\alpha_{dc} = \frac{I_C}{I_E}$$

$$I_C = \alpha I_E + I_{CBO}$$

Ideally: $\alpha = 1$
In reality: α is between 0.9 and 0.998

Alpha (α) in the AC mode:

$$\alpha_{ac} = \left. \frac{\Delta I_C}{\Delta I_E} \right|_{V_{CB}=\text{constant}}$$