This solution manual remains under construction. The current count is that 678 (out of 687) problems have solutions. The unsolved problems are

12.1.7, 12.1.8, 12.5.8, 12.5.9, 12.11.5 – 12.11.9.

If you volunteer a solution for one of those problems, we’ll be happy to include it . . . and, of course, “your wildest dreams will come true.”

Of course, the correctness of every single solution reamins unconfirmed. If you find errors or have suggestions or comments, please send email: ryates@winlab.rutgers.edu.

If you need to make solution sets for your class, you might like the Solution Set Constructor at the instructors site www.winlab.rutgers.edu/probsolns. If you need access, send email: ryates@winlab.rutgers.edu.

MATLAB functions written as solutions to homework problems can be found in the archive matso1n.zip (available to instructors) or in the directory matso1n. Other MATLAB functions used in the text or in these homework solutions can be found in the archive matcode.zip or directory matcode. The .m files in matcode are available for download from the Wiley website. Two other documents of interest are also available for download:

- A manual probmatlab.pdf describing the matcode .m functions is also available.

A web-based solution set constructor for the second edition is available to instructors at http://www.winlab.rutgers.edu/probsolns

The next update of this solution manual is likely to occur in January, 2006.
Problem Solutions – Chapter 1

Problem 1.1.1 Solution
Based on the Venn diagram

the answers are fairly straightforward:

(a) Since $T \cap M \neq \emptyset$, T and M are not mutually exclusive.

(b) Every pizza is either Regular (R), or Tuscan (T). Hence $R \cup T = S$ so that R and T are collectively exhaustive. Thus its also (trivially) true that $R \cup T \cup M = S$. That is, R, T and M are also collectively exhaustive.

(c) From the Venn diagram, T and O are mutually exclusive. In words, this means that Tuscan pizzas never have onions or pizzas with onions are never Tuscan. As an aside, “Tuscan” is a fake pizza designation; one shouldn’t conclude that people from Tuscany actually dislike onions.

(d) From the Venn diagram, $M \cap T$ and O are mutually exclusive. Thus Gerlanda’s doesn’t make Tuscan pizza with mushrooms and onions.

(e) Yes. In terms of the Venn diagram, these pizzas are in the set $(T \cup M \cup O)^c$.

Problem 1.1.2 Solution
Based on the Venn diagram,

the complete Gerlandas pizza menu is
- Regular without toppings
- Regular with mushrooms
- Regular with onions
- Regular with mushrooms and onions
- Tuscan without toppings
- Tuscan with mushrooms

Problem 1.2.1 Solution

(a) An outcome specifies whether the fax is high (h), medium (m), or low (l) speed, and whether the fax has two (t) pages or four (f) pages. The sample space is

$$S = \{ht, hf, mt, mf, lt, lf\}.$$

(1)
(b) The event that the fax is medium speed is \(A_1 = \{mt, mf\} \).

(c) The event that a fax has two pages is \(A_2 = \{ht, mt, lt\} \).

(d) The event that a fax is either high speed or low speed is \(A_3 = \{ht, hf, lt, lf\} \).

(e) Since \(A_1 \cap A_2 = \{mt\} \) and is not empty, \(A_1 \), \(A_2 \), and \(A_3 \) are not mutually exclusive.

(f) Since
\[
A_1 \cup A_2 \cup A_3 = \{ht, hf, mt, mf, lt, lf\} = S,
\]
the collection \(A_1 \), \(A_2 \), \(A_3 \) is collectively exhaustive.

Problem 1.2.2 Solution

(a) The sample space of the experiment is
\[
S = \{aaa, aaf, afa, faa, ffa, faf, aff, fff\}. \tag{1}
\]

(b) The event that the circuit from \(Z \) fails is
\[
Z_F = \{aaf, aff, faf, fff\}. \tag{2}
\]

The event that the circuit from \(X \) is acceptable is
\[
X_A = \{aaa, aaf, afa, aff\}. \tag{3}
\]

(c) Since \(Z_F \cap X_A = \{aaf, aff\} \neq \emptyset \), \(Z_F \) and \(X_A \) are not mutually exclusive.

(d) Since \(Z_F \cup X_A = \{aaa, aaf, afa, aff, ffa, faf, fff\} \neq S \), \(Z_F \) and \(X_A \) are not collectively exhaustive.

(e) The event that more than one circuit is acceptable is
\[
C = \{aaa, aaf, afa, faa\}. \tag{4}
\]

The event that at least two circuits fail is
\[
D = \{ffa, faf, aff, fff\}. \tag{5}
\]

(f) Inspection shows that \(C \cap D = \emptyset \) so \(C \) and \(D \) are mutually exclusive.

(g) Since \(C \cup D = S \), \(C \) and \(D \) are collectively exhaustive.

Problem 1.2.3 Solution

The sample space is
\[
S = \{A\heartsuit, \ldots, K\heartsuit, A\diamondsuit, \ldots, K\diamondsuit, A\spadesuit, \ldots, K\spadesuit\}. \tag{1}
\]

The event \(H \) is the set
\[
H = \{A\heartsuit, \ldots, K\heartsuit\}. \tag{2}
\]
Problem 1.2.4 Solution
The sample space is
\[S = \left\{ \frac{1}{1} \ldots \frac{1}{31}, \frac{2}{1} \ldots \frac{2}{31}, \frac{3}{1} \ldots \frac{3}{31}, \frac{4}{1} \ldots \frac{4}{30}, \ldots \right\} . \] \tag{1}

The event \(H \) defined by the event of a July birthday is described by following 31 sample points.
\[H = \{7/1, 7/2, \ldots, 7/31\} . \] \tag{2}

Problem 1.2.5 Solution
Of course, there are many answers to this problem. Here are four event spaces.
1. We can divide students into engineers or non-engineers. Let \(A_1 \) equal the set of engineering students and \(A_2 \) the non-engineers. The pair \(\{A_1, A_2\} \) is an event space.
2. We can also separate students by GPA. Let \(B_i \) denote the subset of students with GPAs \(G \) satisfying \(i - 1 \leq G < i \). At Rutgers, \(\{B_1, B_2, \ldots, B_5\} \) is an event space. Note that \(B_5 \) is the set of all students with perfect 4.0 GPAs. Of course, other schools use different scales for GPA.
3. We can also divide the students by age. Let \(C_i \) denote the subset of students of age \(i \) in years. At most universities, \(\{C_{10}, C_{11}, \ldots, C_{100}\} \) would be an event space. Since a university may have prodigies either under 10 or over 100, we note that \(\{C_0, C_1, \ldots\} \) is always an event space.
4. Lastly, we can categorize students by attendance. Let \(D_0 \) denote the number of students who have missed zero lectures and let \(D_1 \) denote all other students. Although it is likely that \(D_0 \) is an empty set, \(\{D_0, D_1\} \) is a well defined event space.

Problem 1.2.6 Solution
Let \(R_1 \) and \(R_2 \) denote the measured resistances. The pair \((R_1, R_2) \) is an outcome of the experiment. Some event spaces include
1. If we need to check that neither resistance is too high, an event space is
\[A_1 = \{R_1 < 100, R_2 < 100\} , \quad A_2 = \{\text{either } R_1 \geq 100 \text{ or } R_2 \geq 100\} . \] \tag{1}
2. If we need to check whether the first resistance exceeds the second resistance, an event space is
\[B_1 = \{R_1 > R_2\} \quad B_2 = \{R_1 \leq R_2\} . \] \tag{2}
3. If we need to check whether each resistance doesn’t fall below a minimum value (in this case 50 ohms for \(R_1 \) and 100 ohms for \(R_2 \)), an event space is
\[C_1 = \{R_1 < 50, R_2 < 100\} , \quad C_2 = \{R_1 < 50, R_2 \geq 100\} , \quad C_3 = \{R_1 \geq 50, R_2 < 100\} , \quad C_4 = \{R_1 \geq 50, R_2 \geq 100\} . \] \tag{3}
\tag{4}
4. If we want to check whether the resistors in parallel are within an acceptable range of 90 to 110 ohms, an event space is
\[D_1 = \{(1/R_1 + 1/R_2)^{-1} < 90\} , \quad D_2 = \{90 \leq (1/R_1 + 1/R_2)^{-1} \leq 110\} , \quad D_2 = \{110 < (1/R_1 + 1/R_2)^{-1}\} . \] \tag{5} \tag{6} \tag{7}
Problem 1.3.1 Solution
The sample space of the experiment is
\[S = \{LF, BF, LW, BW\}. \] (1)

From the problem statement, we know that \(P[LF] = 0.5 \), \(P[BF] = 0.2 \) and \(P[BW] = 0.2 \). This implies \(P[LW] = 1 - 0.5 - 0.2 - 0.2 = 0.1 \). The questions can be answered using Theorem 1.5.

(a) The probability that a program is slow is
\[P[W] = P[LW] + P[BW] = 0.1 + 0.2 = 0.3. \] (2)

(b) The probability that a program is big is
\[P[B] = P[BF] + P[BW] = 0.2 + 0.2 = 0.4. \] (3)

(c) The probability that a program is slow or big is
\[P[W \cup B] = P[W] + P[B] - P[BW] = 0.3 + 0.4 - 0.2 = 0.5. \] (4)

Problem 1.3.2 Solution
A sample outcome indicates whether the cell phone is handheld (\(H \)) or mobile (\(M \)) and whether the speed is fast (\(F \)) or slow (\(W \)). The sample space is
\[S = \{HF, HW, MF, MW\}. \] (1)

The problem statement tells us that \(P[HF] = 0.2 \), \(P[MW] = 0.1 \) and \(P[F] = 0.5 \). We can use these facts to find the probabilities of the other outcomes. In particular,
\[P[F] = P[HF] + P[MF]. \] (2)

This implies
\[P[MF] = P[F] - P[HF] = 0.5 - 0.2 = 0.3. \] (3)

Also, since the probabilities must sum to 1,
\[P[HW] = 1 - P[HF] - P[MF] - P[MW] = 1 - 0.2 - 0.3 - 0.1 = 0.4. \] (4)

Now that we have found the probabilities of the outcomes, finding any other probability is easy.

(a) The probability a cell phone is slow is
\[P[W] = P[HW] + P[MW] = 0.4 + 0.1 = 0.5. \] (5)

(b) The probability that a cell phone is mobile and fast is \(P[MF] = 0.3. \)

(c) The probability that a cell phone is handheld is
\[P[H] = P[HF] + P[HW] = 0.2 + 0.4 = 0.6. \] (6)
Problem 1.3.3 Solution
A reasonable probability model that is consistent with the notion of a shuffled deck is that each card in the deck is equally likely to be the first card. Let H_i denote the event that the first card drawn is the ith heart where the first heart is the ace, the second heart is the deuce and so on. In that case, $P[H_i] = 1/52$ for $1 \leq i \leq 13$. The event H that the first card is a heart can be written as the disjoint union

$$H = H_1 \cup H_2 \cup \cdots \cup H_{13}. \quad (1)$$

Using Theorem 1.1, we have

$$P[H] = \sum_{i=1}^{13} P[H_i] = 13/52. \quad (2)$$

This is the answer you would expect since 13 out of 52 cards are hearts. The point to keep in mind is that this is not just the common sense answer but is the result of a probability model for a shuffled deck and the axioms of probability.

Problem 1.3.4 Solution
Let s_i denote the outcome that the down face has i dots. The sample space is $S = \{s_1, \ldots, s_6\}$. The probability of each sample outcome is $P[s_i] = 1/6$. From Theorem 1.1, the probability of the event E that the roll is even is

Problem 1.3.5 Solution
Let s_i equal the outcome of the student’s quiz. The sample space is then composed of all the possible grades that she can receive.

$$S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}. \quad (1)$$

Since each of the 11 possible outcomes is equally likely, the probability of receiving a grade of i, for each $i = 0, 1, \ldots, 10$ is $P[s_i] = 1/11$. The probability that the student gets an A is the probability that she gets a score of 9 or higher. That is

The probability of failing requires the student to get a grade less than 4.

Problem 1.4.1 Solution
From the table we look to add all the disjoint events that contain H_0 to express the probability that a caller makes no hand-offs as

$$P[H_0] = P[LH_0] + P[BH_0] = 0.1 + 0.4 = 0.5. \quad (1)$$

In a similar fashion we can express the probability that a call is brief by

$$P[B] = P[BH_0] + P[BH_1] + P[BH_2] = 0.4 + 0.1 + 0.1 = 0.6. \quad (2)$$

The probability that a call is long or makes at least two hand-offs is

$$P[L \cup H_2] = P[LH_0] + P[LH_1] + P[LH_2] + P[BH_2]$$

$$= 0.1 + 0.1 + 0.2 + 0.1 = 0.5. \quad (4)$$
Problem 1.4.2 Solution

(a) From the given probability distribution of billed minutes, M, the probability that a call is billed for more than 3 minutes is

$$P[L] = 1 - P[3 \text{ or fewer billed minutes}]$$

$$= 1 - P[B_1] - P[B_2] - P[B_3]$$

$$= 1 - \alpha - \alpha(1 - \alpha) - \alpha(1 - \alpha)^2$$

$$= (1 - \alpha)^3 = 0.57. \quad (4)$$

(b) The probability that a call will billed for 9 minutes or less is

$$P[9 \text{ minutes or less}] = \alpha \sum_{i=1}^{9} (1 - \alpha)^{i-1} = 1 - (0.57)^3. \quad (5)$$

Problem 1.4.3 Solution

The first generation consists of two plants each with genotype yg or gy. They are crossed to produce the following second generation genotypes, $S = \{yy, yg, gy, gg\}$. Each genotype is just as likely as any other so the probability of each genotype is consequently $1/4$. A pea plant has yellow seeds if it possesses at least one dominant y gene. The set of pea plants with yellow seeds is

$$Y = \{yy, yg, gy\}. \quad (1)$$

So the probability of a pea plant with yellow seeds is

Problem 1.4.4 Solution

Each statement is a consequence of part 4 of Theorem 1.4.

(a) Since $A \subset A \cup B$, $P[A] \leq P[A \cup B]$.

(b) Since $B \subset A \cup B$, $P[B] \leq P[A \cup B]$.

(c) Since $A \cap B \subset A$, $P[A \cap B] \leq P[A]$.

(d) Since $A \cap B \subset B$, $P[A \cap B] \leq P[B]$.

Problem 1.4.5 Solution

Specifically, we will use Theorem 1.7(c) which states that for any events A and B,

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]. \quad (1)$$

To prove the union bound by induction, we first prove the theorem for the case of $n = 2$ events. In this case, by Theorem 1.7(c),

$$P[A_1 \cup A_2] = P[A_1] + P[A_2] - P[A_1 \cap A_2]. \quad (2)$$
By the first axiom of probability, \(P[A_1 \cap A_2] \geq 0 \). Thus,
\[
P[A_1 \cup A_2] \leq P[A_1] + P[A_2].
\]
which proves the union bound for the case \(n = 2 \). Now we make our induction hypothesis that the union-bound holds for any collection of \(n - 1 \) subsets. In this case, given subsets \(A_1, \ldots, A_n \), we define
\[
A = A_1 \cup A_2 \cup \cdots \cup A_{n-1}, \quad B = A_n.
\]
By our induction hypothesis,
\[
P[A] = P[A_1 \cup A_2 \cup \cdots \cup A_{n-1}] \leq P[A_1] + \cdots + P[A_{n-1}].
\]
This permits us to write
\[
P[A_1 \cup \cdots \cup A_n] = P[A \cup B] \leq P[A] + P[B] \quad \text{(by the union bound for } n = 2) (7)\]
\[
= P[A_1 \cup \cdots \cup A_{n-1}] + P[A_n] \quad \text{(8) (9)}
\]
which completes the inductive proof.

Problem 1.4.6 Solution

(a) For convenience, let \(p_i = P[FH_i] \) and \(q_i = P[VH_i] \). Using this shorthand, the six unknowns \(p_0, p_1, p_2, q_0, q_1, q_2 \) fill the table as
\[
\begin{array}{ccc}
F & H_0 & H_1 & H_2 \\
\hline
P & p_0 & p_1 & p_2 \\
V & q_0 & q_1 & q_2
\end{array}
\]
However, we are given a number of facts:
\[
p_0 + q_0 = 1/3, \quad p_1 + q_1 = 1/3, \quad p_2 + q_2 = 1/3, \quad p_0 + p_1 + p_2 = 5/12. \quad (2) (3)
\]
Other facts, such as \(q_0 + q_1 + q_2 = 7/12 \), can be derived from these facts. Thus, we have four equations and six unknowns, choosing \(p_0 \) and \(p_1 \) will specify the other unknowns. Unfortunately, arbitrary choices for either \(p_0 \) or \(p_1 \) will lead to negative values for the other probabilities. In terms of \(p_0 \) and \(p_1 \), the other unknowns are
\[
q_0 = 1/3 - p_0, \quad p_2 = 5/12 - (p_0 + p_1), \quad (4)
\]
\[
q_1 = 1/3 - p_1, \quad q_2 = p_0 + p_1 - 1/12. \quad (5)
\]
Because the probabilities must be nonnegative, we see that
\[
0 \leq p_0 \leq 1/3, \quad (6)
0 \leq p_1 \leq 1/3, \quad (7)
1/12 \leq p_0 + p_1 \leq 5/12. \quad (8)
\]

Although there are an infinite number of solutions, three possible solutions are:

\[
\begin{align*}
 p_0 &= \frac{1}{3}, & p_1 &= \frac{1}{12}, & p_2 &= 0, \\
 q_0 &= 0, & q_1 &= \frac{1}{4}, & q_2 &= \frac{1}{3}.
\end{align*}
\]

(9)

and

\[
\begin{align*}
 p_0 &= \frac{1}{4}, & p_1 &= \frac{1}{12}, & p_2 &= \frac{1}{12}, \\
 q_0 &= \frac{1}{12}, & q_1 &= \frac{3}{12}, & q_2 &= \frac{3}{12}.
\end{align*}
\]

(10)

and

\[
\begin{align*}
 p_0 &= 0, & p_1 &= \frac{1}{12}, & p_2 &= \frac{1}{3}, \\
 q_0 &= \frac{1}{3}, & q_1 &= \frac{3}{12}, & q_2 &= 0.
\end{align*}
\]

(11)

(12)

and

\[
\begin{align*}
 p_0 &= \frac{1}{4}, & p_1 &= \frac{1}{6}, & p_2 &= 0, \\
 q_0 &= \frac{1}{12}, & q_1 &= \frac{1}{6}, & q_2 &= \frac{1}{3}.
\end{align*}
\]

(13)

(14)

(b) In terms of the \(p_i, q_i \) notation, the new facts are \(p_0 = \frac{1}{4} \) and \(q_1 = \frac{1}{6} \). These extra facts uniquely specify the probabilities. In this case,

\[
\begin{align*}
 p_0 &= \frac{1}{4}, & p_1 &= \frac{1}{6}, & p_2 &= 0, \\
 q_0 &= \frac{1}{12}, & q_1 &= \frac{1}{6}, & q_2 &= \frac{1}{3}.
\end{align*}
\]

(15)

(16)

Problem 1.4.7 Solution

It is tempting to use the following proof:

Since \(S \) and \(\phi \) are mutually exclusive, and since \(S = S \cup \phi \),

\[
1 = P[S \cup \phi] = P[S] + P[\phi].
\]

(1)

Since \(P[S] = 1 \), we must have \(P[\phi] = 0 \).

The above “proof” used the property that for mutually exclusive sets \(A_1 \) and \(A_2 \),

\[
P[A_1 \cup A_2] = P[A_1] + P[A_2].
\]

(2)

The problem is that this property is a consequence of the three axioms, and thus must be proven. For a proof that uses just the three axioms, let \(A_1 \) be an arbitrary set and for \(n = 2, 3, \ldots, \), let \(A_n = \phi \). Since \(A_1 = \cup_{i=1}^{\infty} A_i \), we can use Axiom 3 to write

\[
P[A_1] = P[\cup_{i=1}^{\infty} A_i] = P[A_1] + P[A_2] + \sum_{i=3}^{\infty} P[A_i].
\]

(3)

By subtracting \(P[A_1] \) from both sides, the fact that \(A_2 = \phi \) permits us to write

\[
P[\phi] + \sum_{n=3}^{\infty} P[A_i] = 0.
\]

(4)

By Axiom 1, \(P[A_i] \geq 0 \) for all \(i \). Thus, \(\sum_{n=3}^{\infty} P[A_i] \geq 0 \). This implies \(P[\phi] \leq 0 \). Since Axiom 1 requires \(P[\phi] \geq 0 \), we must have \(P[\phi] = 0 \).
Problem 1.4.8 Solution
Following the hint, we define the set of events \(\{ A_i \mid i = 1, 2, \ldots \} \) such that \(i = 1, \ldots, m \), \(A_i = B_i \) and for \(i > m \), \(A_i = \phi \). By construction, \(\cup_{i=1}^{m} B_i = \cup_{i=1}^{\infty} A_i \). Axiom 3 then implies
\[
P \left[\bigcup_{i=1}^{m} B_i \right] = P \left[\bigcup_{i=1}^{\infty} A_i \right] = \sum_{i=1}^{\infty} P \left[A_i \right]. \tag{1}
\]
For \(i > m \), \(P[A_i] = P[\phi] = 0 \), yielding the claim
\[
P \left[\bigcup_{i=1}^{m} B_i \right] = \sum_{i=1}^{m} P \left[A_i \right]. \tag{2}
\]
Note that the fact that \(P[\phi] = 0 \) follows from Axioms 1 and 2. This problem is more challenging if you just use Axiom 3. We start by observing
\[
\sum_{i=m}^{\infty} P \left[A_i \right] = P \left[A_m \cup A_{m+1} \cup \cdots \right] = P \left[B_m \right]. \tag{3}
\]
Thus, we have used just Axiom 3 to prove Theorem 1.4: \(P \left[\bigcup_{i=1}^{m} B_i \right] = \sum_{i=1}^{m} P[B_i] \).

Problem 1.4.9 Solution
Each claim in Theorem 1.7 requires a proof from which we can check which axioms are used. However, the problem is somewhat hard because there may still be a simpler proof that uses fewer axioms. Still, the proof of each part will need Theorem 1.4 which we now prove.

For the mutually exclusive events \(B_1, \ldots, B_m \), let \(A_i = B_i \) for \(i = 1, \ldots, m \) and let \(A_i = \phi \) for \(i > m \). In that case, by Axiom 3,
\[
P \left[B_1 \cup B_2 \cup \cdots \cup B_m \right] = P \left[A_1 \cup A_2 \cup \cdots \right] \tag{1}
= \sum_{i=1}^{m-1} P \left[A_i \right] + \sum_{i=m}^{\infty} P \left[A_i \right] \tag{2}
= \sum_{i=1}^{m-1} P \left[B_i \right] + \sum_{i=m}^{\infty} P \left[A_i \right]. \tag{3}
\]
Now, we use Axiom 3 again on \(A_m, A_{m+1}, \ldots \) to write
\[
\sum_{i=m}^{\infty} P \left[A_i \right] = P \left[A_m \cup A_{m+1} \cup \cdots \right] = P \left[B_m \right]. \tag{4}
\]
Thus, we have used just Axiom 3 to prove Theorem 1.4:
\[
P \left[B_1 \cup B_2 \cup \cdots \cup B_m \right] = \sum_{i=1}^{m} P \left[B_i \right]. \tag{5}
\]
(a) To show \(P[\phi] = 0 \), let \(B_1 = S \) and let \(B_2 = \phi \). Thus by Theorem 1.4,
\[
P \left[S \right] = P \left[B_1 \cup B_2 \right] = P \left[B_1 \right] + P \left[B_2 \right] = P \left[S \right] + P \left[\phi \right]. \tag{6}
\]
Thus, \(P[\phi] = 0 \). Note that this proof uses only Theorem 1.4 which uses only Axiom 3.
Using Theorem 1.4 with \(B_1 = A \) and \(B_2 = A^c \), we have
\[
P[S] = P[A \cup A^c] = P[A] + P[A^c].
\] (7)

Since, Axiom 2 says \(P[S] = 1, P[A^c] = 1 - P[A] \). This proof uses Axioms 2 and 3.

By Theorem 1.2, we can write both \(A \) and \(B \) as unions of disjoint events:
\[
A = (AB) \cup (AB^c) \quad B = (AB) \cup (A^cB).
\] (8)

Now we apply Theorem 1.4 to write
\[
P[A] = P[AB] + P[AB^c], \quad P[B] = P[AB] + P[A^cB].
\] (9)

We can rewrite these facts as
\[
P[AB^c] = P[A] - P[AB], \quad P[A^cB] = P[B] - P[AB].
\] (10)

Note that so far we have used only Axiom 3. Finally, we observe that \(A \cup B \) can be written as the union of mutually exclusive events
\[
A \cup B = (AB) \cup (AB^c) \cup (A^cB).
\] (11)

Once again, using Theorem 1.4, we have
\[
P[A \cup B] = P[AB] + P[AB^c] + P[A^cB]
\] (12)

Substituting the results of Equation (10) into Equation (12) yields
\[
\] (13)

which completes the proof. Note that this claim required only Axiom 3.

Observe that since \(A \subset B \), we can write \(B \) as the disjoint union \(B = A \cup (A^cB) \). By Theorem 1.4 (which uses Axiom 3),
\[
\] (14)

By Axiom 1, \(P[A^cB] \geq 0 \), which implies \(P[A] \leq P[B] \). This proof uses Axioms 1 and 3.

Problem 1.5.1 Solution

Each question requests a conditional probability.

(a) Note that the probability a call is brief is
\[
P[B] = P[H_0B] + P[H_1B] + P[H_2B] = 0.6.
\] (1)

The probability a brief call will have no handoffs is
\[
P[H_0B] = \frac{P[H_0B]}{P[B]} = \frac{0.4}{0.6} = \frac{2}{3}.
\] (2)

(b) The probability of one handoff is \(P[H_1] = P[H_1B] + P[H_1L] = 0.2 \). The probability that a call with one handoff will be long is
\[
P[L|H_1] = \frac{P[H_1L]}{P[H_1]} = \frac{0.1}{0.2} = \frac{1}{2}.
\] (3)

(c) The probability a call is long is \(P[L] = 1 - P[B] = 0.4 \). The probability that a long call will have one or more handoffs is
\[
P[H_1 \cup H_2|L] = \frac{P[H_1L \cup H_2L]}{P[L]} = \frac{P[H_1L] + P[H_2L]}{0.4} = \frac{0.1 + 0.2}{0.4} = \frac{3}{4}.
\] (4)
Problem 1.5.2 Solution
Let \(s_i \) denote the outcome that the roll is \(i \). So, for \(1 \leq i \leq 6 \), \(R_i = \{s_i\} \). Similarly, \(G_j = \{s_j + 1, \ldots, s_6\} \).

(a) Since \(G_1 = \{s_2, s_3, s_4, s_5, s_6\} \) and all outcomes have probability \(1/6 \), \(P[G_1] = 5/6 \). The event \(R_3G_1 = \{s_3\} \) and \(P[R_3G_1] = 1/6 \) so that

\[
P[R_3|G_1] = \frac{P[R_3G_1]}{P[G_1]} = \frac{1}{5}.
\]

(b) The conditional probability that 6 is rolled given that the roll is greater than 3 is

\[
P[R_6|G_3] = \frac{P[R_6G_3]}{P[G_3]} = \frac{P[s_6]}{P[s_4, s_5, s_6]} = \frac{1/6}{3/6}.
\]

(c) The event \(E \) that the roll is even is \(E = \{s_2, s_4, s_6\} \) and has probability \(3/6 \). The joint probability of \(G_3 \) and \(E \) is

\[
\]

The conditional probabilities of \(G_3 \) given \(E \) is

\[
P[G_3|E] = \frac{P[G_3E]}{P[E]} = \frac{1/3}{1/2} = \frac{2}{3}.
\]

(d) The conditional probability that the roll is even given that it’s greater than 3 is

\[
P[E|G_3] = \frac{P[EG_3]}{P[G_3]} = \frac{1/3}{1/2} = \frac{2}{3}.
\]

Problem 1.5.3 Solution
Since the 2 of clubs is an even numbered card, \(C_2 \subset E \) so that \(P[C_2E] = P[C_2] = 1/3 \). Since \(P[E] = 2/3 \),

\[
P[C_2|E] = \frac{P[C_2E]}{P[E]} = \frac{1/3}{2/3} = 1/2.
\]

The probability that an even numbered card is picked given that the 2 is picked is

\[
P[E|C_2] = \frac{P[C_2E]}{P[C_2]} = \frac{1/3}{1/3} = 1.
\]

Problem 1.5.4 Solution
Define \(D \) as the event that a pea plant has two dominant \(y \) genes. To find the conditional probability of \(D \) given the event \(Y \), corresponding to a plant having yellow seeds, we look to evaluate

\[
P[D|Y] = \frac{P[DY]}{P[Y]}.
\]

Note that \(P[DY] \) is just the probability of the genotype \(yy \). From Problem 1.4.3, we found that with respect to the color of the peas, the genotypes \(yy, yg, gy, \) and \(gg \) were all equally likely. This implies

\[
\]

Thus, the conditional probability can be expressed as

\[
P[D|Y] = \frac{P[DY]}{P[Y]} = \frac{1/4}{3/4} = 1/3.
\]
Problem 1.5.5 Solution
The sample outcomes can be written \(ijk \) where the first card drawn is \(i \), the second is \(j \) and the third is \(k \). The sample space is

\[
S = \{234, 243, 324, 342, 423, 432\}.
\]

and each of the six outcomes has probability \(\frac{1}{6} \). The events \(E_1, E_2, E_3, O_1, O_2, O_3 \) are

\[
E_1 = \{234, 243, 423, 432\}, \quad O_1 = \{324, 342\},
\]

\[
E_2 = \{243, 324, 342, 423\}, \quad O_2 = \{234, 432\},
\]

\[
E_3 = \{234, 324, 342, 432\}, \quad O_3 = \{243, 423\}.
\]

(a) The conditional probability the second card is even given that the first card is even is

\[
P[E_2|E_1] = \frac{P[E_2E_1]}{P[E_1]} = \frac{P[243, 423]}{P[234, 243, 423, 432]} = \frac{2/6}{4/6} = \frac{1}{2}.
\]

(b) The conditional probability the first card is even given that the second card is even is

\[
P[E_1|E_2] = \frac{P[E_1E_2]}{P[E_2]} = \frac{P[243, 423]}{P[243, 324, 342, 423]} = \frac{2/6}{4/6} = \frac{1}{2}.
\]

(c) The probability the first two cards are even given the third card is even is

\[
P[E_1E_2|E_3] = \frac{P[E_1E_2E_3]}{P[E_3]} = 0.
\]

(d) The conditional probabilities the second card is even given that the first card is odd is

\[
P[E_2|O_1] = \frac{P[O_1E_2]}{P[O_1]} = \frac{P[O_1]}{P[O_1]} = 1.
\]

(e) The conditional probability the second card is odd given that the first card is odd is

\[
P[O_2|O_1] = \frac{P[O_1O_2]}{P[O_1]} = 0.
\]

Problem 1.5.6 Solution
The problem statement yields the obvious facts that \(P[L] = 0.16 \) and \(P[H] = 0.10 \). The words “10% of the ticks that had either Lyme disease or HGE carried both diseases” can be written as

\[
P[LH|L \cup H] = 0.10.
\]

(a) Since \(LH \subset L \cup H \),

\[
P[LH|L \cup H] = \frac{P[LH \cap (L \cup H)]}{P[L \cup H]} = \frac{P[LH]}{P[L \cup H]} = 0.10.
\]

Thus,

\[
P[LH] = 0.10P[L \cup H] = 0.10 \left(P[L] + P[H] - P[LH] \right).
\]

Since \(P[L] = 0.16 \) and \(P[H] = 0.10 \),

\[
P[LH] = \frac{0.10(0.16 + 0.10)}{1.1} = 0.0236.
\]
(b) The conditional probability that a tick has HGE given that it has Lyme disease is

\[
P[H|L] = \frac{P[LH]}{P[L]} = \frac{0.0236}{0.16} = 0.1475.\tag{5}
\]

Problem 1.6.1 Solution
This problems asks whether \(A \) and \(B \) can be independent events yet satisfy \(A = B \)? By definition, events \(A \) and \(B \) are independent if and only if \(P[AB] = P[A]P[B] \). We can see that if \(A = B \), that is they are the same set, then

\[
P[AB] = P[AA] = P[A] = P[B]. \tag{1}
\]

Thus, for \(A \) and \(B \) to be the same set and also independent,

\[
P[A] = P[AB] = P[A]P[B] = (P[A])^2. \tag{2}
\]

There are two ways that this requirement can be satisfied:

- \(P[A] = 1 \) implying \(A = B = S \).
- \(P[A] = 0 \) implying \(A = B = \phi \).

Problem 1.6.2 Solution

In the Venn diagram, assume the sample space has area 1 corresponding to probability 1. As drawn, both \(A \) and \(B \) have area 1/4 so that \(P[A] = P[B] = 1/4 \). Moreover, the intersection \(AB \) has area 1/16 and covers 1/4 of \(A \) and 1/4 of \(B \). That is, \(A \) and \(B \) are independent since

\[
P[AB] = P[A]P[B]. \tag{1}
\]

Problem 1.6.3 Solution

(a) Since \(A \) and \(B \) are disjoint, \(P[A \cap B] = 0 \). Since \(P[A \cap B] = 0 \),

\[
P[A \cup B] = P[A] + P[B] - P[A \cap B] = 3/8. \tag{1}
\]

A Venn diagram should convince you that \(A \subset B^c \) so that \(A \cap B^c = A \). This implies

\[
P[A \cap B^c] = P[A] = 1/4. \tag{2}
\]

It also follows that \(P[A \cup B^c] = P[B^c] = 1 - 1/8 = 7/8 \).

(b) Events \(A \) and \(B \) are dependent since \(P[AB] \neq P[A]P[B] \).
(c) Since C and D are independent,
\[P[C \cap D] = P[C] P[D] = 15/64. \]

The next few items are a little trickier. From Venn diagrams, we see
\[P[C \cap D^c] = P[C] - P[C \cap D] = 5/8 - 15/64 = 25/64. \]

It follows that
\[P[C \cup D^c] = P[C] + P[D^c] - P[C \cap D^c] = 5/8 + (1 - 3/8) - 25/64 = 55/64. \]

Using DeMorgan’s law, we have
\[P[C^c \cap D^c] = P[(C \cup D)^c] = 1 - P[C \cup D] = 15/64. \]

(d) Since $P[C^c D^c] = P[C^c] P[D^c]$, C^c and D^c are independent.

Problem 1.6.4 Solution

(a) Since $A \cap B = \emptyset$, $P[A \cap B] = 0$. To find $P[B]$, we can write

Thus, $P[B] = 1/4$. Since A is a subset of B^c, $P[A \cap B^c] = P[A] = 3/8$. Furthermore, since A is a subset of B^c, $P[A \cup B^c] = P[B^c] = 3/4$.

(b) The events A and B are dependent because
\[P[AB] = 0 \neq 3/32 = P[A] P[B]. \]

(c) Since C and D are independent $P[CD] = P[C] P[D]$. So
\[P[D] = \frac{P[CD]}{P[C]} = \frac{1/3}{1/2} = 2/3. \]

In addition, $P[C \cap D^c] = P[C] - P[C \cap D] = 1/2 - 1/3 = 1/6$. To find $P[C^c \cap D^c]$, we first observe that
\[P[C \cup D] = P[C] + P[D] - P[C \cap D] = 1/2 + 2/3 - 1/3 = 5/6. \]

By DeMorgan’s Law, $C^c \cap D^c = (C \cup D)^c$. This implies
\[P[C^c \cap D^c] = P[(C \cup D)^c] = 1 - P[C \cup D] = 1/6. \]

Note that a second way to find $P[C^c \cap D^c]$ is to use the fact that if C and D are independent, then C^c and D^c are independent. Thus
\[P[C^c \cap D^c] = P[C^c] P[D^c] = (1 - P[C])(1 - P[D]) = 1/6. \]

Finally, since C and D are independent events, $P[C \cap D] = P[C] = 1/2$.

(d) Note that we found $P[C \cup D] = 5/6$. We can also use the earlier results to show
\[P[C \cup D^c] = P[C] + P[D] - P[C \cap D^c] = 1/2 + (1 - 2/3) - 1/6 = 2/3. \]

(e) By Definition 1.7, events C and D^c are independent because
\[P[C \cap D^c] = 1/6 = (1/2)(1/3) = P[C] P[D^c]. \]
Problem 1.6.5 Solution
For a sample space \(S = \{1, 2, 3, 4\} \) with equiprobable outcomes, consider the events
\[
A_1 = \{1, 2\} \quad A_2 = \{2, 3\} \quad A_3 = \{3, 1\}. \tag{1}
\]
Each event \(A_i \) has probability \(1/2 \). Moreover, each pair of events is independent since
\[
P[A_1 A_2] = P[A_2 A_3] = P[A_3 A_1] = 1/4. \tag{2}
\]
However, the three events \(A_1, A_2, A_3 \) are not independent since
\[
P[A_1 A_2 A_3] = 0 \neq P[A_1] P[A_2] P[A_3]. \tag{3}
\]

Problem 1.6.6 Solution
There are 16 distinct equally likely outcomes for the second generation of pea plants based on a first generation of \(\{rwyg, rwgy, wryg, wrgy\} \). They are listed below
\[
\begin{align*}
rryy & \quad rryg & \quad rrgy & \quad rrgg \\
rryy & \quad rwyg & \quad rwgy & \quad rwgg \\
wrty & \quad wryg & \quad wrgy & \quad wrgg \\
wyyr & \quad wyyg & \quad wyyg & \quad wyyg
\end{align*} \tag{1}
\]
A plant has yellow seeds, that is event \(Y \) occurs, if a plant has at least one dominant \(y \) gene. Except for the four outcomes with a pair of recessive \(g \) genes, the remaining 12 outcomes have yellow seeds. From the above, we see that
\[
P[Y] = 12/16 = 3/4 \tag{2}
\]
and
\[
P[R] = 12/16 = 3/4. \tag{3}
\]
To find the conditional probabilities \(P[R|Y] \) and \(P[Y|R] \), we first must find \(P[RY] \). Note that \(RY \), the event that a plant has rounded yellow seeds, is the set of outcomes
\[
RY = \{rryy, rryg, rrgy, rrgg, rwyg, rwgy, wrgy, wyyg, wryg, wrgg\}. \tag{4}
\]
Since \(P[RY] = 9/16 \),
\[
P[Y|R] = \frac{P[RY]}{P[R]} = \frac{9/16}{3/4} = 3/4 \tag{5}
\]
and
\[
P[R|Y] = \frac{P[RY]}{P[Y]} = \frac{9/16}{3/4} = 3/4. \tag{6}
\]
Thus \(P[R|Y] = P[R] \) and \(P[Y|R] = P[Y] \) and \(R \) and \(Y \) are independent events. There are four visibly different pea plants, corresponding to whether the peas are round (\(R \)) or not (\(R^c \)), or yellow (\(Y \)) or not (\(Y^c \)). These four visible events have probabilities
\[
P[RY] = 9/16 \quad P[RY^c] = 3/16, \tag{7}
\]
\[
P[R^cY] = 3/16 \quad P[R^cY^c] = 1/16. \tag{8}
\]
Problem 1.6.7 Solution

(a) For any events A and B, we can write the law of total probability in the form of

$$P [A] = P [AB] + P [AB^c].$$

(1)

Since A and B are independent, $P[AB] = P[A]P[B]$. This implies

(2)

Thus A and B^c are independent.

(b) Proving that A^c and B are independent is not really necessary. Since A and B are arbitrary labels, it is really the same claim as in part (a). That is, simply reversing the labels of A and B proves the claim. Alternatively, one can construct exactly the same proof as in part (a) with the labels A and B reversed.

(c) To prove that A^c and B^c are independent, we apply the result of part (a) to the sets A and B^c. Since we know from part (a) that A and B^c are independent, part (b) says that A^c and B^c are independent.

Problem 1.6.8 Solution

In the Venn diagram at right, assume the sample space has area 1 corresponding to probability 1. As drawn, A, B, and C each have area $1/2$ and thus probability $1/2$. Moreover, the three way intersection ABC has probability $1/8$. Thus A, B, and C are mutually independent since

(1)

Problem 1.6.9 Solution

In the Venn diagram at right, assume the sample space has area 1 corresponding to probability 1. As drawn, A, B, and C each have area $1/3$ and thus probability $1/3$. The three way intersection ABC has zero probability, implying A, B, and C are not mutually independent since

$$P [ABC] = 0 \neq P [A] P [B] P [C].$$

(1)

However, AB, BC, and AC each has area $1/9$. As a result, each pair of events is independent since

(2)
Problem 1.7.1 Solution

A sequential sample space for this experiment is

\[
\begin{array}{c}
H_1 \quad 1/4 \\
T_1 \quad 3/4 \\
\end{array} \quad \begin{array}{c}
H_2 \quad 1/4 \\
T_2 \quad 3/4 \\
\end{array} \quad 1/16
\]

\[
\begin{array}{c}
H_2 \quad 1/4 \\
T_2 \quad 3/4 \\
\end{array} \quad \begin{array}{c}
H_1 \quad 1/4 \\
T_1 \quad 3/4 \\
\end{array} \quad 3/16
\]

(a) From the tree, we observe

\[P[H_2] = P[H_1H_2] + P[T_1H_2] = 1/4.\] \hfill (1)

This implies

\[P[H_1|H_2] = \frac{P[H_1H_2]}{P[H_2]} = \frac{1/16}{1/4} = 1/4.\] \hfill (2)

(b) The probability that the first flip is heads and the second flip is tails is \(P[H_1T_2] = 3/16.\)

Problem 1.7.2 Solution

The tree with adjusted probabilities is

\[
\begin{array}{c}
G_1 \quad 1/2 \\
\end{array} \quad \begin{array}{c}
G_2 \quad 3/4 \\
R_2 \quad 1/4 \\
\end{array} \quad \begin{array}{c}
G_1G_2 \quad 3/8 \\
G_1R_2 \quad 1/8 \\
\end{array} \quad \begin{array}{c}
G_2 \quad 1/4 \\
R_2 \quad 3/4 \\
\end{array} \quad \begin{array}{c}
G_2G_2 \quad 1/8 \\
G_2R_2 \quad 3/8 \\
\end{array}
\]

From the tree, the probability the second light is green is

\[P[G_2] = P[G_1G_2] + P[R_1G_2] = 3/8 + 1/8 = 1/2.\] \hfill (1)

The conditional probability that the first light was green given the second light was green is

\[P[G_1|G_2] = \frac{P[G_1G_2]}{P[G_2]} = \frac{P[G_2|G_1]P[G_1]}{P[G_2]} = 3/4.\] \hfill (2)

Finally, from the tree diagram, we can directly read that \(P[G_2|G_1] = 3/4.\)

Problem 1.7.3 Solution

Let \(G_i\) and \(B_i\) denote events indicating whether free throw \(i\) was good \((G_i)\) or bad \((B_i)\). The tree for the free throw experiment is

\[
\begin{array}{c}
G_i \quad 1/2 \\
\end{array} \quad \begin{array}{c}
G_iG_i \quad 1/4 \\
G_iB_i \quad 3/4 \\
\end{array} \quad \begin{array}{c}
G_iG_i \quad 1/4 \\
G_iB_i \quad 3/4 \\
\end{array}
\]

\[
\begin{array}{c}
B_i \quad 1/2 \\
\end{array} \quad \begin{array}{c}
G_iB_i \quad 1/4 \\
G_iB_i \quad 3/4 \\
\end{array}
\]

\[P[G_2|G_1] = 3/4.\]
The game goes into overtime if exactly one free throw is made. This event has probability
\[P[O] = P[G_1B_2] + P[B_1G_2] = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}. \] (1)

Problem 1.7.4 Solution

The tree for this experiment is

\[P[C] = P[AT] + P[BH] = \frac{3}{8} + \frac{3}{8} = \frac{3}{4}. \] (1)

Problem 1.7.5 Solution

The \(P[−|H] \) is the probability that a person who has HIV tests negative for the disease. This is referred to as a false-negative result. The case where a person who does not have HIV but tests positive for the disease, is called a false-positive result and has probability \(P[+|H^c] \). Since the test is correct 99% of the time,
\[P[−|H] = P[+|H^c] = 0.01. \] (1)

Now the probability that a person who has tested positive for HIV actually has the disease is
\[P[H|+] = \frac{P[+|H]}{P[+] = \frac{P[+|H]}{P[+|H] + P[+|H^c]}}. \] (2)

We can use Bayes’ formula to evaluate these joint probabilities.
\[P[H|+] = \frac{P[+|H] P[H]}{P[+|H] P[H] + P[+|H^c] P[H^c]} \]
\[= \frac{(0.99)(0.0002)}{(0.99)(0.0002) + (0.01)(0.9998)} \]
\[= 0.0194. \] (5)

Thus, even though the test is correct 99% of the time, the probability that a random person who tests positive actually has HIV is less than 0.02. The reason this probability is so low is that the a priori probability that a person has HIV is very small.
Problem 1.7.6 Solution
Let A_i and D_i indicate whether the ith photodetector is acceptable or defective.

(a) We wish to find the probability $P[E_1]$ that exactly one photodetector is acceptable. From the tree, we have

$$P[E_1] = P[A_1D_2] + P[D_1A_2] = \frac{3}{25} + \frac{4}{25} = \frac{7}{25}. \quad (1)$$

(b) The probability that both photodetectors are defective is $P[D_1D_2] = \frac{6}{25}$.

Problem 1.7.7 Solution
The tree for this experiment is

The event H_1H_2 that heads occurs on both flips has probability

$$P[H_1H_2] = P[A_1H_1H_2] + P[B_1H_1H_2] = \frac{6}{32}. \quad (1)$$

The probability of H_1 is

$$P[H_1] = P[A_1H_1H_2] + P[A_1H_1T_2] + P[B_1H_1H_2] + P[B_1H_1T_2] = \frac{1}{2}. \quad (2)$$

Similarly,

$$P[H_2] = P[A_1H_1H_2] + P[A_1T_1H_2] + P[B_1H_1H_2] + P[B_1T_1H_2] = \frac{1}{2}. \quad (3)$$

Thus $P[H_1H_2] \neq P[H_1]P[H_2]$, implying H_1 and H_2 are not independent. This result should not be surprising since if the first flip is heads, it is likely that coin B was picked first. In this case, the second flip is less likely to be heads since it becomes more likely that the second coin flipped was coin A.
Problem 1.7.8 Solution

(a) The primary difficulty in this problem is translating the words into the correct tree diagram. The tree for this problem is shown below.

(b) From the tree,

\[
P[H_3] = P[T_1H_2H_3] + P[T_1T_2H_3H_4] + P[T_1T_2H_3H_4]
\]

\[= 1/8 + 1/16 + 1/16 = 1/4. \] \((1) \)

Similarly,

\[
P[T_3] = P[T_1H_2T_3H_4] + P[T_1H_2T_3T_4] + P[T_1T_2T_3]
\]

\[= 1/8 + 1/16 + 1/16 = 1/4. \] \((3) \)

(c) The event that Dagwood must diet is

\[
D = (T_1H_2T_3T_4) \cup (T_1T_2H_3T_4) \cup (T_1T_2T_3).
\] \((5) \)

The probability that Dagwood must diet is

\[
P[D] = P[T_1H_2T_3T_4] + P[T_1T_2H_3T_4] + P[T_1T_2T_3]
\]

\[= 1/16 + 1/16 + 1/8 = 1/4. \] \((7) \)

The conditional probability of heads on flip 1 given that Dagwood must diet is

\[
P[H_1|D] = \frac{P[H_1D]}{P[D]} = 0. \] \((8) \)

Remember, if there was heads on flip 1, then Dagwood always postpones his diet.

(d) From part (b), we found that \(P[H_3] = 1/4.\) To check independence, we calculate

\[
P[H_2] = P[T_1H_2H_3] + P[T_1H_2T_3] + P[T_1H_2T_4T_3] = 1/4 \] \((9) \)

\[
P[H_2H_3] = P[T_1H_2H_3] = 1/8. \] \((10) \)

Now we find that

\[
P[H_2H_3] = 1/8 \neq P[H_2]P[H_3]. \] \((11) \)

Hence, \(H_2\) and \(H_3\) are dependent events. In fact, \(P[H_3|H_2] = 1/2\) while \(P[H_3] = 1/4.\) The reason for the dependence is that given \(H_2\) occurred, then we know there will be a third flip which may result in \(H_3.\) That is, knowledge of \(H_2\) tells us that the experiment didn’t end after the first flip.
Problem 1.7.9 Solution

(a) We wish to know what the probability that we find no good photodiodes in \(n \) pairs of diodes. Testing each pair of diodes is an independent trial such that with probability \(p \), both diodes of a pair are bad. From Problem 1.7.6, we can easily calculate \(p \).

\[
p = P[\text{both diodes are defective}] = P[D_1D_2] = \frac{6}{25}.
\]

The probability of \(Z_n \), the probability of zero acceptable diodes out of \(n \) pairs of diodes is \(p^n \) because on each test of a pair of diodes, both must be defective.

\[
P[Z_n] = \prod_{i=1}^{n} p = p^n = \left(\frac{6}{25} \right)^n
\]

(b) Another way to phrase this question is to ask how many pairs must we test until \(P[Z_n] \leq 0.01 \). Since \(P[Z_n] = (\frac{6}{25})^n \), we require

\[
\left(\frac{6}{25} \right)^n \leq 0.01 \quad \Rightarrow \quad n \geq \frac{\ln 0.01}{\ln 6/25} = 3.23.
\]

Since \(n \) must be an integer, \(n = 4 \) pairs must be tested.

Problem 1.7.10 Solution

The experiment ends as soon as a fish is caught. The tree resembles

\[
\begin{align*}
\text{\(p \)} & \quad \text{\(C_1 \)} & \quad \text{\(p \)} & \quad \text{\(C_2 \)} & \quad \text{\(p \)} & \quad \text{\(C_3 \)} & \quad \text{\(1-p \)} \\
\text{\(1-p \)} & \quad \text{\(C_1^c \)} & \quad \text{\(1-p \)} & \quad \text{\(C_2^c \)} & \quad \text{\(1-p \)} & \quad \text{\(C_3^c \)} & \quad \text{\(\ldots \)}
\end{align*}
\]

From the tree, \(P[C_1] = p \) and \(P[C_2] = (1 - p)p \). Finally, a fish is caught on the \(n \)th cast if no fish were caught on the previous \(n - 1 \) casts. Thus,

\[
P[C_n] = (1 - p)^{n-1}p.
\]

Problem 1.8.1 Solution

There are \(2^5 = 32 \) different binary codes with 5 bits. The number of codes with exactly 3 zeros equals the number of ways of choosing the bits in which those zeros occur. Therefore there are \(\binom{5}{3} = 10 \) codes with exactly 3 zeros.

Problem 1.8.2 Solution

Since each letter can take on any one of the 4 possible letters in the alphabet, the number of 3 letter words that can be formed is \(4^3 = 64 \). If we allow each letter to appear only once then we have 4 choices for the first letter and 3 choices for the second and two choices for the third letter. Therefore, there are a total of \(4 \cdot 3 \cdot 2 = 24 \) possible codes.
Problem 1.8.3 Solution

(a) The experiment of picking two cards and recording them in the order in which they were selected can be modeled by two sub-experiments. The first is to pick the first card and record it, the second sub-experiment is to pick the second card without replacing the first and recording it. For the first sub-experiment we can have any one of the possible 52 cards for a total of 52 possibilities. The second experiment consists of all the cards minus the one that was picked first (because we are sampling without replacement) for a total of 51 possible outcomes. So the total number of outcomes is the product of the number of outcomes for each sub-experiment.

\[52 \cdot 51 = 2652 \text{ outcomes.} \]

(b) To have the same card but different suit we can make the following sub-experiments. First we need to pick one of the 52 cards. Then we need to pick one of the 3 remaining cards that are of the same type but different suit out of the remaining 51 cards. So the total number outcomes is

\[52 \cdot 3 = 156 \text{ outcomes.} \]

(c) The probability that the two cards are of the same type but different suit is the number of outcomes that are of the same type but different suit divided by the total number of outcomes involved in picking two cards at random from a deck of 52 cards.

\[P[\text{same type, different suit}] = \frac{156}{2652} = \frac{1}{17}. \]

(d) Now we are not concerned with the ordering of the cards. So before, the outcomes \((K\spadesuit, 8\heartsuit)\) and \((8\heartsuit, K\spadesuit)\) were distinct. Now, those two outcomes are not distinct and are only considered to be the single outcome that a King of hearts and 8 of diamonds were selected. So every pair of outcomes before collapses to a single outcome when we disregard ordering. So we can redo parts (a) and (b) above by halving the corresponding values found in parts (a) and (b). The probability however, does not change because both the numerator and the denominator have been reduced by an equal factor of 2, which does not change their ratio.

Problem 1.8.4 Solution
We can break down the experiment of choosing a starting lineup into a sequence of subexperiments:

1. Choose 1 of the 10 pitchers. There are \(N_1 = \binom{10}{1} = 10\) ways to do this.

2. Choose 1 of the 15 field players to be the designated hitter (DH). There are \(N_2 = \binom{15}{1} = 15\) ways to do this.

3. Of the remaining 14 field players, choose 8 for the remaining field positions. There are \(N_3 = \binom{14}{8}\) to do this.

4. For the 9 batters (consisting of the 8 field players and the designated hitter), choose a batting lineup. There are \(N_4 = 9!\) ways to do this.
So the total number of different starting lineups when the DH is selected among the field players is

\[N = N_1N_2N_3N_4 = (10)(15)\left(\begin{array}{c} 14 \\ 8 \end{array}\right)9! = 163,459,296,000. \quad (1) \]

Note that this overestimates the number of combinations the manager must really consider because most field players can play only one or two positions. Although these constraints on the manager reduce the number of possible lineups, it typically makes the manager’s job more difficult. As for the counting, we note that our count did not need to specify the positions played by the field players. Although this is an important consideration for the manager, it is not part of our counting of different lineups. In fact, the 8 nonpitching field players are allowed to switch positions at any time in the field. For example, the shortstop and second baseman could trade positions in the middle of an inning. Although the DH can go play the field, there are some coomlicated rules about this. Here is an an excerpt from Major league Baseball Rule 6.10:

The Designated Hitter may be used defensively, continuing to bat in the same position in the batting order, but the pitcher must then bat in the place of the substituted defensive player, unless more than one substitution is made, and the manager then must designate their spots in the batting order.

If you’re curious, you can find the complete rule on the web.

Problem 1.8.5 Solution

When the DH can be chosen among all the players, including the pitchers, there are two cases:

- The DH is a field player. In this case, the number of possible lineups, \(N_F \), is given in Problem 1.8.4. In this case, the designated hitter must be chosen from the 15 field players. We repeat the solution of Problem 1.8.4 here: We can break down the experiment of choosing a starting lineup into a sequence of subexperiments:

 1. Choose 1 of the 10 pitchers. There are \(N_1 = \binom{10}{1} = 10 \) ways to do this.
 2. Choose 1 of the 15 field players to be the designated hitter (DH). There are \(N_2 = \binom{15}{1} = 15 \) ways to do this.
 3. Of the remaining 14 field players, choose 8 for the remaining field positions. There are \(N_3 = \binom{14}{8} \) to do this.
 4. For the 9 batters (consisting of the 8 field players and the designated hitter), choose a batting lineup. There are \(N_4 = 9! \) ways to do this.

So the total number of different starting lineups when the DH is selected among the field players is

\[N = N_1N_2N_3N_4 = (10)(15)\left(\begin{array}{c} 14 \\ 8 \end{array}\right)9! = 163,459,296,000. \quad (1) \]

- The DH is a pitcher. In this case, there are 10 choices for the pitcher, 10 choices for the DH among the pitchers (including the pitcher batting for himself), \(\left(\begin{array}{c} 15 \\ 8 \end{array}\right) \) choices for the field players, and 9! ways of ordering the batters into a lineup. The number of possible lineups is

\[N' = (10)(10)\left(\begin{array}{c} 15 \\ 8 \end{array}\right)9! = 233,513,280,000. \quad (2) \]

The total number of ways of choosing a lineup is \(N + N' = 396,972,576,000 \).
Problem 1.8.6 Solution

(a) We can find the number of valid starting lineups by noticing that the swingman presents three situations: (1) the swingman plays guard, (2) the swingman plays forward, and (3) the swingman doesn’t play. The first situation is when the swingman can be chosen to play the guard position, and the second where the swingman can only be chosen to play the forward position. Let N_i denote the number of lineups corresponding to case i. Then we can write the total number of lineups as $N_1 + N_2 + N_3$. In the first situation, we have to choose 1 out of 3 centers, 2 out of 4 forwards, and 1 out of 4 guards so that

$$N_1 = \binom{3}{1} \binom{4}{2} \binom{4}{1} = 72.$$ \hspace{1cm} (1)

In the second case, we need to choose 1 out of 3 centers, 1 out of 4 forwards and 2 out of 4 guards, yielding

$$N_2 = \binom{3}{1} \binom{4}{1} \binom{4}{2} = 72.$$ \hspace{1cm} (2)

Finally, with the swingman on the bench, we choose 1 out of 3 centers, 2 out of 4 forward, and 2 out of four guards. This implies

$$N_3 = \binom{3}{1} \binom{4}{2} \binom{4}{2} = 108,$$ \hspace{1cm} (3)

and the total number of lineups is $N_1 + N_2 + N_3 = 252$.

Problem 1.8.7 Solution

What our design must specify is the number of boxes on the ticket, and the number of specially marked boxes. Suppose each ticket has n boxes and $5+k$ specially marked boxes. Note that when $k > 0$, a winning ticket will still have k unscratched boxes with the special mark. A ticket is a winner if each time a box is scratched off, the box has the special mark. Assuming the boxes are scratched off randomly, the first box scratched off has the mark with probability $(5 + k)/n$ since there are $5 + k$ marked boxes out of n boxes. Moreover, if the first scratched box has the mark, then there are $4 + k$ marked boxes out of $n - 1$ remaining boxes. Continuing this argument, the probability that a ticket is a winner is

$$p = \frac{5+k}{n} \frac{4+k}{n-1} \frac{3+k}{n-2} \frac{2+k}{n-3} \frac{1+k}{n-4} = \frac{(k+5)!(n-5)!}{k!n!}.$$ \hspace{1cm} (1)

By careful choice of n and k, we can choose p close to 0.01. For example,

<table>
<thead>
<tr>
<th>n</th>
<th>9</th>
<th>14</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>p</td>
<td>0.0079</td>
<td>0.012</td>
<td>0.0105</td>
</tr>
</tbody>
</table>

A gamecard with $N = 14$ boxes and $5 + k = 7$ shaded boxes would be quite reasonable.

Problem 1.9.1 Solution
(a) Since the probability of a zero is 0.8, we can express the probability of the code word 00111 as 2 occurrences of a 0 and three occurrences of a 1. Therefore

\[P[00111] = (0.8)^2(0.2)^3 = 0.00512. \]

(1)

(b) The probability that a code word has exactly three 1’s is

\[P[\text{three 1’s}] = \binom{5}{3}(0.8)^2(0.2)^3 = 0.0512. \]

(2)

Problem 1.9.2 Solution

Given that the probability that the Celtics win a single championship in any given year is 0.32, we can find the probability that they win 8 straight NBA championships.

\[P[8 \text{ straight championships}] = (0.32)^8 = 0.00011. \]

(1)

The probability that they win 10 titles in 11 years is

\[P[10 \text{ titles in 11 years}] = \binom{11}{10}(0.32)^{10}(0.68) = 0.00084. \]

(2)

The probability of each of these events is less than 1 in 1000! Given that these events took place in the relatively short fifty year history of the NBA, it should seem that these probabilities should be much higher. What the model overlooks is that the sequence of 10 titles in 11 years started when Bill Russell joined the Celtics. In the years with Russell (and a strong supporting cast) the probability of a championship was much higher.

Problem 1.9.3 Solution

We know that the probability of a green and red light is 7/16, and that of a yellow light is 1/8. Since there are always 5 lights, \(G\), \(Y\), and \(R\) obey the multinomial probability law:

\[P[G = 2, Y = 1, R = 2] = \frac{5!}{2!1!2!} \left(\frac{7}{16} \right)^2 \left(\frac{1}{8} \right) \left(\frac{7}{16} \right)^2. \]

(1)

The probability that the number of green lights equals the number of red lights

\[P[G = R] = P[G = 1, R = 1, Y = 3] + P[G = 2, R = 2, Y = 1] + P[G = 0, R = 0, Y = 5] \]

(2)

\[= \frac{5!}{1!1!3!} \left(\frac{7}{16} \right) \left(\frac{1}{8} \right)^3 + \frac{5!}{2!1!2!} \left(\frac{7}{16} \right)^2 \left(\frac{1}{8} \right) + \frac{5!}{0!0!5!} \left(\frac{1}{8} \right)^5 \]

(3)

\[\approx 0.1449. \]

(4)

Problem 1.9.4 Solution

For the team with the homecourt advantage, let \(W_i\) and \(L_i\) denote whether game \(i\) was a win or a loss. Because games 1 and 3 are home games and game 2 is an away game, the tree is
The probability that the team with the home court advantage wins is

\[
P[H] = P[W_1W_2] + P[W_1L_2W_3] + P[L_1W_2W_3]
\]

\[
= p(1 - p) + p^3 + (1 - p)^2.
\]

Note that \(P[H] \leq p\) for \(1/2 \leq p \leq 1\). Since the team with the home court advantage would win a 1 game playoff with probability \(p\), the home court team is less likely to win a three game series than a 1 game playoff!

Problem 1.9.5 Solution

(a) There are 3 group 1 kickers and 6 group 2 kickers. Using \(G_i\) to denote that a group \(i\) kicker was chosen, we have

\[
\]

In addition, the problem statement tells us that

\[
\]

Combining these facts using the Law of Total Probability yields

\[
\]

\[
= (1/2)(1/3) + (1/3)(2/3) = 7/18.
\]

(b) To solve this part, we need to identify the groups from which the first and second kicker were chosen. Let \(c_i\) indicate whether a kicker was chosen from group \(i\) and let \(C_{ij}\) indicate that the first kicker was chosen from group \(i\) and the second kicker from group \(j\). The experiment to choose the kickers is described by the sample tree:

Since a kicker from group 1 makes a kick with probability 1/2 while a kicker from group 2 makes a kick with probability 1/3,

\[
P[K_1K_2|C_{11}] = (1/2)^2 \quad P[K_1K_2|C_{12}] = (1/2)(1/3)
\]

\[
P[K_1K_2|C_{21}] = (1/3)(1/2) \quad P[K_1K_2|C_{22}] = (1/3)^2
\]
By the law of total probability,

\[P[K_1 K_2] = P[K_1 K_2 | C_{11}] P[C_{11}] + P[K_1 K_2 | C_{12}] P[C_{12}] \]
\[+ P[K_1 K_2 | C_{21}] P[C_{21}] + P[K_1 K_2 | C_{22}] P[C_{22}] \] \hspace{1cm} (7)
\[= \frac{1}{4} + \frac{1}{6} + \frac{1}{4} + \frac{1}{5} \cdot \frac{1}{12} = \frac{15}{96}. \] \hspace{1cm} (8)

It should be apparent that \(P[K_1] = P[K] \) from part (a). Symmetry should also make it clear that \(P[K_1] = P[K_2] \) since for any ordering of two kickers, the reverse ordering is equally likely. If this is not clear, we derive this result by calculating \(P[K_2 | C_{ij}] \) and using the law of total probability to calculate \(P[K_2] \).

\[P[K_2 | C_{11}] = \frac{1}{2}, \quad P[K_2 | C_{12}] = \frac{1}{3}, \] \hspace{1cm} (9)
\[P[K_2 | C_{21}] = \frac{1}{2}, \quad P[K_2 | C_{22}] = \frac{1}{3}. \] \hspace{1cm} (10)

By the law of total probability,

\[P[K_2] = P[K_2 | C_{11}] P[C_{11}] + P[K_2 | C_{12}] P[C_{12}] \]
\[+ P[K_2 | C_{21}] P[C_{21}] + P[K_2 | C_{22}] P[C_{22}] \] \hspace{1cm} (11)
\[= \frac{1}{2} \cdot \frac{1}{12} + \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{12} = \frac{7}{18}. \] \hspace{1cm} (12)

We observe that \(K_1 \) and \(K_2 \) are not independent since

\[P[K_1 K_2] = \frac{15}{96} \neq \left(\frac{7}{18} \right)^2 = P[K_1] P[K_2]. \] \hspace{1cm} (13)

Note that \(15/96 \) and \((7/18)^2 \) are close but not exactly the same. The reason \(K_1 \) and \(K_2 \) are dependent is that if the first kicker is successful, then it is more likely that kicker is from group 1. This makes it more likely that the second kicker is from group 2 and is thus more likely to miss.

(c) Once a kicker is chosen, each of the 10 field goals is an independent trial. If the kicker is from group 1, then the success probability is \(1/2 \). If the kicker is from group 2, the success probability is \(1/3 \). Out of 10 kicks, there are 5 misses iff there are 5 successful kicks. Given the type of kicker chosen, the probability of 5 misses is

\[P[M | G_1] = \binom{10}{5} (1/2)^5 (1/2)^5, \quad P[M | G_2] = \binom{10}{5} (1/3)^5 (2/3)^5. \] \hspace{1cm} (14)

We use the Law of Total Probability to find

\[P[M] = P[M | G_1] P[G_1] + P[M | G_2] P[G_2] \] \hspace{1cm} (15)
\[= \binom{10}{5} \left((1/2)^{10} + (2/3)(1/3)^5 (2/3)^5 \right). \] \hspace{1cm} (16)

\textbf{Problem 1.10.1 Solution}

From the problem statement, we can conclude that the device components are configured in the following way.
To find the probability that the device works, we replace series devices 1, 2, and 3, and parallel devices 5 and 6 each with a single device labeled with the probability that it works. In particular,

\[
P[W_1W_2W_3] = (1 - q)^3, \quad (1)
\]

\[
P[W_5 \cup W_6] = 1 - P[W_5^cW_6^c] = 1 - q^2. \quad (2)
\]

This yields a composite device of the form

The probability \(P[W'] \) that the two devices in parallel work is 1 minus the probability that neither works:

\[
P[W'] = 1 - q(1 - (1 - q)^3). \quad (3)
\]

Finally, for the device to work, both composite device in series must work. Thus, the probability the device works is

\[
P[W] = [1 - q(1 - (1 - q)^3)][1 - q^2]. \quad (4)
\]

Problem 1.10.2 Solution

Suppose that the transmitted bit was a 1. We can view each repeated transmission as an independent trial. We call each repeated bit the receiver decodes as 1 a success. Using \(S_{k,5} \) to denote the event of \(k \) successes in the five trials, then the probability \(k \) 1’s are decoded at the receiver is

\[
P[S_{k,5}] = \binom{5}{k} p^k(1 - p)^{5-k}, \quad k = 0, 1, \ldots, 5. \quad (1)
\]

The probability a bit is decoded correctly is

\[
P[C] = P[S_{5,5}] + P[S_{4,5}] = p^5 + 5p^4(1 - p) = 0.91854. \quad (2)
\]

The probability a deletion occurs is

\[
P[D] = P[S_{3,5}] + P[S_{2,5}] = 10p^3(1 - p)^2 + 10p^2(1 - p)^3 = 0.081. \quad (3)
\]

The probability of an error is

\[
P[E] = P[S_{1,5}] + P[S_{0,5}] = 5p(1 - p)^4 + (1 - p)^5 = 0.00046. \quad (4)
\]

Note that if a 0 is transmitted, then 0 is sent five times and we call decoding a 0 a success. You should convince yourself that this a symmetric situation with the same deletion and error probabilities. Introducing deletions reduces the probability of an error by roughly a factor of 20. However, the probability of successful decoding is also reduced.
Problem 1.10.3 Solution
Note that each digit 0 through 9 is mapped to the 4 bit binary representation of the digit. That is, 0 corresponds to 0000, 1 to 0001, up to 9 which corresponds to 1001. Of course, the 4 bit binary numbers corresponding to numbers 10 through 15 go unused, however this is unimportant to our problem. The 10 digit number results in the transmission of 40 bits. For each bit, an independent trial determines whether the bit was correct, a deletion, or an error. In Problem 1.10.2, we found the probabilities of these events to be
\[P[C] = \gamma = 0.91854, \quad P[D] = \delta = 0.081, \quad P[E] = \epsilon = 0.00046. \] (1)

Since each of the 40 bit transmissions is an independent trial, the joint probability of \(c \) correct bits, \(d \) deletions, and \(e \) erasures has the multinomial probability
\[
P[C = c, D = d, E = e] = \frac{40!}{c!d!e!}\gamma^c \delta^d \epsilon^e \quad c + d + e = 40; c, d, e \geq 0, \text{ otherwise.} \] (2)

Problem 1.10.4 Solution
From the statement of Problem 1.10.1, the configuration of device components is
\[
\begin{array}{cccc}
W_1 & W_2 & W_5 & W_3 \\
W_4 & W_6 \\
\end{array}
\]
By symmetry, note that the reliability of the system is the same whether we replace component 1, component 2, or component 3. Similarly, the reliability is the same whether we replace component 5 or component 6. Thus we consider the following cases:

I Replace component 1 In this case
\[
P[W_1W_2W_3] = (1 - \frac{q}{2})(1 - q)^2, \quad P[W_4] = 1 - q, \quad P[W_5 \cup W_6] = 1 - q^2. \] (1)
This implies
\[
P[W_1W_2W_3 \cup W_4] = 1 - (1 - P[W_1W_2W_3])(1 - P[W_4]) = 1 - \frac{q^2}{2}(5 - 4q + q^2). \] (2)
In this case, the probability the system works is
\[
P[W_I] = P[W_1W_2W_3 \cup W_4] P[W_5 \cup W_6] = \left[1 - \frac{q^2}{2}(5 - 4q + q^2)\right](1 - q^2). \] (3)

II Replace component 4 In this case,
\[
P[W_1W_2W_3] = (1 - q)^3, \quad P[W_4] = 1 - \frac{q}{2}, \quad P[W_5 \cup W_6] = 1 - q^2. \] (4)
This implies
\[
P[W_1W_2W_3 \cup W_4] = 1 - (1 - P[W_1W_2W_3])(1 - P[W_4]) = 1 - \frac{q}{2} + \frac{q}{2}(1 - q)^3. \] (5)
In this case, the probability the system works is
\[
P[W_{II}] = P[W_1W_2W_3 \cup W_4] P[W_5 \cup W_6] = \left[1 - \frac{q}{2} + \frac{q}{2}(1 - q)^3\right](1 - q^2). \] (6)
III Replace component 5 In this case,

\[P[W_1W_2W_3] = (1 - q)^3, \quad P[W_4] = 1 - q, \quad P[W_5 \cup W_6] = 1 - \frac{q^2}{2}. \] \hspace{1cm} (7)

This implies

\[P[W_1W_2W_3 \cup W_4] = 1 - (1 - P[W_1W_2W_3])(1 - P[W_4]) = (1 - q) \left[1 + q(1 - q)^2 \right]. \] \hspace{1cm} (8)

In this case, the probability the system works is

\[P[W_{III}] = P[W_1W_2W_3 \cup W_4] P[W_5 \cup W_6] \]

\[= (1 - q) \left(1 - \frac{q^2}{2} \right) \left[1 + q(1 - q)^2 \right]. \] \hspace{1cm} (9)

\[= \left[1 - \frac{q}{2} + \frac{q}{2}(1 - q)^3 \right] > 1 - \frac{q^2}{2}(5 - 4q + q^2). \] \hspace{1cm} (11)

Some algebra will show that \(P[W_{II}] > P[W_I] \) if and only if \(q^2 < 2 \), which occurs for all nontrivial (i.e., nonzero) values of \(q \). Similar algebra will show that \(P[W_{II}] > P[W_{III}] \) for all values of \(0 \leq q \leq 1 \). Thus the best policy is to replace component 4.

Problem 1.11.1 Solution

We can generate the 200 \times 1 vector \(T \), denoted \(T \) in MATLAB, via the command

\(T = 50 + \text{ceil}(50 \times \text{rand}(200,1)) \)

Keep in mind that \(50 \times \text{rand}(200,1) \) produces a 200 \times 1 vector of random numbers, each in the interval \((0, 50)\). Applying the ceiling function converts these random numbers to random integers in the set \(\{1, 2, \ldots, 50\} \). Finally, we add 50 to produce random numbers between 51 and 100.

Problem 1.11.2 Solution

Rather than just solve the problem for 50 trials, we can write a function that generates vectors \(C \) and \(H \) for an arbitrary number of trials \(n \). The code for this task is

\begin{verbatim}
function [C, H] = twocoin(n);
C = ceil(2 * rand(n, 1));
P = 1 - (C / 4);
H = (rand(n, 1) < P);
end
\end{verbatim}

The first line produces the \(n \times 1 \) vector \(C \) such that \(C(i) \) indicates whether coin 1 or coin 2 is chosen for trial \(i \). Next, we generate the vector \(P \) such that \(P(i) = 0.75 \) if \(C(i) = 1 \); otherwise, if \(C(i) = 2 \), then \(P(i) = 0.5 \). As a result, \(H(i) \) is the simulated result of a coin flip with heads, corresponding to \(H(i) = 1 \), occurring with probability \(P(i) \).

Problem 1.11.3 Solution

Rather than just solve the problem for 100 trials, we can write a function that generates \(n \) packets for an arbitrary number of trials \(n \). The code for this task is
function C=bit100(n);
\% n is the number of 100 bit packets sent
B=floor(2*rand(n,100));
P=0.03-0.02*B;
E=(rand(n,100)< P);
C=sum((sum(E,2)<=5));

First, B is an $n \times 100$ matrix such that $B(i,j)$ indicates whether bit i of packet j is zero or one. Next, we generate the $n \times 100$ matrix P such that $P(i,j)=0.03$ if $B(i,j)=0$; otherwise, if $B(i,j)=1$, then $P(i,j)=0.01$. As a result, $E(i,j)$ is the simulated error indicator for bit i of packet j. That is, $E(i,j)=1$ if bit i of packet j is in error; otherwise $E(i,j)=0$. Next we sum across the rows of E to obtain the number of errors in each packet. Finally, we count the number of packets with 5 or more errors.

For $n=100$ packets, the packet success probability is inconclusive. Experimentation will show that $C=97$, $C=98$, $C=99$ and $C=100$ correct packets are typical values that might be observed. By increasing n, more consistent results are obtained. For example, repeated trials with $n=100,000$ packets typically produces around $C=98,400$ correct packets. Thus 0.984 is a reasonable estimate for the probability of a packet being transmitted correctly.

Problem 1.11.4 Solution
To test n 6-component devices, (such that each component works with probability q) we use the following function:

\begin{verbatim}
function N=reliable6(n,q);
\% n is the number of 6 component devices \%N is the number of working devices
W=rand(n,6)>q;
D=(W(:,1)&W(:,2)&W(:,3))|W(:,4);
D=D&(W(:,5)|W(:,6));
N=sum(D);
\end{verbatim}

The $n \times 6$ matrix W is a logical matrix such that $W(i,j)=1$ if component j of device i works properly. Because W is a logical matrix, we can use the MATLAB logical operators | and & to implement the logic requirements for a working device. By applying these logical operators to the $n \times 1$ columns of W, we simulate the test of n circuits. Note that $D(i)=1$ if device i works. Otherwise, $D(i)=0$. Lastly, we count the number N of working devices. The following code snippet produces ten sample runs, where each sample run tests $n=100$ devices for $q = 0.2$.

\begin{verbatim}
>> for n=1:10, w(n)=reliable6(100,0.2); end
>> w
w =
 82 87 87 92 91 85 85 83 90 89
\end{verbatim}

As we see, the number of working devices is typically around 85 out of 100. Solving Problem 1.10.1, will show that the probability the device works is actually 0.8663.

Problem 1.11.5 Solution
The code
for `countequal` is quite short (just two lines excluding comments) but needs some explanation. The key is in the operation

\[
[MX,MY]=\text{ndgrid}(x,y).
\]

The MATLAB built-in function `ndgrid` facilitates plotting a function \(g(x,y)\) as a surface over the \(x,y\) plane. The \(x,y\) plane is represented by a grid of all pairs of points \(x(i), y(j)\). When \(x\) has \(n\) elements, and \(y\) has \(m\) elements, `ndgrid(x,y)` creates a grid (an \(n \times m\) array) of all possible pairs \([x(i) \ y(j)]\). This grid is represented by two separate \(n \times m\) matrices: \(MX\) and \(MY\) which indicate the \(x\) and \(y\) values at each grid point. Mathematically,

\[
MX(i,j) = x(i), \quad MY(i,j)=y(j).
\]

Next, \(C=(MX==MY)\) is an \(n \times m\) array such that \(C(i,j)=1\) if \(x(i)=y(j)\); otherwise \(C(i,j)=0\). That is, the \(j\)th column of \(C\) indicates which elements of \(x\) equal \(y(j)\). Lastly, we sum along each column \(j\) to count number of elements of \(x\) equal to \(y(j)\). That is, we sum along column \(j\) to count the number of occurrences (in \(x\)) of \(y(j)\).

Problem 1.11.6 Solution

For arbitrary number of trials \(n\) and failure probability \(q\), the following functions evaluates replacing each of the six components by an ultrareliable device.

```matlab
function N=ultrareliable6(n,q);
% n is the number of 6 component devices
% N is the number of working devices
for r=1:6,
    W=rand(n,6)>q;
    R=rand(n,1)>(q/2);
    W(:,r)=R;
    D=(W(:,1)&W(:,2)&W(:,3))|W(:,4);
    D&D=(W(:,5)|W(:,6));
    N(r)=sum(D);
end
```

This above code is based on the code for the solution of Problem 1.11.4. The \(n \times 6\) matrix \(W\) is a *logical* matrix such that \(W(i,j)=1\) if component \(j\) of device \(i\) works properly. Because \(W\) is a logical matrix, we can use the MATLAB logical operators \(|\) and \& to implement the logic requirements for a working device. By applying these logical operators to the \(n \times 1\) columns of \(W\), we simulate the test of \(n\) circuits. Note that \(D(i)=1\) if device \(i\) works. Otherwise, \(D(i)=0\). Note that in the code, we first generate the matrix \(W\) such that each component has failure probability \(q\). To simulate the replacement of the \(j\)th device by the ultrareliable version by replacing the \(j\)th column of \(W\) by the column vector \(R\) in which a device has failure probability \(q/2\). Lastly, for each column replacement, we count the number \(N\) of working devices. A sample run for \(n = 100\) trials and \(q = 0.2\) yielded these results:
From the above, we see, for example, that replacing the third component with an ultrareliable component resulted in 91 working devices. The results are fairly inconclusive in that replacing devices 1, 2, or 3 should yield the same probability of device failure. If we experiment with \(n = 10,000 \) runs, the results are more definitive:

\[
\begin{align*}
\text{>>} & \quad \text{ultrareliable6}(10000,0.2) \\
\text{ans} = & \quad \begin{array}{cccccc}
93 & 89 & 91 & 92 & 90 & 93 \\
\end{array} \\
\text{>>} & \quad \text{ultrareliable6}(10000,0.2) \\
\text{ans} = & \quad \begin{array}{cccccc}
8738 & 8762 & 8806 & 9135 & 8800 & 8796 \\
\end{array} \\
\text{>>} & \quad \text{ultrareliable6}(10000,0.2) \\
\text{ans} = & \quad \begin{array}{cccccc}
8771 & 8795 & 8806 & 9178 & 8886 & 8875 \\
\end{array}
\]

In both cases, it is clear that replacing component 4 maximizes the device reliability. The somewhat complicated solution of Problem 1.10.4 will confirm this observation.
Problem Solutions – Chapter 2

Problem 2.2.1 Solution

(a) We wish to find the value of \(c \) that makes the PMF sum up to one.

\[
P_N(n) = \begin{cases}
 c(1/2)^n & n = 0, 1, 2 \\
 0 & \text{otherwise}
\end{cases}
\]

(1)

Therefore, \(\sum_{n=0}^{2} P_N(n) = c + c/2 + c/4 = 1 \), implying \(c = 4/7 \).

(b) The probability that \(N \leq 1 \) is \(P[N \leq 1] = P[N = 0] + P[N = 1] = 4/7 + 2/7 = 6/7 \)

Problem 2.2.2 Solution

From Example 2.5, we can write the PMF of \(X \) and the PMF of \(R \) as

\[
P_X(x) = \begin{cases}
 1/8 & x = 0 \\
 3/8 & x = 1 \\
 3/8 & x = 2 \\
 1/8 & x = 3 \\
 0 & \text{otherwise}
\end{cases}
\]

\[
P_R(r) = \begin{cases}
 1/4 & r = 0 \\
 3/4 & r = 2 \\
 0 & \text{otherwise}
\end{cases}
\]

(1)

From the PMFs \(P_X(x) \) and \(P_R(r) \), we can calculate the requested probabilities

(a) \(P[X = 0] = P_X(0) = 1/8 \).

(b) \(P[X < 3] = P_X(0) + P_X(1) + P_X(2) = 7/8 \).

(c) \(P[R > 1] = P_R(2) = 3/4 \).

Problem 2.2.3 Solution

(a) We must choose \(c \) to make the PMF of \(V \) sum to one.

\[
\sum_{v=1}^{4} P_V(v) = c(1^2 + 2^2 + 3^2 + 4^2) = 30c = 1
\]

(1)

Hence \(c = 1/30 \).

(b) Let \(U = \{u^2|u = 1, 2, \ldots\} \) so that

\[
P[V \in U] = P_V(1) + P_V(4) = \frac{1}{30} + \frac{4^2}{30} = \frac{17}{30}
\]

(2)

(c) The probability that \(V \) is even is

\[
P[V \text{ is even}] = P_V(2) + P_V(4) = \frac{2^2}{30} + \frac{4^2}{30} = \frac{2}{3}
\]

(3)

(d) The probability that \(V > 2 \) is

\[
P[V > 2] = P_V(3) + P_V(4) = \frac{3^2}{30} + \frac{4^2}{30} = \frac{5}{6}
\]

(4)
Problem 2.2.4 Solution

(a) We choose \(c \) so that the PMF sums to one.

\[
\sum_x P_X (x) = \frac{c}{2} + \frac{c}{4} + \frac{c}{8} = \frac{7c}{8} = 1
\]

Thus \(c = 8/7 \).

(b) \[P [X = 4] = P_X (4) = \frac{8}{7 \cdot 4} = \frac{2}{7} \]

(c) \[P [X < 4] = P_X (2) = \frac{8}{7 \cdot 2} = \frac{4}{7} \]

(d) \[P [3 \leq X \leq 9] = P_X (4) + P_X (8) = \frac{8}{7 \cdot 4} + \frac{8}{7 \cdot 8} = \frac{3}{7} \]

Problem 2.2.5 Solution

Using \(B \) (for Bad) to denote a miss and \(G \) (for Good) to denote a successful free throw, the sample tree for the number of points scored in the 1 and 1 is

\[
\begin{align*}
&\quad 1-p \quad B \quad \bullet Y=0 \quad 1-p \quad B \quad \bullet Y=1 \\
p &\quad G \quad
Problem 2.2.8 Solution
From the problem statement, a single is twice as likely as a double, which is twice as likely as a triple, which is twice as likely as a home-run. If \(p \) is the probability of a home run, then

\[
P_B(4) = p \quad P_B(3) = 2p \quad P_B(2) = 4p \quad P_B(1) = 8p
\]

(1)

Since a hit of any kind occurs with probability of .300, \(p + 2p + 4p + 8p = 0.300 \) which implies \(p = 0.02 \). Hence, the PMF of \(B \) is

\[
P_B(b) = \begin{cases}
0.70 & b = 0 \\
0.16 & b = 1 \\
0.08 & b = 2 \\
0.04 & b = 3 \\
0.02 & b = 4 \\
0 & \text{otherwise}
\end{cases}
\]

(2)

Problem 2.2.9 Solution

(a) In the setup of a mobile call, the phone will send the “SETUP” message up to six times. Each time the setup message is sent, we have a Bernoulli trial with success probability \(p \). Of course, the phone stops trying as soon as there is a success. Using \(r \) to denote a successful response, and \(n \) a non-response, the sample tree is

(b) We can write the PMF of \(K \), the number of “SETUP” messages sent as

\[
P_K(k) = \begin{cases}
(1-p)^{k-1}p & k = 1, 2, \ldots, 5 \\
(1-p)^5p + (1-p)^6 & k = 6 \\
0 & \text{otherwise}
\end{cases}
\]

(1)

Note that the expression for \(P_K(6) \) is different because \(K = 6 \) if either there was a success or a failure on the sixth attempt. In fact, \(K = 6 \) whenever there were failures on the first five attempts which is why \(P_K(6) \) simplifies to \((1-p)^5 \).

(c) Let \(B \) denote the event that a busy signal is given after six failed setup attempts. The probability of six consecutive failures is \(P[B] = (1-p)^6 \).

(d) To be sure that \(P[B] \leq 0.02 \), we need \(p \geq 1 - (0.02)^{1/6} = 0.479 \).

Problem 2.3.1 Solution

(a) If it is indeed true that \(Y \), the number of yellow M&M’s in a package, is uniformly distributed between 5 and 15, then the PMF of \(Y \), is

\[
P_Y(y) = \begin{cases}
1/11 & y = 5, 6, 7, \ldots, 15 \\
0 & \text{otherwise}
\end{cases}
\]

(1)
(b)
\[P [Y < 10] = P_Y (5) + P_Y (6) + \cdots + P_Y (9) = \frac{5}{11} \] (2)

(c)
\[P [Y > 12] = P_Y (13) + P_Y (14) + P_Y (15) = \frac{3}{11} \] (3)

(d)
\[P [8 \leq Y \leq 12] = P_Y (8) + P_Y (9) + \cdots + P_Y (12) = \frac{5}{11} \] (4)

Problem 2.3.2 Solution

(a) Each paging attempt is an independent Bernoulli trial with success probability \(p \). The number of times \(K \) that the pager receives a message is the number of successes in \(n \) Bernoulli trials and has the binomial PMF

\[
P_K (k) = \binom{n}{k} p^k (1 - p)^{n-k} \quad k = 0, 1, \ldots, n
\]

(b) Let \(R \) denote the event that the paging message was received at least once. The event \(R \) has probability

\[
P [R] = P [B > 0] = 1 - P [B = 0] = 1 - (1 - p)^n
\]

To ensure that \(P[R] \geq 0.95 \) requires that \(n \geq \ln(0.05) / \ln(1 - p) \). For \(p = 0.8 \), we must have \(n \geq 1.86 \). Thus, \(n = 2 \) pages would be necessary.

Problem 2.3.3 Solution

Whether a hook catches a fish is an independent trial with success probability \(h \). The number of fish hooked, \(K \), has the binomial PMF

\[
P_K (k) = \binom{m}{k} h^k (1 - h)^{m-k} \quad k = 0, 1, \ldots, m
\]

Problem 2.3.4 Solution

(a) Let \(X \) be the number of times the frisbee is thrown until the dog catches it and runs away. Each throw of the frisbee can be viewed as a Bernoulli trial in which a success occurs if the dog catches the frisbee and runs away. Thus, the experiment ends on the first success and \(X \) has the geometric PMF

\[
P_X (x) = \begin{cases} (1 - p)^{x-1} p & x = 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases}
\]

(b) The child will throw the frisbee more than four times iff there are failures on the first 4 trials which has probability \((1 - p)^4\). If \(p = 0.2 \), the probability of more than four throws is \((0.8)^4 = 0.4096\).
Problem 2.3.5 Solution
Each paging attempt is a Bernoulli trial with success probability p where a success occurs if the pager receives the paging message.

(a) The paging message is sent again and again until a success occurs. Hence the number of paging messages is $N = n$ if there are $n − 1$ paging failures followed by a paging success. That is, N has the geometric PMF

$$P_N(n) = \begin{cases} (1-p)^{n-1}p & n = 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases}$$ (1)

(b) The probability that no more three paging attempts are required is

$$P[N \leq 3] = 1 - P[N > 3] = 1 - \sum_{n=4}^{\infty} P_N(n) = 1 - (1-p)^3$$ (2)

This answer can be obtained without calculation since $N > 3$ if the first three paging attempts fail and that event occurs with probability $(1-p)^3$. Hence, we must choose p to satisfy $1 - (1-p)^3 \geq 0.95$ or $(1-p)^3 \leq 0.05$. This implies

$$p \geq 1 - (0.05)^{1/3} \approx 0.6316$$ (3)

Problem 2.3.6 Solution
The probability of more than 500,000 bits is

$$P[B > 500,000] = 1 - \sum_{b=1}^{500,000} P_B(b)$$ (1)

$$= 1 - p \sum_{b=1}^{500,000} (1-p)^{b-1}$$ (2)

Math Fact B.4 implies that $(1-x)\sum_{b=1}^{500,000} x^{b-1} = 1 - x^{500,000}$. Substituting, $x = 1-p$, we obtain:

$$P[B > 500,000] = 1 - (1 - (1 - p)^{500,000})$$ (3)

$$= (1 - 0.25 \times 10^{-5})^{500,000} \approx \exp(-500,000/400,000) = 0.29$$. (4)

Problem 2.3.7 Solution
Since an average of $T/5$ buses arrive in an interval of T minutes, buses arrive at the bus stop at a rate of $1/5$ buses per minute.

(a) From the definition of the Poisson PMF, the PMF of B, the number of buses in T minutes, is

$$P_B(b) = \begin{cases} (T/5)^b e^{-T/5}/b! & b = 0, 1, \ldots \\ 0 & \text{otherwise} \end{cases}$$ (1)

(b) Choosing $T = 2$ minutes, the probability that three buses arrive in a two minute interval is

$$P_B(3) = (2/5)^3 e^{-2/5}/3! \approx 0.0072$$ (2)
(c) By choosing \(T = 10 \) minutes, the probability of zero buses arriving in a ten minute interval is
\[
P_B(0) = e^{-10/5}/0! = e^{-2} \approx 0.135
\] (3)

(d) The probability that at least one bus arrives in \(T \) minutes is
\[
P[B \geq 1] = 1 - P[B = 0] = 1 - e^{-T/5} \geq 0.99
\] (4)

Rearranging yields \(T \geq 5 \ln 100 \approx 23.0 \) minutes.

Problem 2.3.8 Solution

(a) If each message is transmitted 8 times and the probability of a successful transmission is \(p \), then the PMF of \(N \), the number of successful transmissions has the binomial PMF
\[
P_N(n) = \begin{cases} \binom{8}{n} p^n (1-p)^{8-n} & n = 0, 1, \ldots, 8 \\ 0 & \text{otherwise} \end{cases}
\] (1)

(b) The indicator random variable \(I \) equals zero if and only if \(N = 8 \). Hence,
\[
P[I = 0] = P[N = 0] = 1 - P[I = 1]
\] (2)

Thus, the complete expression for the PMF of \(I \) is
\[
P_I(i) = \begin{cases} (1-p)^8 & i = 0 \\ 1 - (1-p)^8 & i = 1 \\ 0 & \text{otherwise} \end{cases}
\] (3)

Problem 2.3.9 Solution

The requirement that \(\sum_{x=1}^{n} P_X(x) = 1 \) implies
\[
\begin{align*}
n = 1 : & \quad c(1) \left[\frac{1}{1} \right] = 1 \quad c(1) = 1 \\
n = 2 : & \quad c(2) \left[\frac{1}{1} + \frac{1}{2} \right] = 1 \quad c(2) = \frac{2}{3} \\
n = 3 : & \quad c(3) \left[\frac{1}{1} + \frac{1}{2} + \frac{1}{3} \right] = 1 \quad c(3) = \frac{6}{11} \\
n = 4 : & \quad c(4) \left[\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \right] = 1 \quad c(4) = \frac{12}{25} \\
n = 5 : & \quad c(5) \left[\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \right] = 1 \quad c(5) = \frac{12}{25} \\
n = 6 : & \quad c(6) \left[\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} \right] = 1 \quad c(6) = \frac{20}{49}
\end{align*}
\]

As an aside, find \(c(n) \) for large values of \(n \) is easy using the recursion
\[
\frac{1}{c(n+1)} = \frac{1}{c(n)} + \frac{1}{n+1}.
\] (7)
Problem 2.3.10 Solution

(a) We can view whether each caller knows the birthdate as a Bernoulli trial. As a result, \(L \) is the number of trials needed for 6 successes. That is, \(L \) has a Pascal PMF with parameters \(p = 0.75 \) and \(k = 6 \) as defined by Definition 2.8. In particular,

\[
P_L (l) = \begin{cases} \binom{l-1}{5} (0.75)^6 (0.25)^{l-6} & l = 6, 7, \ldots \\ 0 & \text{otherwise} \end{cases} \quad \text{(1)}
\]

(b) The probability of finding the winner on the tenth call is

\[
P_L (10) = \binom{9}{5} (0.75)^6 (0.25)^4 \approx 0.0876 \quad \text{(2)}
\]

(c) The probability that the station will need nine or more calls to find a winner is

\[
P [L \geq 9] = 1 - P [L < 9]
\]

\[
= 1 - P_L (6) - P_L (7) - P_L (8)
\]

\[
= 1 - (0.75)^6 [1 + 6(0.25) + 21(0.25)^2] \approx 0.321 \quad \text{(5)}
\]

Problem 2.3.11 Solution

The packets are delay sensitive and can only be retransmitted \(d \) times. For \(t < d \), a packet is transmitted \(t \) times if the first \(t - 1 \) attempts fail followed by a successful transmission on attempt \(t \). Further, the packet is transmitted \(d \) times if there are failures on the first \(d - 1 \) transmissions, no matter what the outcome of attempt \(d \). So the random variable \(T \), the number of times that a packet is transmitted, can be represented by the following PMF.

\[
P_T (t) = \begin{cases} p(1-p)^{t-1} & t = 1, 2, \ldots, d-1 \\ (1-p)^{d-1} & t = d \\ 0 & \text{otherwise} \end{cases} \quad \text{(1)}
\]

Problem 2.3.12 Solution

(a) Since each day is independent of any other day, \(P[W_{33}] \) is just the probability that a winning lottery ticket was bought. Similarly for \(P[L_{87}] \) and \(P[N_{99}] \) become just the probability that a losing ticket was bought and that no ticket was bought on a single day, respectively. Therefore

\[
P [W_{33}] = p/2 \quad P [L_{87}] = (1-p)/2 \quad P [N_{99}] = 1/2 \quad \text{(1)}
\]

(b) Suppose we say a success occurs on the \(k \)th trial if on day \(k \) we buy a ticket. Otherwise, a failure occurs. The probability of success is simply 1/2. The random variable \(K \) is just the number of trials until the first success and has the geometric PMF.

\[
P_K (k) = \begin{cases} (1/2)(1/2)^{k-1} = (1/2)^k & k = 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \quad \text{(2)}
\]
(c) The probability that you decide to buy a ticket and it is a losing ticket is $(1-p)/2$, independent of any other day. If we view buying a losing ticket as a Bernoulli success, R, the number of losing lottery tickets bought in m days, has the binomial PMF

$$P_R(r) = \binom{m}{r}[(1-p)/2]^r[(1+p)/2]^{m-r} \quad r = 0, 1, \ldots, m$$

(d) Letting D be the day on which the j-th losing ticket is bought, we can find the probability that $D = d$ by noting that $j - 1$ losing tickets must have been purchased in the $d - 1$ previous days. Therefore D has the Pascal PMF

$$P_D(d) = \binom{d-1}{j-1}[(1-p)/2]^j[(1+p)/2]^{d-j} \quad d = j, j+1, \ldots$$

Problem 2.3.13 Solution

(a) Let S_n denote the event that the Sixers win the series in n games. Similarly, C_n is the event that the Celtics in in n games. The Sixers win the series in 3 games if they win three straight, which occurs with probability

$$P[S_3] = (1/2)^3 = 1/8$$

The Sixers win the series in 4 games if they win two out of the first three games and they win the fourth game so that

$$P[S_4] = \binom{3}{2}(1/2)^3(1/2) = 3/16$$

The Sixers win the series in five games if they win two out of the first four games and then win game five. Hence,

$$P[S_5] = \binom{4}{2}(1/2)^4(1/2) = 3/16$$

By symmetry, $P[C_n] = P[S_n]$. Further we observe that the series last n games if either the Sixers or the Celtics win the series in n games. Thus,

$$P[N = n] = P[S_n] + P[C_n] = 2P[S_n]$$

Consequently, the total number of games, N, played in a best of 5 series between the Celtics and the Sixers can be described by the PMF

$$P_N(n) = \begin{cases}
2(1/2)^3 = 1/4 & n = 3 \\
2(3/4)(1/2)^4 = 3/8 & n = 4 \\
2(1/2)^5 = 3/8 & n = 5 \\
0 & \text{otherwise}
\end{cases}$$

(b) For the total number of Celtic wins W, we note that if the Celtics get $w < 3$ wins, then the Sixers won the series in $3 + w$ games. Also, the Celtics win 3 games if they win the series in 3, 4, or 5 games. Mathematically,

$$P[W = w] = \begin{cases}
P[S_{3+w}] & w = 0, 1, 2 \\
\end{cases}$$
Thus, the number of wins by the Celtics, W, has the PMF shown below.

$$P_W(w) = \begin{cases}
P[S_3] = 1/8 & w = 0 \\
P[S_4] = 3/16 & w = 1 \\
P[S_5] = 3/16 & w = 2 \\
1/8 + 3/16 + 3/16 = 1/2 & w = 3 \\
0 & \text{otherwise}
\end{cases} \quad (7)$$

(c) The number of Celtic losses L equals the number of Sixers’ wins W_S. This implies $P_L(l) = P_{W_S}(l)$. Since either team is equally likely to win any game, by symmetry, $P_{W_S}(w) = P_W(w)$. This implies $P_L(l) = P_{W_S}(l) = P_W(l)$. The complete expression of for the PMF of L is

$$P_L(l) = P_W(l) = \begin{cases}
1/8 & l = 0 \\
3/16 & l = 1 \\
3/16 & l = 2 \\
1/2 & l = 3 \\
0 & \text{otherwise}
\end{cases} \quad (8)$$

Problem 2.3.14 Solution

Since a and b are positive, let K be a binomial random variable for n trials and success probability $p = a/(a + b)$. First, we observe that the sum of over all possible values of the PMF of K is

$$\sum_{k=0}^{n} P_K(k) = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \quad (1)$$

$$= \sum_{k=0}^{n} \binom{n}{k} \left(\frac{a}{a+b} \right)^k \left(\frac{b}{a+b} \right)^{n-k} \quad (2)$$

$$= \sum_{k=0}^{n} \binom{n}{k} \frac{a^k b^{n-k}}{(a+b)^n} \quad (3)$$

Since $\sum_{k=0}^{n} P_K(k) = 1$, we see that

$$(a+b)^n = (a+b)^n \sum_{k=0}^{n} P_K(k) = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} \quad (4)$$

Problem 2.4.1 Solution

Using the CDF given in the problem statement we find that

(a) $P[Y < 1] = 0$

(b) $P[Y \leq 1] = 1/4$

(c) $P[Y > 2] = 1 - P[Y \leq 2] = 1 - 1/2 = 1/2$

(d) $P[Y \geq 2] = 1 - P[Y < 2] = 1 - 1/4 = 3/4$

(e) $P[Y = 1] = 1/4$
(f) $P[Y = 3] = 1/2$

(g) From the staircase CDF of Problem 2.4.1, we see that Y is a discrete random variable. The jumps in the CDF occur at at the values that Y can take on. The height of each jump equals the probability of that value. The PMF of Y is

$$P_Y(y) = \begin{cases}
1/4 & y = 1 \\
1/4 & y = 2 \\
1/2 & y = 3 \\
0 & \text{otherwise}
\end{cases}$$ \hfill (1)$$

Problem 2.4.2 Solution

(a) The given CDF is shown in the diagram below.

$$F_X(x) = \begin{cases}
0 & x < -1 \\
0.2 & -1 \leq x < 0 \\
0.7 & 0 \leq x < 1 \\
1 & x \geq 1
\end{cases}$$ \hfill (1)$$

(b) The corresponding PMF of X is

$$P_X(x) = \begin{cases}
0.2 & x = -1 \\
0.5 & x = 0 \\
0.3 & x = 1 \\
0 & \text{otherwise}
\end{cases}$$ \hfill (2)$$

Problem 2.4.3 Solution

(a) Similar to the previous problem, the graph of the CDF is shown below.

$$F_X(x) = \begin{cases}
0 & x < -3 \\
0.4 & -3 \leq x < 5 \\
0.8 & 5 \leq x < 7 \\
1 & x \geq 7
\end{cases}$$ \hfill (1)$$

(b) The corresponding PMF of X is

$$P_X(x) = \begin{cases}
0.4 & x = -3 \\
0.4 & x = 5 \\
0.2 & x = 7 \\
0 & \text{otherwise}
\end{cases}$$ \hfill (2)$$
Problem 2.4.4 Solution

Let $q = 1 - p$, so the PMF of the geometric (p) random variable K is

$$P_K (k) = \begin{cases} pq^{k-1} & k = 1, 2, \ldots, \\ 0 & \text{otherwise}. \end{cases} \quad (1)$$

For any integer $k \geq 1$, the CDF obeys

$$F_K (k) = \sum_{j=1}^{k} P_K (j) = \sum_{j=1}^{k} pq^{j-1} = 1 - q^k. \quad (2)$$

Since K is integer valued, $F_K (k) = F_K (\lfloor k \rfloor)$ for all integer and non-integer values of k. (If this point is not clear, you should review Example 2.24.) Thus, the complete expression for the CDF of K is

$$F_K (k) = \begin{cases} 0 & k < 1, \\ 1 - (1 - p)^{\lfloor k \rfloor} & k \geq 1. \end{cases} \quad (3)$$

Problem 2.4.5 Solution

Since mushrooms occur with probability $2/3$, the number of pizzas sold before the first mushroom pizza is $N = n < 100$ if the first n pizzas do not have mushrooms followed by mushrooms on pizza $n+1$. Also, it is possible that $N = 100$ if all 100 pizzas are sold without mushrooms. the resulting PMF is

$$P_N (n) = \begin{cases} (1/3)^n(2/3) & n = 0, 1, \ldots, 99 \\ (1/3)^{100} & n = 100 \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

For integers $n < 100$, the CDF of N obeys

$$F_N (n) = \sum_{i=0}^{n} P_N (i) = \sum_{i=0}^{n} (1/3)^i(2/3) = 1 - (1/3)^{n+1} \quad (2)$$

A complete expression for $F_N (n)$ must give a valid answer for every value of n, including non-integer values. We can write the CDF using the floor function $\lfloor x \rfloor$ which denote the largest integer less than or equal to X. The complete expression for the CDF is

$$F_N (x) = \begin{cases} 0 & x < 0 \\ 1 - (1/3)^{\lfloor x \rfloor + 1} & 0 \leq x < 100 \\ 1 & x \geq 100 \end{cases} \quad (3)$$

Problem 2.4.6 Solution

From Problem 2.2.8, the PMF of B is

$$P_B (b) = \begin{cases} 0.70 & b = 0 \\ 0.16 & b = 1 \\ 0.08 & b = 2 \\ 0.04 & b = 3 \\ 0.02 & b = 4 \\ 0 & \text{otherwise} \end{cases} \quad (1)$$
The corresponding CDF is

\[
F_B(b) = \begin{cases}
0 & b < 0 \\
0.70 & 0 \leq b < 1 \\
0.86 & 1 \leq b < 2 \\
0.94 & 2 \leq b < 3 \\
0.98 & 3 \leq b < 4 \\
1.0 & b \geq 4
\end{cases}
\]

Problem 2.4.7 Solution

In Problem 2.2.5, we found the PMF of \(Y \). This PMF, and its corresponding CDF are

\[
P_Y(y) = \begin{cases}
1 - p & y = 0 \\
p(1 - p) & y = 1 \\
p^2 & y = 2 \\
0 & \text{otherwise}
\end{cases} \quad F_Y(y) = \begin{cases}
0 & y < 0 \\
1 - p & 0 \leq y < 1 \\
1 - p^2 & 1 \leq y < 2 \\
1 & y \geq 2
\end{cases}
\]

For the three values of \(p \), the CDF resembles

\[
\begin{align*}
F_Y(y) & \quad p = 1/4 \\
F_Y(y) & \quad p = 1/2 \\
F_Y(y) & \quad p = 3/4
\end{align*}
\]

Problem 2.4.8 Solution

From Problem 2.2.9, the PMF of the number of call attempts is

\[
P_N(n) = \begin{cases}
(1 - p)^{k-1}p & k = 1, 2, \ldots, 5 \\
(1 - p)^5 p + (1 - p)^6 = (1 - p)^5 & k = 6 \\
0 & \text{otherwise}
\end{cases}
\]

For \(p = 1/2 \), the PMF can be simplified to

\[
P_N(n) = \begin{cases}
(1/2)^n & n = 1, 2, \ldots, 5 \\
(1/2)^5 & n = 6 \\
0 & \text{otherwise}
\end{cases}
\]

The corresponding CDF of \(N \) is

\[
F_N(n) = \begin{cases}
0 & n < 1 \\
1/2 & 1 \leq n < 2 \\
3/4 & 2 \leq n < 3 \\
7/8 & 3 \leq n < 4 \\
15/16 & 4 \leq n < 5 \\
31/32 & 5 \leq n < 6 \\
1 & n \geq 6
\end{cases}
\]
Problem 2.5.1 Solution
For this problem, we just need to pay careful attention to the definitions of mode and median.

(a) The mode must satisfy \(P_X(x_{\text{mod}}) \geq P_X(x) \) for all \(x \). In the case of the uniform PMF, any integer \(x' \) between 1 and 100 is a mode of the random variable \(X \). Hence, the set of all modes is
\[
X_{\text{mod}} = \{1, 2, \ldots, 100\} \tag{1}
\]

(b) The median must satisfy \(P[X < x_{\text{med}}] = P[X > x_{\text{med}}] \). Since
\[
P[X \leq 50] = P[X \geq 51] = 1/2 \tag{2}
\]
we observe that \(x_{\text{med}} = 50.5 \) is a median since it satisfies
\[
P[X < x_{\text{med}}] = P[X > x_{\text{med}}] = 1/2 \tag{3}
\]
In fact, for any \(x' \) satisfying \(50 < x' < 51 \), \(P[X < x'] = P[X > x'] = 1/2 \). Thus,
\[
X_{\text{med}} = \{x|50 < x < 51\} \tag{4}
\]

Problem 2.5.2 Solution
Voice calls and data calls each cost 20 cents and 30 cents respectively. Furthermore the respective probabilities of each type of call are 0.6 and 0.4.

(a) Since each call is either a voice or data call, the cost of one call can only take the two values associated with the cost of each type of call. Therefore the PMF of \(X \) is
\[
P_X(x) = \begin{cases}
0.6 & x = 20 \\
0.4 & x = 30 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]

(b) The expected cost, \(E[C] \), is simply the sum of the cost of each type of call multiplied by the probability of such a call occurring.
\[
E[C] = 20(0.6) + 30(0.4) = 24 \text{ cents} \tag{2}
\]

Problem 2.5.3 Solution
From the solution to Problem 2.4.1, the PMF of \(Y \) is
\[
P_Y(y) = \begin{cases}
1/4 & y = 1 \\
1/4 & y = 2 \\
1/2 & y = 3 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]
The expected value of \(Y \) is
\[
E[Y] = \sum_y yP_Y(y) = 1(1/4) + 2(1/4) + 3(1/2) = 9/4 \tag{2}
\]
Problem 2.5.4 Solution
From the solution to Problem 2.4.2, the PMF of \(X \) is
\[
P_X(x) = \begin{cases}
0.2 & x = -1 \\
0.5 & x = 0 \\
0.3 & x = 1 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]
The expected value of \(X \) is
\[
E[X] = \sum_x xP_X(x) = -1(0.2) + 0(0.5) + 1(0.3) = 0.1 \tag{2}
\]

Problem 2.5.5 Solution
From the solution to Problem 2.4.3, the PMF of \(X \) is
\[
P_X(x) = \begin{cases}
0.4 & x = -3 \\
0.4 & x = 5 \\
0.2 & x = 7 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]
The expected value of \(X \) is
\[
E[X] = \sum_x xP_X(x) = -3(0.4) + 5(0.4) + 7(0.2) = 2.2 \tag{2}
\]

Problem 2.5.6 Solution
From Definition 2.7, random variable \(X \) has PMF
\[
P_X(x) = \begin{cases}
\binom{4}{x}(1/2)^4 & x = 0, 1, 2, 3, 4 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]
The expected value of \(X \) is
\[
E[X] = \sum_{x=0}^4 xP_X(x) = 0\cdot\binom{4}{0}(1/2)^4 + 1\cdot\binom{4}{1}(1/2)^4 + 2\cdot\binom{4}{2}(1/2)^4 + 3\cdot\binom{4}{3}(1/2)^4 + 4\cdot\binom{4}{4}(1/2)^4 \\
= [4 + 12 + 12 + 4]/2^4 = 2 \tag{2}
\]

Problem 2.5.7 Solution
From Definition 2.7, random variable \(X \) has PMF
\[
P_X(x) = \begin{cases}
\binom{5}{x}(1/2)^5 & x = 0, 1, 2, 3, 4, 5 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]
The expected value of \(X \) is
\[
E[X] = \sum_{x=0}^5 xP_X(x) = 0\cdot\binom{5}{0}(1/2)^5 + 1\cdot\binom{5}{1}(1/2)^5 + 2\cdot\binom{5}{2}(1/2)^5 + 3\cdot\binom{5}{3}(1/2)^5 + 4\cdot\binom{5}{4}(1/2)^5 + 5\cdot\binom{5}{5}(1/2)^5 \\
= [5 + 20 + 30 + 20 + 5]/2^5 = 2.5 \tag{2}
\]
Problem 2.5.8 Solution
The following experiments are based on a common model of packet transmissions in data networks. In these networks, each data packet contains a cyclic redundancy check (CRC) code that permits the receiver to determine whether the packet was decoded correctly. In the following, we assume that a packet is corrupted with probability $\epsilon = 0.001$, independent of whether any other packet is corrupted.

(a) Let $X = 1$ if a data packet is decoded correctly; otherwise $X = 0$. Random variable X is a Bernoulli random variable with PMF

$$P_X(x) = \begin{cases}
0.001 & x = 0 \\
0.999 & x = 1 \\
0 & \text{otherwise}
\end{cases}$$

The parameter $\epsilon = 0.001$ is the probability a packet is corrupted. The expected value of X is

$$E[X] = 1 - \epsilon = 0.999$$

(b) Let Y denote the number of packets received in error out of 100 packets transmitted. Y has the binomial PMF

$$P_Y(y) = \begin{cases}
\binom{100}{y}(0.001)^y(0.999)^{100-y} & y = 0, 1, \ldots, 100 \\
0 & \text{otherwise}
\end{cases}$$

The expected value of Y is

$$E[Y] = 100\epsilon = 0.1$$

(c) Let L equal the number of packets that must be received to decode 5 packets in error. L has the Pascal PMF

$$P_L(l) = \begin{cases}
\binom{l-1}{4}(0.001)^5(0.999)^{l-5} & l = 5, 6, \ldots \\
0 & \text{otherwise}
\end{cases}$$

The expected value of L is

$$E[L] = \frac{5}{\epsilon} = \frac{5}{0.001} = 5000$$

(d) If packet arrivals obey a Poisson model with an average arrival rate of 1000 packets per second, then the number N of packets that arrive in 5 seconds has the Poisson PMF

$$P_N(n) = \begin{cases}
5000^ne^{-5000}/n! & n = 0, 1, \ldots \\
0 & \text{otherwise}
\end{cases}$$

The expected value of N is $E[N] = 5000$.

Problem 2.5.9 Solution
In this "double-or-nothing" type game, there are only two possible payoffs. The first is zero dollars, which happens when we lose 6 straight bets, and the second payoff is 64 dollars which happens unless we lose 6 straight bets. So the PMF of Y is

$$P_Y(y) = \begin{cases}
(1/2)^6 = 1/64 & y = 0 \\
1 - (1/2)^6 = 63/64 & y = 64 \\
0 & \text{otherwise}
\end{cases}$$

The expected amount you take home is

$$E[Y] = 0(1/64) + 64(63/64) = 63$$

So, on the average, we can expect to break even, which is not a very exciting proposition.
Problem 2.5.10 Solution
By the definition of the expected value,
\[
E[X_n] = \sum_{x=1}^{n} x \binom{n}{x} p^x(1-p)^{n-x}
\]
(1)
\[
= np \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-1-(x-1))!}p^{x-1}(1-p)^{n-1-(x-1)}
\]
(2)
With the substitution \(x' = x - 1 \), we have
\[
E[X_n] = np \sum_{x'=0}^{n-1} \binom{n-1}{x'} p^{x'}(1-p)^{n-x'} = np \sum_{x'=0}^{n-1} P_{X_{n-1}}(x) = np
\]
(3)
The above sum is 1 because it is the sum of a binomial random variable for \(n - 1 \) trials over all possible values.

Problem 2.5.11 Solution
We write the sum as a double sum in the following way:
\[
\sum_{i=0}^{\infty} P[X > i] = \sum_{i=0}^{\infty} \sum_{j=i+1}^{\infty} P_X(j)
\]
(1)
At this point, the key step is to reverse the order of summation. You may need to make a sketch of the feasible values for \(i \) and \(j \) to see how this reversal occurs. In this case,
\[
\sum_{i=0}^{\infty} P[X > i] = \sum_{j=1}^{\infty} \sum_{i=0}^{j-1} P_X(j) = \sum_{j=1}^{\infty} j P_X(j) = E[X]
\]
(2)

Problem 2.6.1 Solution
From the solution to Problem 2.4.1, the PMF of \(Y \) is
\[
P_Y(y) = \begin{cases}
1/4 & y = 1 \\
1/4 & y = 2 \\
1/2 & y = 3 \\
0 & \text{otherwise}
\end{cases}
\]
(1)
(a) Since \(Y \) has range \(S_Y = \{1, 2, 3\} \), the range of \(U = Y^2 \) is \(S_U = \{1, 4, 9\} \). The PMF of \(U \) can be found by observing that
\[
P[U = u] = P[Y^2 = u] = P[Y = \sqrt{u}] + P[Y = -\sqrt{u}]
\]
(2)
Since \(Y \) is never negative, \(P_U(u) = P_Y(\sqrt{u}) \). Hence,
\[
P_U(1) = P_Y(1) = 1/4 \quad P_U(4) = P_Y(2) = 1/4 \quad P_U(9) = P_Y(3) = 1/2
\]
(3)
For all other values of \(u \), \(P_U(u) = 0 \). The complete expression for the PMF of \(U \) is
\[
P_U(u) = \begin{cases}
1/4 & u = 1 \\
1/4 & u = 4 \\
1/2 & u = 9 \\
0 & \text{otherwise}
\end{cases}
\]
(4)
(b) From the PMF, it is straightforward to write down the CDF.

\[
F_U(u) = \begin{cases}
0 & u < 1 \\
1/4 & 1 \leq u < 4 \\
1/2 & 4 \leq u < 9 \\
1 & u \geq 9
\end{cases}
\]

(5)

(c) From Definition 2.14, the expected value of \(U\) is

\[
E[U] = \sum_u uP_U(u) = 1(1/4) + 4(1/4) + 9(1/2) = 5.75
\]

(6)

From Theorem 2.10, we can calculate the expected value of \(U\) as

\[
E[U] = E[Y^2] = \sum_y y^2P_Y(y) = 1^2(1/4) + 2^2(1/4) + 3^2(1/2) = 5.75
\]

(7)

As we expect, both methods yield the same answer.

Problem 2.6.2 Solution

From the solution to Problem 2.4.2, the PMF of \(X\) is

\[
P_X(x) = \begin{cases}
0.2 & x = -1 \\
0.5 & x = 0 \\
0.3 & x = 1 \\
0 & \text{otherwise}
\end{cases}
\]

(1)

(a) The PMF of \(V = \vert X\vert\) satisfies

\[
P_V(v) = P[\vert X\vert = v] = P_X(v) + P_X(-v)
\]

(2)

In particular,

\[
P_V(0) = P_X(0) = 0.5 \quad P_V(1) = P_X(-1) + P_X(1) = 0.5
\]

(3)

The complete expression for the PMF of \(V\) is

\[
P_V(v) = \begin{cases}
0.5 & v = 0 \\
0.5 & v = 1 \\
0 & \text{otherwise}
\end{cases}
\]

(4)

(b) From the PMF, we can construct the staircase CDF of \(V\).

\[
F_V(v) = \begin{cases}
0 & v < 0 \\
0.5 & 0 \leq v < 1 \\
1 & v \geq 1
\end{cases}
\]

(5)

(c) From the PMF \(P_V(v)\), the expected value of \(V\) is

\[
E[V] = \sum_v P_V(v) = 0(1/2) + 1(1/2) = 1/2
\]

(6)

You can also compute \(E[V]\) directly by using Theorem 2.10.
Problem 2.6.3 Solution
From the solution to Problem 2.4.3, the PMF of X is

$$P_X(x) = \begin{cases} 0.4 & x = -3 \\ 0.4 & x = 5 \\ 0.2 & x = 7 \\ 0 & \text{otherwise} \end{cases}$$ (1)

(a) The PMF of $W = -X$ satisfies

$$P_W(w) = P[-X = w] = P_X(-w)$$ (2)

This implies

$$P_W(-7) = P_X(7) = 0.2 \quad P_W(-5) = P_X(5) = 0.4 \quad P_W(3) = P_X(-3) = 0.4$$ (3)

The complete PMF for W is

$$P_W(w) = \begin{cases} 0.2 & w = -7 \\ 0.4 & w = -5 \\ 0.4 & w = 3 \\ 0 & \text{otherwise} \end{cases}$$ (4)

(b) From the PMF, the CDF of W is

$$F_W(w) = \begin{cases} 0 & w < -7 \\ 0.2 & -7 \leq w < -5 \\ 0.6 & -5 \leq w < 3 \\ 1 & w \geq 3 \end{cases}$$ (5)

(c) From the PMF, W has expected value

$$E[W] = \sum_w wP_W(w) = -7(0.2) + -5(0.4) + 3(0.4) = -2.2$$ (6)

Problem 2.6.4 Solution
A tree for the experiment is

Thus C has three equally likely outcomes. The PMF of C is

$$P_C(c) = \begin{cases} 1/3 & c = 100, 074.75, 10, 100, 10, 125.13 \\ 0 & \text{otherwise} \end{cases}$$ (1)
Problem 2.6.5 Solution

(a) The source continues to transmit packets until one is received correctly. Hence, the total number of times that a packet is transmitted is \(X = x \) if the first \(x - 1 \) transmissions were in error. Therefore the PMF of \(X \) is

\[
P_X(x) = \begin{cases}
q^{x-1}(1-q) & x = 1, 2, \\ 0 & \text{otherwise}
\end{cases}
\] (1)

(b) The time required to send a packet is a millisecond and the time required to send an acknowledgment back to the source takes another millisecond. Thus, if \(X \) transmissions of a packet are needed to send the packet correctly, then the packet is correctly received after \(T = 2X - 1 \) milliseconds. Therefore, for an odd integer \(t > 0 \), \(T = t \) iff \(X = (t + 1)/2 \). Thus,

\[
P_T(t) = P_X((t+1)/2) = \begin{cases}
q^{(t-1)/2}(1-q) & t = 1, 3, 5, \\ 0 & \text{otherwise}
\end{cases}
\] (2)

Problem 2.6.6 Solution

The cellular calling plan charges a flat rate of $20 per month up to and including the 30th minute, and an additional 50 cents for each minute over 30 minutes. Knowing that the time you spend on the phone is a geometric random variable \(M \) with mean \(\frac{1}{p} = 30 \), the PMF of \(M \) is

\[
P_M(m) = \begin{cases}
(1-p)^{m-1}p & m = 1, 2, \\ 0 & \text{otherwise}
\end{cases}
\] (1)

The monthly cost, \(C \) obeys

\[
P_C(20) = P[M \leq 30] = \sum_{m=1}^{30} (1-p)^{m-1}p = 1 - (1-p)^{30}
\] (2)

When \(M \geq 30 \), \(C = 20 + (M - 30)/2 \) or \(M = 2C - 10 \). Thus,

\[
P_C(c) = P_M(2c - 10) \quad c = 20.5, 21, 21.5, \ldots
\] (3)

The complete PMF of \(C \) is

\[
P_C(c) = \begin{cases}
1 - (1-p)^{30} & c = 20 \\ (1-p)^{2c-10-1} & c = 20.5, 21, 21.5, \ldots
\end{cases}
\] (4)

Problem 2.7.1 Solution

From the solution to Quiz 2.6, we found that \(T = 120 - 15N \). By Theorem 2.10,

\[
E[T] = \sum_{n \in S_N} (120 - 15n) P_N(n)
\] (1)

\[
= 0.1(120) + 0.3(120 - 15) + 0.3(120 - 30) + 0.3(120 - 45) = 93
\] (2)

Also from the solution to Quiz 2.6, we found that

\[
P_T(t) = \begin{cases}
0.3 & t = 75, 90, 105 \\ 0.1 & t = 120 \\ 0 & \text{otherwise}
\end{cases}
\] (3)
Using Definition 2.14,

\[E[T] = \sum_{t \in S_T} t P_T(t) = 0.3(75) + 0.3(90) + 0.3(105) + 0.1(120) = 93 \]

(4)

As expected, the two calculations give the same answer.

Problem 2.7.2 Solution

Whether a lottery ticket is a winner is a Bernoulli trial with a success probability of 0.001. If we buy one every day for 50 years for a total of \(50 \cdot 365 = 18250 \) tickets, then the number of winning tickets \(T \) is a binomial random variable with mean

\[E[T] = 18250(0.001) = 18.25 \]

(1)

Since each winning ticket grosses $1000, the revenue we collect over 50 years is \(R = 1000T \) dollars. The expected revenue is

\[E[R] = 1000E[T] = 18250 \]

(2)

But buying a lottery ticket everyday for 50 years, at $2.00 a pop isn’t cheap and will cost us a total of \(18250 \cdot 2 = $36500 \). Our net profit is then \(Q = R - 36500 \) and the result of our loyal 50 year patronage of the lottery system, is disappointing expected loss of

\[E[Q] = E[R] - 36500 = -18250 \]

(3)

Problem 2.7.3 Solution

Let \(X \) denote the number of points the shooter scores. If the shot is uncontested, the expected number of points scored is

\[E[X] = (0.6)2 = 1.2 \]

(1)

If we foul the shooter, then \(X \) is a binomial random variable with mean \(E[X] = 2p \). If \(2p > 1.2 \), then we should not foul the shooter. Generally, \(p \) will exceed 0.6 since a free throw is usually even easier than an uncontested shot taken during the action of the game. Furthermore, fouling the shooter ultimately leads to the detriment of players possibly fouling out. This suggests that fouling a player is not a good idea. The only real exception occurs when facing a player like Shaquille O’Neal whose free throw probability \(p \) is lower than his field goal percentage during a game.

Problem 2.7.4 Solution

Given the distributions of \(D \), the waiting time in days and the resulting cost, \(C \), we can answer the following questions.

(a) The expected waiting time is simply the expected value of \(D \).

\[E[D] = \sum_{d=1}^{4} d \cdot P_D(d) = 1(0.2) + 2(0.4) + 3(0.3) + 4(0.1) = 2.3 \]

(1)

(b) The expected deviation from the waiting time is

\[E[D - \mu_D] = E[D] - E[\mu_d] = \mu_D - \mu_D = 0 \]

(2)
(c) C can be expressed as a function of D in the following manner.

$$C(D) = \begin{cases}
90 & D = 1 \\
70 & D = 2 \\
40 & D = 3 \\
40 & D = 4
\end{cases}$$ \hfill (3)

(d) The expected service charge is

$$E[C] = 90(0.2) + 70(0.4) + 40(0.3) + 40(0.1) = 62 \text{ dollars} \hfill (4)$$

Problem 2.7.5 Solution

As a function of the number of minutes used, M, the monthly cost is

$$C(M) = \begin{cases}
20 & M \leq 30 \\
20 + (M - 30)/2 & M \geq 30
\end{cases}$$ \hfill (1)

The expected cost per month is

$$E[C] = \sum_{m=1}^{\infty} C(m)P_M(m) = \sum_{m=1}^{30} 20P_M(m) + \sum_{m=31}^{\infty} (20 + (m - 30)/2)P_M(m)$$ \hfill (2)

$$E[C] = 20 \sum_{m=1}^{\infty} P_M(m) + \frac{1}{2} \sum_{m=31}^{\infty} (m - 30)P_M(m)$$ \hfill (3)

Since $\sum_{m=1}^{\infty} P_M(m) = 1$ and since $P_M(m) = (1 - p)^m p$ for $m \geq 1$, we have

$$E[C] = 20 + \frac{(1 - p)^{30}}{2} \sum_{m=31}^{\infty} (m - 30)(1 - p)^{m-31}p$$ \hfill (4)

Making the substitution $j = m - 30$ yields

$$E[C] = 20 + \frac{(1 - p)^{30}}{2} \sum_{j=1}^{\infty} j(1 - p)^{j-1}p = 20 + \frac{(1 - p)^{30}}{2p}$$ \hfill (5)

Problem 2.7.6 Solution

Since our phone use is a geometric random variable M with mean value $1/p$,

$$P_M(m) = \begin{cases}
(1 - p)^{m-1}p & m = 1, 2, \ldots \\
0 & \text{otherwise}
\end{cases}$$ \hfill (1)

For this cellular billing plan, we are given no free minutes, but are charged half the flat fee. That is, we are going to pay 15 dollars regardless and $1 for each minute we use the phone. Hence $C = 15 + M$ and for $c \geq 16$, $P[C = c] = P[M = c - 15]$. Thus we can construct the PMF of the cost C

$$P_C(c) = \begin{cases}
(1 - p)^{c-16}p & c = 16, 17, \ldots \\
0 & \text{otherwise}
\end{cases}$$ \hfill (2)
Since \(C = 15 + M \), the expected cost per month of the plan is
\[
\] (3)

In Problem 2.7.5, we found that the expected cost of the plan was
\[
E[C] = 20 + [(1 - p)^{30}]/(2p)
\] (4)

In comparing the expected costs of the two plans, we see that the new plan is better (i.e. cheaper) if
\[
15 + 1/p \leq 20 + [(1 - p)^{30}]/(2p)
\] (5)

A simple plot will show that the new plan is better if \(p \leq p_0 \approx 0.2 \).

Problem 2.7.7 Solution

We define random variable \(W \) such that \(W = 1 \) if the circuit works or \(W = 0 \) if the circuit is defective. (In the probability literature, \(W \) is called an indicator random variable.) Let \(R_s \) denote the profit on a circuit with standard devices. Let \(R_u \) denote the profit on a circuit with ultrareliable devices. We will compare \(E[R_s] \) and \(E[R_u] \) to decide which circuit implementation offers the highest expected profit.

The circuit with standard devices works with probability \((1 - q)^{10}\) and generates revenue of \(k \) dollars if all of its 10 constituent devices work. We observe that we can express \(R_s \) as a function \(r_s(W) \) and that we can find the PMF \(P_W(w) \):
\[
R_s = r_s(W) = \begin{cases}
-10 & W = 0, \\
(k - 10) & W = 1,
\end{cases}
\]

Thus we can express the expected profit as
\[
E[r_s(W)] = \sum_{w=0}^{1} P_W(w) r_s(w)
\] (2)
\[
= P_W(0) (-10) + P_W(1) (k - 10)
\] (3)
\[
= (1 - (1 - q)^{10})(-10) + (1 - q)^{10}(k - 10) = (0.9)^{10}k - 10.
\] (4)

For the ultra-reliable case,
\[
R_u = r_u(W) = \begin{cases}
-30 & W = 0, \\
(k - 30) & W = 1,
\end{cases}
\]

Thus we can express the expected profit as
\[
E[r_u(W)] = \sum_{w=0}^{1} P_W(w) r_u(w)
\] (6)
\[
= P_W(0) (-30) + P_W(1) (k - 30)
\] (7)
\[
= (1 - (1 - q/2)^{10})(-30) + (1 - q/2)^{10}(k - 30) = (0.95)^{10}k - 30
\] (8)

To determine which implementation generates the most profit, we solve \(E[R_u] \geq E[R_s] \), yielding \(k \geq 20/[(0.95)^{10} - (0.9)^{10}] = 80.21 \). So for \(k < 80.21 \) using all standard devices results in greater
revenue, while for $k > \$80.21$ more revenue will be generated by implementing all ultra-reliable devices. That is, when the price commanded for a working circuit is sufficiently high, we should build more-expensive higher-reliability circuits.

If you have read ahead to Section 2.9 and learned about conditional expected values, you might prefer the following solution. If not, you might want to come back and review this alternate approach after reading Section 2.9.

Let W denote the event that a circuit works. The circuit works and generates revenue of k dollars if all of its 10 constituent devices work. For each implementation, standard or ultra-reliable, let R denote the profit on a device. We can express the expected profit as

Let’s first consider the case when only standard devices are used. In this case, a circuit works with probability $P[W] = (1 - q)^{10}$. The profit made on a working device is $k - 10$ dollars while a nonworking circuit has a profit of -10 dollars. That is, $E[R|W] = k - 10$ and $E[R|W^c] = -10$. Of course, a negative profit is actually a loss. Using R_s to denote the profit using standard circuits, the expected profit is

$$ E[R_s] = (1 - q)^{10}(k - 10) + (1 - (1 - q)^{10})(-10) = (0.9)^{10}k - 10 $$

And for the ultra-reliable case, the circuit works with probability $P[W] = (1 - q/2)^{10}$. The profit per working circuit is $E[R|W] = k - 30$ dollars while the profit for a nonworking circuit is $E[R|W^c] = -30$ dollars. The expected profit is

$$ E[R_u] = (1 - q/2)^{10}(k - 30) + (1 - (1 - q/2)^{10})(-30) = (0.95)^{10}k - 30 $$

Not surprisingly, we get the same answers for $E[R_u]$ and $E[R_s]$ as in the first solution by performing essentially the same calculations. It should be apparent that indicator random variable W in the first solution indicates the occurrence of the conditioning event W in the second solution. That is, indicators are a way to track conditioning events.

Problem 2.7.8 Solution

(a) There are $\binom{46}{6}$ equally likely winning combinations so that

$$ q = \frac{1}{\binom{46}{6}} = \frac{1}{9,366,819} \approx 1.07 \times 10^{-7} $$

(b) Assuming each ticket is chosen randomly, each of the $2n - 1$ other tickets is independently a winner with probability q. The number of other winning tickets K_n has the binomial PMF

$$ P_{K_n}(k) = \binom{2n-1}{k}q^k(1-q)^{2n-1-k} \quad k = 0, 1, \ldots, 2n - 1 \quad \text{otherwise} $$

(c) Since there are $K_n + 1$ winning tickets in all, the value of your winning ticket is $W_n = n/(K_n + 1)$ which has mean

$$ E[W_n] = nE\left[\frac{1}{K_n + 1}\right] $$
Calculating the expected value

\[E \left[\frac{1}{K_n + 1} \right] = \sum_{k=0}^{2n-1} \left(\frac{1}{k+1} \right) P_{K_n}(k) \]

is fairly complicated. The trick is to express the sum in terms of the sum of a binomial PMF.

\[E \left[\frac{1}{K_n + 1} \right] = \frac{2n}{2n} \sum_{k=0}^{2n-1} \left(\frac{2n}{k+1} \right) (1 - q)^{2n-1-k} \]

By factoring out 1/q, we obtain

\[E \left[\frac{1}{K_n + 1} \right] = \frac{1}{2n} \sum_{k=0}^{2n-1} \left(\frac{2n}{k+1} \right) (1 - q)^{2n-1-k} \]

We observe that the above sum labeled \(A \) is the sum of a binomial PMF for 2n trials and success probability \(q \) over all possible values except \(j = 0 \). Thus

\[A = 1 - \left(\frac{2n}{0} \right) q^0 (1 - q)^{2n-0} = 1 - (1 - q)^{2n} \]

This implies

\[E \left[\frac{1}{K_n + 1} \right] = \frac{1 - (1 - q)^{2n}}{2nq} \]

Our expected return on a winning ticket is

\[E[W_n] = n E \left[\frac{1}{K_n + 1} \right] = \frac{1 - (1 - q)^{2n}}{2q} \]

Note that when \(nq \ll 1 \), we can use the approximation that \((1 - q)^{2n} \approx 1 - 2nq \) to show that

\[E[W_n] \approx \frac{1 - (1 - 2nq)}{2q} = n \quad (nq \ll 1) \]

However, in the limit as the value of the prize \(n \) approaches infinity, we have

\[\lim_{n \to \infty} E[W_n] = \frac{1}{2q} \approx 4.683 \times 10^6 \]

That is, as the pot grows to infinity, the expected return on a winning ticket doesn’t approach infinity because there is a corresponding increase in the number of other winning tickets. If it’s not clear how large \(n \) must be for this effect to be seen, consider the following table:

\[
\begin{array}{|c|c|c|c|}
\hline
n & 10^6 & 10^7 & 10^8 \\
\hline
E[W_n] & 9.00 \times 10^5 & 4.13 \times 10^6 & 4.68 \times 10^6 \\
\hline
\end{array}
\]

When the pot is $1 million, our expected return is $900,000. However, we see that when the pot reaches $100 million, our expected return is very close to \(1/(2q) \), less than $5 million!
Problem 2.7.9 Solution

(a) There are \(\binom{46}{6} \) equally likely winning combinations so that
\[
q = \frac{1}{\binom{46}{6}} = \frac{1}{9,366,819} \approx 1.07 \times 10^{-7} \quad (1)
\]

(b) Assuming each ticket is chosen randomly, each of the \(2n - 1 \) other tickets is independently a winner with probability \(q \). The number of other winning tickets \(K_n \) has the binomial PMF
\[
P_{K_n}(k) = \begin{cases}
\binom{2n-1}{k}q^k(1-q)^{2n-1-k} & k = 0, 1, \ldots, 2n - 1 \\
0 & \text{otherwise}
\end{cases} \quad (2)
\]
Since the pot has \(n + r \) dollars, the expected amount that you win on your ticket is
\[
E[V] = 0(1 - q) + qE\left[\frac{n + r}{K_n + 1} \right] = q(n + r)E\left[\frac{1}{K_n + 1} \right] \quad (3)
\]
Note that \(E[1/K_n + 1] \) was also evaluated in Problem 2.7.8. For completeness, we repeat those steps here.
\[
E\left[\frac{1}{K_n + 1} \right] = \sum_{k=0}^{2n-1} \frac{1}{k+1} \frac{(2n-1)!}{k! (2n-1-k)!} q^k (1 - q)^{2n-1-k} \quad (4)
\]
\[
= \frac{1}{2n} \sum_{k=0}^{2n-1} \frac{(2n)!}{(k+1)! (2n - (k+1))!} q^k (1 - q)^{2n-(k+1)} \quad (5)
\]
By factoring out \(1/q \), we obtain
\[
E\left[\frac{1}{K_n + 1} \right] = \frac{1}{2nq} \sum_{k=0}^{2n-1} \binom{2n}{k+1} q^{k+1} (1 - q)^{2n-(k+1)} \quad (6)
\]
\[
= \frac{1}{2nq} \sum_{j=1}^{2n} \binom{2n}{j} q^j (1 - q)^{2n-j} \quad (7)
\]
We observe that the above sum labeled \(A \) is the sum of a binomial PMF for \(2n \) trials and success probability \(q \) over all possible values except \(j = 0 \). Thus \(A = 1 - \binom{2n}{0} q^0 (1 - q)^{2n-0} \), which implies
\[
E\left[\frac{1}{K_n + 1} \right] = \frac{A}{2nq} = \frac{1 - (1 - q)^{2n}}{2nq} \quad (8)
\]
The expected value of your ticket is
\[
E[V] = \frac{q(n + r)[1 - (1 - q)^{2n}]}{2nq} = \frac{1}{2} \left[1 + \frac{r}{n} \right] [1 - (1 - q)^{2n}] \quad (9)
\]
Each ticket tends to be more valuable when the carryover pot \(r \) is large and the number of new tickets sold, \(2n \), is small. For any fixed number \(n \), corresponding to \(2n \) tickets sold,
a sufficiently large pot r will guarantee that $E[V] > 1$. For example if $n = 10^7$, (20 million tickets sold) then

$$E[V] = 0.44 \left(1 + \frac{r}{10^7} \right)$$

(10)

If the carryover pot r is 30 million dollars, then $E[V] = 1.76$. This suggests that buying a one dollar ticket is a good idea. This is an unusual situation because normally a carryover pot of 30 million dollars will result in far more than 20 million tickets being sold.

(c) So that we can use the results of the previous part, suppose there were $2n - 1$ tickets sold before you must make your decision. If you buy one of each possible ticket, you are guaranteed to have one winning ticket. From the other $2n - 1$ tickets, there will be K_n winners. The total number of winning tickets will be $K_n + 1$. In the previous part we found that

$$E \left[\frac{1}{K_n + 1} \right] = \frac{1 - (1 - q)^{2n}}{2nq}$$

(11)

Let R denote the expected return from buying one of each possible ticket. The pot had r dollars beforehand. The $2n - 1$ other tickets are sold add $n - 1/2$ dollars to the pot. Furthermore, you must buy $1/q$ tickets, adding $1/(2q)$ dollars to the pot. Since the cost of the tickets is $1/q$ dollars, your expected profit

$$E[R] = E \left[\frac{r + n - 1/2 + 1/(2q)}{K_n + 1} \right] - \frac{1}{q}$$

(12)

$$= \frac{q(2r + 2n - 1) + 1}{2q} E \left[\frac{1}{K_n + 1} \right] - \frac{1}{q}$$

(13)

$$= \frac{[q(2r + 2n - 1) + 1](1 - (1 - q)^{2n})}{4nq^2} - \frac{1}{q}$$

(14)

For fixed n, sufficiently large r will make $E[R] > 0$. On the other hand, for fixed r, $\lim_{n \to \infty} E[R] = -1/(2q)$. That is, as n approaches infinity, your expected loss will be quite large.

Problem 2.8.1 Solution

Given the following PMF

$$P_N(n) = \begin{cases}
0.2 & n = 0 \\
0.7 & n = 1 \\
0.1 & n = 2 \\
0 & \text{otherwise}
\end{cases}$$

(1)

(a) $E[N] = (0.2)0 + (0.7)1 + (0.1)2 = 0.9$

(b) $E[N^2] = (0.2)0^2 + (0.7)1^2 + (0.1)2^2 = 1.1$

(c) $\text{Var}[N] = E[N^2] - E[N]^2 = 1.1 - (0.9)^2 = 0.29$

(d) $\sigma_N = \sqrt{\text{Var}[N]} = \sqrt{0.29}$
Problem 2.8.2 Solution

From the solution to Problem 2.4.1, the PMF of Y is

$$P_Y(y) = \begin{cases}
1/4 & y = 1 \\
1/4 & y = 2 \\
1/2 & y = 3 \\
0 & \text{otherwise}
\end{cases}$$

(1)

The expected value of Y is

$$E[Y] = \sum_y yP_Y(y) = 1(1/4) + 2(1/4) + 3(1/2) = 9/4$$

(2)

The expected value of Y^2 is

$$E[Y^2] = \sum_y y^2P_Y(y) = 1^2(1/4) + 2^2(1/4) + 3^2(1/2) = 23/4$$

(3)

The variance of Y is

$$\text{Var}[Y] = E[Y^2] - (E[Y])^2 = 23/4 - (9/4)^2 = 11/16$$

(4)

Problem 2.8.3 Solution

From the solution to Problem 2.4.2, the PMF of X is

$$P_X(x) = \begin{cases}
0.2 & x = -1 \\
0.5 & x = 0 \\
0.3 & x = 1 \\
0 & \text{otherwise}
\end{cases}$$

(1)

The expected value of X is

$$E[X] = \sum_x xP_X(x) = (-1)(0.2) + 0(0.5) + 1(0.3) = 0.1$$

(2)

The expected value of X^2 is

$$E[X^2] = \sum_x x^2P_X(x) = (-1)^2(0.2) + 0^2(0.5) + 1^2(0.3) = 0.5$$

(3)

The variance of X is

$$\text{Var}[X] = E[X^2] - (E[X])^2 = 0.5 - (0.1)^2 = 0.49$$

(4)

Problem 2.8.4 Solution

From the solution to Problem 2.4.3, the PMF of X is

$$P_X(x) = \begin{cases}
0.4 & x = -3 \\
0.4 & x = 5 \\
0.2 & x = 7 \\
0 & \text{otherwise}
\end{cases}$$

(1)
The expected value of \(X\) is
\[
E[X] = \sum_x xP_X(x) = -3(0.4) + 5(0.4) + 7(0.2) = 2.2
\] (2)

The expected value of \(X^2\) is
\[
E[X^2] = \sum_x x^2P_X(x) = (-3)^2(0.4) + 5^2(0.4) + 7^2(0.2) = 23.4
\] (3)

The variance of \(X\) is
\[
Var[X] = E[X^2] - (E[X])^2 = 23.4 - (2.2)^2 = 18.56
\] (4)

Problem 2.8.5 Solution

(a) The expected value of \(X\) is
\[
E[X] = \sum_{x=0}^4 xP_X(x) = 0\left(\binom{4}{0} \frac{1}{2^4} + 1\left(\binom{4}{1} \frac{1}{2^4} + 2\left(\binom{4}{2} \frac{1}{2^4} + 3\left(\binom{4}{3} \frac{1}{2^4} + 4\left(\binom{4}{4} \frac{1}{2^4}\right)\right)\right)\right)
\] (1)
\[
= [4 + 12 + 12 + 4]/2^4 = 2
\] (2)

The expected value of \(X^2\) is
\[
E[X^2] = \sum_{x=0}^4 x^2P_X(x) = 0^2\left(\binom{4}{0} \frac{1}{2^4} + 1^2\left(\binom{4}{1} \frac{1}{2^4} + 2^2\left(\binom{4}{2} \frac{1}{2^4} + 3^2\left(\binom{4}{3} \frac{1}{2^4} + 4^2\left(\binom{4}{4} \frac{1}{2^4}\right)\right)\right)\right)\right)
\] (3)
\[
= [4 + 24 + 36 + 16]/2^4 = 5
\] (4)

The variance of \(X\) is
\[
Var[X] = E[X^2] - (E[X])^2 = 5 - 2^2 = 1
\] (5)

Thus, \(X\) has standard deviation \(\sigma_X = \sqrt{Var[X]} = 1\).

(b) The probability that \(X\) is within one standard deviation of its expected value is
\[
P[\mu_X - \sigma_X \leq X \leq \mu_X + \sigma_X] = P[2 - 1 \leq X \leq 2 + 1] = P[1 \leq X \leq 3]
\] (6)

This calculation is easy using the PMF of \(X\).
\[
P[1 \leq X \leq 3] = P_X(1) + P_X(2) + P_X(3) = 7/8
\] (7)

Problem 2.8.6 Solution

(a) The expected value of \(X\) is
\[
E[X] = \sum_{x=0}^5 xP_X(x)
\] (1)
\[
= 0\left(\binom{5}{0} \frac{1}{2^5} + 1\left(\binom{5}{1} \frac{1}{2^5} + 2\left(\binom{5}{2} \frac{1}{2^5} + 3\left(\binom{5}{3} \frac{1}{2^5} + 4\left(\binom{5}{4} \frac{1}{2^5} + 5\left(\binom{5}{5} \frac{1}{2^5}\right)\right)\right)\right)\right)
\] (2)
\[
= [5 + 20 + 30 + 20 + 5]/2^5 = 5/2
\] (3)
The expected value of X^2 is

$$ E[X^2] = \sum_{x=0}^{5} x^2 P_X(x) $$

\[= \sum_{x=0}^{5} x^2 P_X(x) = 0^2(\frac{5}{0}) + 1^2(\frac{5}{1}) + 2^2(\frac{5}{2}) + 3^2(\frac{5}{3}) + 4^2(\frac{5}{4}) + 5^2(\frac{5}{5})\]

\[= [5 + 40 + 90 + 80 + 25]/25 = 240/32 = 15/2 \] (5)

The variance of X is

$$ \text{Var}[X] = E[X^2] - (E[X])^2 = 15/2 - 25/4 = 5/4 \] (7)

By taking the square root of the variance, the standard deviation of X is $\sigma_X = \sqrt{5/4} \approx 1.12$.

(b) The probability that X is within one standard deviation of its mean is

$$ P[\mu_X - \sigma_X \leq X \leq \mu_X + \sigma_X] = P[2.5 - 1.12 \leq X \leq 2.5 + 1.12] $$

\[= P[1.38 \leq X \leq 3.62] \]

\[= P[2 \leq X \leq 3] \] (10)

By summing the PMF over the desired range, we obtain

$$ P[2 \leq X \leq 3] = P_X(2) + P_X(3) = 10/32 + 10/32 = 5/8 \] (11)

Problem 2.8.7 Solution

For $Y = aX + b$, we wish to show that $\text{Var}[Y] = a^2 \text{Var}[X]$. We begin by noting that Theorem 2.12 says that $E[aX + b] = aE[X] + b$. Hence, by the definition of variance.

$$ \text{Var}[Y] = E[(aX + b - (aE[X] + b))^2] $$

\[= E[a^2(X - E[X])^2] \]

\[= a^2E[(X - E[X])^2] \] (3)

Since $E[(X - E[X])^2] = \text{Var}[X]$, the assertion is proved.

Problem 2.8.8 Solution

Given the following description of the random variable Y,

$$ Y = \frac{1}{\sigma_X}(X - \mu_X) \] (1)

we can use the linearity property of the expectation operator to find the mean value

$$ E[Y] = E[X - \mu_X]/\sigma_X = E[X] - \frac{E[X]}{\sigma_X} = 0 \] (2)

Using the fact that $\text{Var}[aX + b] = a^2 \text{Var}[X]$, the variance of Y is found to be

$$ \text{Var}[Y] = \frac{1}{\sigma_X^2} \text{Var}[X] = 1 \] (3)

63
Problem 2.8.9 Solution
With our measure of jitter being σ_T, and the fact that $T = 2X - 1$, we can express the jitter as a function of q by realizing that

$$\text{Var}[T] = 4 \text{Var}[X] = \frac{4q}{(1-q)^2} \quad (1)$$

Therefore, our maximum permitted jitter is

$$\sigma_T = \frac{2\sqrt{q}}{1-q} = 2 \text{ msec} \quad (2)$$

Solving for q yields $q^2 - 3q + 1 = 0$. By solving this quadratic equation, we obtain

$$q = \frac{3 \pm \sqrt{5}}{2} = 3/2 \pm \sqrt{5/2} \quad (3)$$

Since q must be a value between 0 and 1, we know that a value of $q = 3/2 - \sqrt{5}/2 \approx 0.382$ will ensure a jitter of at most 2 milliseconds.

Problem 2.8.10 Solution
We wish to minimize the function

$$e(\hat{x}) = E[(X - \hat{x})^2] \quad (1)$$

with respect to \hat{x}. We can expand the square and take the expectation while treating \hat{x} as a constant. This yields

$$e(\hat{x}) = E[X^2 - 2\hat{x}X + \hat{x}^2] = E[X^2] - 2\hat{x}E[X] + \hat{x}^2 \quad (2)$$

Solving for the value of \hat{x} that makes the derivative $de(\hat{x})/d\hat{x}$ equal to zero results in the value of \hat{x} that minimizes $e(\hat{x})$. Note that when we take the derivative with respect to \hat{x}, both $E[X^2]$ and $E[X]$ are simply constants.

$$\frac{d}{d\hat{x}} (E[X^2] - 2\hat{x}E[X] + \hat{x}^2) = 2E[X] - 2\hat{x} = 0 \quad (3)$$

Hence we see that $\hat{x} = E[X]$. In the sense of mean squared error, the best guess for a random variable is the mean value. In Chapter 9 this idea is extended to develop minimum mean squared error estimation.

Problem 2.8.11 Solution
The PMF of K is the Poisson PMF

$$P_K(k) = \begin{cases} \lambda^k e^{-\lambda} / k! & k = 0, 1, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

The mean of K is

$$E[K] = \sum_{k=0}^{\infty} k \frac{\lambda^k e^{-\lambda}}{k!} = \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1} e^{-\lambda}}{(k-1)!} = \lambda \quad (2)$$

To find $E[K^2]$, we use the hint and first find

$$E[K(K-1)] = \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^k e^{-\lambda}}{k!} = \sum_{k=2}^{\infty} \frac{\lambda^k e^{-\lambda}}{(k-2)!} \quad (3)$$
By factoring out λ^2 and substituting $j = k - 2$, we obtain

$$E[K(K - 1)] = \lambda^2 \sum_{j=0}^{\infty} \frac{\lambda^j e^{-\lambda}}{j!} = \lambda^2$$ \hspace{1cm} (4)

The above sum equals 1 because it is the sum of a Poisson PMF over all possible values. Since $E[K] = \lambda$, the variance of K is

$$\text{Var}[K] = E[K^2] - (E[K])^2$$ \hspace{1cm} (5)

$$= E[K(K - 1)] + E[K] - (E[K])^2$$ \hspace{1cm} (6)

$$= \lambda^2 + \lambda - \lambda^2 = \lambda$$ \hspace{1cm} (7)

Problem 2.8.12 Solution

The standard deviation can be expressed as

$$\sigma_D = \sqrt{\text{Var}[D]} = \sqrt{E[D^2] - E[D]^2}$$ \hspace{1cm} (1)

where

$$E[D^2] = \sum_{d=1}^{4} d^2 P_D(d) = 0.2 + 1.6 + 2.7 + 1.6 = 6.1$$ \hspace{1cm} (2)

So finally we have

$$\sigma_D = \sqrt{6.1 - 2.3^2} = \sqrt{0.81} = 0.9$$ \hspace{1cm} (3)

Problem 2.9.1 Solution

From the solution to Problem 2.4.1, the PMF of Y is

$$P_Y(y) = \begin{cases}
1/4 & y = 1 \\
1/4 & y = 2 \\
1/2 & y = 3 \\
0 & \text{otherwise}
\end{cases}$$ \hspace{1cm} (1)

The probability of the event $B = \{Y < 3\}$ is $P[B] = 1 - P[Y = 3] = 1/2$. From Theorem 2.17, the conditional PMF of Y given B is

$$P_{Y|B}(y) = \begin{cases}
P_Y(y) & y \in B \\
0 & \text{otherwise}
\end{cases} = \begin{cases}
1/2 & y = 1 \\
1/2 & y = 2 \\
0 & \text{otherwise}
\end{cases}$$ \hspace{1cm} (2)

The conditional first and second moments of Y are

$$E[Y|B] = \sum_{y} y P_{Y|B}(y) = 1(1/2) + 2(1/2) = 3/2$$ \hspace{1cm} (3)

$$E[Y^2|B] = \sum_{y} y^2 P_{Y|B}(y) = 1^2(1/2) + 2^2(1/2) = 5/2$$ \hspace{1cm} (4)

The conditional variance of Y is

$$\text{Var}[Y|B] = E[Y^2|B] - (E[Y|B])^2 = 5/2 - 9/4 = 1/4$$ \hspace{1cm} (5)
Problem 2.9.2 Solution
From the solution to Problem 2.4.2, the PMF of X is

$$P_X(x) = \begin{cases}
0.2 & x = -1 \\
0.5 & x = 0 \\
0.3 & x = 1 \\
0 & \text{otherwise}
\end{cases} \quad (1)$$

The event $B = \{|X| > 0\}$ has probability $P[B] = P[X \neq 0] = 0.5$. From Theorem 2.17, the conditional PMF of X given B is

$$P_{X|B}(x) = \begin{cases}
\frac{P_X(x)}{P[B]} & x \in B \\
0 & \text{otherwise}
\end{cases} = \begin{cases}
0.4 & x = -1 \\
0.6 & x = 1 \\
0 & \text{otherwise}
\end{cases} \quad (2)$$

The conditional first and second moments of X are

$$E[X|B] = \sum x P_{X|B}(x) = (-1)(0.4) + 1(0.6) = 0.2 \quad (3)$$

$$E[X^2|B] = \sum x^2 P_{X|B}(x) = (-1)^2(0.4) + 1^2(0.6) = 1 \quad (4)$$

The conditional variance of X is

$$\text{Var}[X|B] = E[X^2|B] - (E[X|B])^2 = 1 - (0.2)^2 = 0.96 \quad (5)$$

Problem 2.9.3 Solution
From the solution to Problem 2.4.3, the PMF of X is

$$P_X(x) = \begin{cases}
0.4 & x = -3 \\
0.4 & x = 5 \\
0.2 & x = 7 \\
0 & \text{otherwise}
\end{cases} \quad (1)$$

The event $B = \{X > 0\}$ has probability $P[B] = P_X(5) + P_X(7) = 0.6$. From Theorem 2.17, the conditional PMF of X given B is

$$P_{X|B}(x) = \begin{cases}
\frac{P_X(x)}{P[B]} & x \in B \\
0 & \text{otherwise}
\end{cases} = \begin{cases}
2/3 & x = 5 \\
1/3 & x = 7 \\
0 & \text{otherwise}
\end{cases} \quad (2)$$

The conditional first and second moments of X are

$$E[X|B] = \sum x P_{X|B}(x) = 5(2/3) + 7(1/3) = 17/3 \quad (3)$$

$$E[X^2|B] = \sum x^2 P_{X|B}(x) = 5^2(2/3) + 7^2(1/3) = 33 \quad (4)$$

The conditional variance of X is

$$\text{Var}[X|B] = E[X^2|B] - (E[X|B])^2 = 33 - (17/3)^2 = 8/9 \quad (5)$$
Problem 2.9.4 Solution
The event $B = \{X \neq 0\}$ has probability $P[B] = 1 - P[X = 0] = 15/16$. The conditional PMF of X given B is

$$P_{X|B}(x) = \begin{cases} \frac{P_X(x)}{P[B]} & x \in B \\ 0 & \text{otherwise} \end{cases} = \begin{cases} \binom{4}{x} \frac{1}{15} & x = 1, 2, 3, 4 \\ 0 & \text{otherwise} \end{cases}$$

The conditional first and second moments of X are

$$E[X|B] = \sum_{x=1}^{4} x P_{X|B}(x) = 1 \left(\binom{4}{1} \frac{1}{15} + 2 \binom{4}{2} \frac{1}{15} + 3 \binom{4}{3} \frac{1}{15} + 4 \binom{4}{4} \frac{1}{15} \right)$$

$$= [4 + 12 + 12 + 4]/15 = 32/15$$

(3)

$$E[X^2|B] = \sum_{x=1}^{4} x^2 P_{X|B}(x) = 1^2 \left(\binom{4}{1} \frac{1}{15} + 2^2 \binom{4}{2} \frac{1}{15} + 3^2 \binom{4}{3} \frac{1}{15} + 4^2 \binom{4}{4} \frac{1}{15} \right)$$

$$= [4 + 24 + 36 + 16]/15 = 80/15$$

(5)

The conditional variance of X is

$$\text{Var}[X|B] = E[X^2|B] - (E[X|B])^2 = 80/15 - (32/15)^2 = 176/225 \approx 0.782$$

(6)

Problem 2.9.5 Solution
The probability of the event B is

$$P[B] = P[X \geq \mu_X] = P[X \geq 3] = P_X(3) + P_X(4) + P_X(5)$$

$$= \binom{5}{3} + \binom{5}{4} + \binom{5}{5} = 21/32$$

(2)

The conditional PMF of X given B is

$$P_{X|B}(x) = \begin{cases} \frac{P_X(x)}{P[B]} & x \in B \\ 0 & \text{otherwise} \end{cases} = \begin{cases} \binom{5}{x} \frac{1}{21} & x = 3, 4, 5 \\ 0 & \text{otherwise} \end{cases}$$

(3)

The conditional first and second moments of X are

$$E[X|B] = \sum_{x=3}^{5} x P_{X|B}(x) = 3 \left(\binom{5}{3} \frac{1}{21} + 4 \binom{5}{4} \frac{1}{21} + 5 \binom{5}{5} \frac{1}{21} \right)$$

$$= [30 + 20 + 5]/21 = 55/21$$

(5)

$$E[X^2|B] = \sum_{x=3}^{5} x^2 P_{X|B}(x) = 3^2 \left(\binom{5}{3} \frac{1}{21} + 4^2 \binom{5}{4} \frac{1}{21} + 5^2 \binom{5}{5} \frac{1}{21} \right)$$

$$= [90 + 80 + 25]/21 = 195/21 = 65/7$$

(7)

The conditional variance of X is

$$\text{Var}[X|B] = E[X^2|B] - (E[X|B])^2 = 65/7 - (55/21)^2 = 1070/441 \approx 2.43$$

(8)
Problem 2.9.6 Solution

(a) Consider each circuit test as a Bernoulli trial such that a failed circuit is called a success. The number of trials until the first success (i.e. a failed circuit) has the geometric PMF

$$P_N(n) = \begin{cases} (1 - p)^{n-1}p & n = 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

(b) The probability there are at least 20 tests is

$$P[B] = P[N \geq 20] = \sum_{n=20}^{\infty} P_N(n) = (1 - p)^{19} \quad (2)$$

Note that $(1 - p)^{19}$ is just the probability that the first 19 circuits pass the test, which is what we would expect since there must be at least 20 tests if the first 19 circuits pass. The conditional PMF of N given B is

$$P_{N|B}(n) = \begin{cases} \frac{P_N(n)}{P[B]} & n \in B \\ 0 & \text{otherwise} \end{cases} = \begin{cases} (1 - p)^{n-20}p & n = 20, 21, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (3)$$

(c) Given the event B, the conditional expectation of N is

$$E[N|B] = \sum_{n} nP_{N|B}(n) = \sum_{n=20}^{\infty} n(1 - p)^{n-20}p \quad (4)$$

Making the substitution $j = n - 19$ yields

$$E[N|B] = \sum_{j=1}^{\infty} (j + 19)(1 - p)^{j-1}p = 1/p + 19 \quad (5)$$

We see that in the above sum, we effectively have the expected value of $J + 19$ where J is geometric random variable with parameter p. This is not surprising since the $N \geq 20$ iff we observed 19 successful tests. After 19 successful tests, the number of additional tests needed to find the first failure is still a geometric random variable with mean $1/p$.

Problem 2.9.7 Solution

(a) The PMF of M, the number of miles run on an arbitrary day is

$$P_M(m) = \begin{cases} q(1 - q)^{m} & m = 0, 1, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

And we can see that the probability that $M > 0$, is

$$P[M > 0] = 1 - P[M = 0] = 1 - q \quad (2)$$
(b) The probability that we run a marathon on any particular day is the probability that $M \geq 26$.

\[
r = P[M \geq 26] = \sum_{m=26}^{\infty} q(1-q)^m = (1-q)^{26}
\]

(c) We run a marathon on each day with probability equal to r, and we do not run a marathon with probability $1 - r$. Therefore in a year we have 365 tests of our jogging resolve, and thus 365 chances to run a marathon. So the PMF of the number of marathons run in a year, J, can be expressed as

\[
P_J(j) = \begin{cases} \binom{365}{j} r^j (1-r)^{365-j} & j = 0, 1, \ldots, 365 \\ 0 & \text{otherwise} \end{cases}
\]

(d) The random variable K is defined as the number of miles we run above that required for a marathon, $K = M - 26$. Given the event, A, that we have run a marathon, we wish to know how many miles in excess of 26 we in fact ran. So we want to know the conditional PMF $P_{K|A}(k)$.

\[
P_{K|A}(k) = \frac{P[K = k, A]}{P[A]} = \frac{P[M = 26 + k]}{P[A]}
\]

Since $P[A] = r$, for $k = 0, 1, \ldots$,

\[
P_{K|A}(k) = \frac{(1-q)^{26+k}q}{(1-q)^{26}} = (1-q)^k q
\]

The complete expression of for the conditional PMF of K is

\[
P_{K|A}(k) = \begin{cases} (1-q)^k q & k = 0, 1, \ldots \\ 0 & \text{otherwise} \end{cases}
\]

Problem 2.9.8 Solution

Recall that the PMF of the number of pages in a fax is

\[
P_X(x) = \begin{cases} 0.15 & x = 1, 2, 3, 4 \\ 0.1 & x = 5, 6, 7, 8 \\ 0 & \text{otherwise} \end{cases}
\]

(a) The event that a fax was sent to machine A can be expressed mathematically as the event that the number of pages X is an even number. Similarly, the event that a fax was sent to B is the event that X is an odd number. Since $S_X = \{1, 2, \ldots, 8\}$, we define the set $A = \{2, 4, 6, 8\}$. Using this definition for A, we have that the event that a fax is sent to A is equivalent to the event $X \in A$. The event A has probability

\[
P[A] = P_X(2) + P_X(4) + P_X(6) + P_X(8) = 0.5
\]

Given the event A, the conditional PMF of X is

\[
P_{X|A}(x) = \begin{cases} \frac{P_X(x)}{P[A]} & x \in A \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 0.3 & x = 2, 4 \\ 0.2 & x = 6, 8 \\ 0 & \text{otherwise} \end{cases}
\]
The conditional first and second moments of \(X \) given \(A \) is
\[
E[X|A] = \sum_x xP_{X|A}(x) = 2(0.3) + 4(0.3) + 6(0.2) + 8(0.2) = 4.6
\]
(4)
\[
E[X^2|A] = \sum_x x^2P_{X|A}(x) = 4(0.3) + 16(0.3) + 36(0.2) + 64(0.2) = 26
\]
(5)
The conditional variance and standard deviation are
\[
\text{Var}[X|A] = E[X^2|A] - (E[X|A])^2 = 26 - (4.6)^2 = 4.84
\]
(6)
\[
\sigma_{X|A} = \sqrt{\text{Var}[X|A]} = 2.2
\]
(7)
(b) Let the event \(B' \) denote the event that the fax was sent to \(B \) and that the fax had no more than 6 pages. Hence, the event \(B' = \{1,3,5\} \) has probability
\[
P[B'] = P_X(1) + P_X(3) + P_X(5) = 0.4
\]
(8)
The conditional PMF of \(X \) given \(B' \) is
\[
P_{X|B'}(x) = \begin{cases}
\frac{P_X(x)}{P[B']} & x \in B' \\
0 & \text{otherwise}
\end{cases}
= \begin{cases}
3/8 & x = 1,3 \\
1/4 & x = 5 \\
0 & \text{otherwise}
\end{cases}
\]
(9)
Given the event \(B' \), the conditional first and second moments are
\[
E[X|B'] = \sum_x xP_{X|B'}(x) = 1(3/8) + 3(3/8) + 5(1/4) + = 11/4
\]
(10)
\[
E[X^2|B'] = \sum_x x^2P_{X|B'}(x) = 1(3/8) + 9(3/8) + 25(1/4) = 10
\]
(11)
The conditional variance and standard deviation are
\[
\text{Var}[X|B'] = E[X^2|B'] - (E[X|B'])^2 = 10 - (11/4)^2 = 39/16
\]
(12)
\[
\sigma_{X|B'} = \sqrt{\text{Var}[X|B']} = \sqrt{39/4} \approx 1.56
\]
(13)

Problem 2.10.1 Solution

For a binomial \((n, p)\) random variable \(X \), the solution in terms of math is
\[
P[E_2] = \sum_{x=0}^{\lfloor \sqrt{n} \rfloor} P_X(x^2)
\]
(1)

In terms of MATLAB, the efficient solution is to generate the vector of perfect squares \(x = [0 1 4 9 16 \ldots] \) and then to pass that vector to the `binomialpmf.m`. In this case, the values of the binomial PMF are calculated only once. Here is the code:

```matlab
function q=perfectbinomial(n,p);
i=0:floor(sqrt(n));
x=i.^2;
q=sum(binomialpmf(n,p,x));
```

For a binomial \((100, 0.5)\) random variable \(X \), the probability \(X \) is a perfect square is
\[
>> \text{perfectbinomial}(100,0.5)
\]
\[
\text{ans} = \\
0.0811
\]
Problem 2.10.2 Solution
The random variable X given in Example 2.29 is just a finite random variable. We can generate random samples using the `finiterv` function. The code is

```matlab
function x=faxlength8(m);
sx=1:8;
p=[0.15*ones(1,4) 0.1*ones(1,4)];
x=finiterv(sx,p,m);
```

Problem 2.10.3 Solution
First we use `faxlength8` from Problem 2.10.2 to generate m samples of the fax length X. Next we convert that to m samples of the fax cost Y. Summing these samples and dividing by m, we obtain the average cost of m samples. Here is the code:

```matlab
function y=avgfax(m);
x=faxlength8(m);
yy=cumsum([10987 6]);
yy=[yy 50 50 50];
y=sum(yy(x))/m;
```

Each time we perform the experiment of executing the function `avgfax`, we generate m random samples of X, and m corresponding samples of Y. The sum $\bar{Y} = \frac{1}{m} \sum_{i=1}^{m} Y_i$ is random. For $m=10$, four samples of \bar{Y} are

```
>> [avgfax(10) avgfax(10) avgfax(10) avgfax(10)]
ans =
31.9000 31.2000 29.6000 34.1000
```

For $m=100$, the results are arguably more consistent:

```
>> [avgfax(100) avgfax(100) avgfax(100) avgfax(100)]
ans =
34.5300 33.3000 29.8100 33.6900
```

Finally, for $m=1000$, we obtain results reasonably close to $E[Y]$:

```
>> [avgfax(1000) avgfax(1000) avgfax(1000) avgfax(1000)]
ans =
32.1740 31.8920 33.1890 32.8250
```

In Chapter 7, we will develop techniques to show how \bar{Y} converges to $E[Y]$ as $m \to \infty$.

Problem 2.10.4 Solution
Suppose X_n is a Zipf $(n, \alpha = 1)$ random variable and thus has PMF

$$P_X(x) = \begin{cases}
c(n)/x, & x = 1, 2, \ldots, n \\
0, & \text{otherwise}
\end{cases}$$

The problem asks us to find the smallest value of k such that $P[X_n \leq k] \geq 0.75$. That is, if the server caches the k most popular files, then with $P[X_n \leq k]$ the request is for one of the k cached
files. First, we might as well solve this problem for any probability \(p \) rather than just \(p = 0.75 \). Thus, in math terms, we are looking for

\[
k = \min \left\{ k' \mid P\left[X_n \leq k' \right] \geq p \right\}.
\]

What makes the Zipf distribution hard to analyze is that there is no closed form expression for

\[
c(n) = \left(\sum_{x=1}^{n} \frac{1}{x} \right)^{-1}.
\]

Thus, we use MATLAB to grind through the calculations. The following simple program generates the Zipf distributions and returns the correct value of \(k \).

```matlab
function k=zipfcache(n,p);
%Usage: k=zipfcache(n,p);
%for the Zipf (n,alpha=1) distribution, returns the smallest k
%such that the first k items have total probability p
pmf=1./(1:n);
pmf=pmf/sum(pmf); %normalize to sum to 1
cdf=cumsum(pmf);
k=1+sum(cdf<=p);
```

The program `zipfcache` generalizes \(0.75 \) to be the probability \(p \). Although this program is sufficient, the problem asks us to find \(k \) for all values of \(n \) from 1 to \(10^3 \). One way to do this is to call `zipfcache` a thousand times to find \(k \) for each value of \(n \). A better way is to use the properties of the Zipf PDF. In particular,

\[
P\left[X_n \leq k' \right] = c(n) \sum_{x=1}^{k'} \frac{1}{x} = \frac{c(n)}{c(k')}
\]

Thus we wish to find

\[
k = \min \left\{ k' \mid \frac{1}{c(k')} \geq \frac{p}{c(n)} \right\} = \min \left\{ k' \mid \frac{1}{c(k')} \geq \frac{p}{c(n)} \right\}. \tag{5}
\]

Note that the definition of \(k \) implies that

\[
\frac{1}{c(k')} < \frac{p}{c(n)}, \quad k' = 1, \ldots, k - 1. \tag{6}
\]

Using the notation \(|A| \) to denote the number of elements in the set \(A \), we can write

\[
k = 1 + \left| \left\{ k' \mid \frac{1}{c(k')} < \frac{p}{c(n)} \right\} \right|. \tag{7}
\]

This is the basis for a very short MATLAB program:

```matlab
function k=zipfcacheall(n,p);
%Usage: k=zipfcacheall(n,p);
%returns vector k such that the first
%k(m) items have total probability >= p
%for the Zipf(m,1) distribution.
c=1./cumsum(1./(1:n));
k=1+countless(1./c,p./c);
```
Note that **zipfcacheall** uses a short MATLAB program **countless.m** that is almost the same as **count.m** introduced in Example 2.47. If \(n = \text{countless}(x, y) \), then \(n(i) \) is the number of elements of \(x \) that are strictly less than \(y(i) \) while **count** returns the number of elements less than or equal to \(y(i) \).

In any case, the commands

```matlab
k = zipfcacheall(1000, 0.75);
plot(1:1000, k);
```

is sufficient to produce this figure of \(k \) as a function of \(m \):

![Figure of k as a function of m](image)

We see in the figure that the number of files that must be cached grows slowly with the total number of files \(n \).

Finally, we make one last observation. It is generally desirable for MATLAB to execute operations in parallel. The program **zipfcacheall** generally will run faster than \(n \) calls to **zipfcache**. However, to do its counting all at once, **countless** generates and \(n \times n \) array. When \(n \) is not too large, say \(n \leq 1000 \), the resulting array with \(n^2 = 1,000,000 \) elements fits in memory. For much larger values of \(n \), say \(n = 10^6 \) (as was proposed in the original printing of this edition of the text, **countless** will cause an “out of memory” error.

Problem 2.10.5 Solution

We use **poissonrv.m** to generate random samples of a Poisson (\(\alpha = 5 \)) random variable. To compare the Poisson PMF against the output of **poissonrv**, relative frequencies are calculated using the **hist** function. The following code plots the relative frequency against the PMF.

```matlab
function diff=poissontest(alpha,m)
x=poissonrv(alpha,m);
xr=0:ceil(3*alpha);
pxsample=hist(x,xr)/m;
pxsample=pxsample(:); %pxsample=(countequal(x,xr)/m);
px=poissonpmf(alpha,xr);
plot(xr,pxsample,xr,px);
diff=sum((pxsample-px).^2);
```

For \(m = 100, 1000, 10000 \), here are sample plots comparing the PMF and the relative frequency. The plots show reasonable agreement for \(m = 10000 \) samples.
Problem 2.10.6 Solution
We can compare the binomial and Poisson PMFs for \((n, p) = (100, 0.1)\) using the following MATLAB code:

```matlab
x=0:20;
p=poissonpmf(100,x);
b=binomialpmf(100,0.1,x);
plot(x,p,x,b);
```

For \((n, p) = (10, 1)\), the binomial PMF has no randomness. For \((n, p) = (100, 0.1)\), the approximation is reasonable:

Finally, for \((n, p) = (1000, 0.01)\), and \((n, p) = (10000, 0.001)\), the approximation is very good:
Problem 2.10.7 Solution

Following the Random Sample algorithm, we generate a sample value \(R = \text{rand}(1) \) and then we find \(k^* \) such that
\[
F_K(k^* - 1) < R < F_K(k^*). \tag{1}
\]

From Problem 2.4.4, we know for integers \(k \geq 1 \) that geometric \((p)\) random variable \(K \) has CDF \(F_K(k) = 1 - (1 - p)^k \). Thus,
\[
1 - (1 - p)^{k^* - 1} < R \leq 1 - (1 - p)^{k^*}. \tag{2}
\]

Subtracting 1 from each side and then multiplying through by \(-1\) (which reverses the inequalities), we obtain
\[
(1 - p)^{k^* - 1} > 1 - R \geq (1 - p)^{k^*}. \tag{3}
\]

Next we take the logarithm of each side. Since logarithms are monotonic functions, we have
\[
(k^* - 1) \ln(1 - p) > \ln(1 - R) \geq k^* \ln(1 - p). \tag{4}
\]

Since \(0 < p < 1\), we have that \(\ln(1 - p) < 0\). Thus dividing through by \(\ln(1 - p)\) reverses the inequalities, yielding
\[
k^* - 1 > \frac{\ln(1 - R)}{\ln(1 - p)} \leq k^*. \tag{5}
\]

Since \(k^*\) is an integer, it must be the smallest integer greater than or equal to \(\ln(1 - R)/\ln(1 - p)\). That is, following the last step of the random sample algorithm,
\[
K = k^* = \left\lceil \frac{\ln(1 - R)}{\ln(1 - p)} \right\rceil \tag{6}
\]

The MATLAB algorithm that implements this operation is quite simple:

```matlab
function x=geometricrv(p,m)
%Usage: x=geometricrv(p,m)
% returns m samples of a geometric (p) rv
r=rand(m,1);
x=ceil(log(1-r)/log(1-p));
```
Problem 2.10.8 Solution

For the PC version of MATLAB employed for this test, poissonpmf(n,n) reported Inf for \(n = n^* = 714 \). The problem with the poissonpmf function in Example 2.44 is that the cumulative product that calculated \(n^k/k! \) can have an overflow. Following the hint, we can write an alternate poissonpmf function as follows:

```matlab
function pmf=poissonpmf(alpha,x)
% Poisson (alpha) rv X,
% out=vector pmf: pmf(i)=P[X=x(i)]

x=x(:);
if (alpha==0)
    pmf=1.0*(x==0);
else
    k=(1:ceil(max(x)))';
    logfacts = cumsum(log(k));
    pb=exp([-alpha; ...
     -alpha+ (k*alpha)-logfacts]);
    okx=(x>=0).* (x==floor(x));
    x=okx.*x;
    pmf=okx.*pb(x+1);
end
% pmf(i)=0 for zero-prob x(i)
```

By summing logarithms, the intermediate terms are much less likely to overflow.
Problem Solutions – Chapter 3

Problem 3.1.1 Solution
The CDF of X is

$$F_X(x) = \begin{cases}
0 & x < -1 \\
(x + 1)/2 & -1 \leq x < 1 \\
1 & x \geq 1
\end{cases}$$

(1)

Each question can be answered by expressing the requested probability in terms of $F_X(x)$.

(a)

$$P[X > 1/2] = 1 - P[X \leq 1/2] = 1 - F_X(1/2) = 1 - 3/4 = 1/4$$

(2)

(b) This is a little trickier than it should be. Being careful, we can write

(3)

Since the CDF of X is a continuous function, the probability that X takes on any specific value is zero. This implies $P[X = 3/4] = 0$ and $P[X = -1/2] = 0$. (If this is not clear at this point, it will become clear in Section 3.6.) Thus,

(4)

(c)

$$P[|X| \leq 1/2] = P[-1/2 \leq X \leq 1/2] = P[X \leq 1/2] - P[X < -1/2]$$

(5)

Note that $P[X \leq 1/2] = F_X(1/2) = 3/4$. Since the probability that $P[X = -1/2] = 0$, $P[X < -1/2] = P[X \leq 1/2]$. Hence $P[X < -1/2] = F_X(-1/2) = 1/4$. This implies

$$P[|X| \leq 1/2] = P[X \leq 1/2] - P[X < -1/2] = 3/4 - 1/4 = 1/2$$

(6)

(d) Since $F_X(1) = 1$, we must have $a \leq 1$. For $a \leq 1$, we need to satisfy

$$P[X \leq a] = F_X(a) = \frac{a + 1}{2} = 0.8$$

(7)

Thus $a = 0.6$.

Problem 3.1.2 Solution
The CDF of V was given to be

$$F_V(v) = \begin{cases}
0 & v < -5 \\
c(v + 5)^2 & -5 \leq v < 7 \\
1 & v \geq 7
\end{cases}$$

(1)

(a) For V to be a continuous random variable, $F_V(v)$ must be a continuous function. This occurs if we choose c such that $F_V(v)$ doesn’t have a discontinuity at $v = 7$. We meet this requirement if $c(7 + 5)^2 = 1$. This implies $c = 1/144$.
(b)
\[P[V > 4] = 1 - P[V \leq 4] = 1 - F_V(4) = 1 - \frac{81}{144} = \frac{63}{144} \quad (2) \]

(c)
\[P[-3 < V \leq 0] = F_V(0) - F_V(-3) = \frac{25}{144} - \frac{4}{144} = \frac{21}{144} \quad (3) \]

(d) Since \(0 \leq F_V(v) \leq 1\) and since \(F_V(v)\) is a nondecreasing function, it must be that \(-5 \leq a \leq 7\). In this range,
\[P[V > a] = 1 - F_V(a) = 1 - (a + 5)^2/144 = \frac{2}{3} \quad (4) \]

The unique solution in the range \(-5 \leq a \leq 7\) is \(a = 4\sqrt{3} - 5 = 1.928\).

Problem 3.1.3 Solution

In this problem, the CDF of \(W\) is
\[F_W(w) = \begin{cases}
0 & w < -5 \\
(w + 5)/8 & -5 \leq w < -3 \\
1/4 & -3 \leq w < 3 \\
1/4 + 3(w - 3)/8 & 3 \leq w < 5 \\
1 & w \geq 5.
\end{cases} \quad (1) \]

Each question can be answered directly from this CDF.

(a)
\[P[W \leq 4] = F_W(4) = 1/4 + 3/8 = 5/8. \quad (2) \]

(b)
\[P[-2 < W \leq 2] = F_W(2) - F_W(-2) = 1/4 - 1/4 = 0. \quad (3) \]

(c)
\[P[W > 0] = 1 - P[W \leq 0] = 1 - F_W(0) = 3/4 \quad (4) \]

(d) By inspection of \(F_W(w)\), we observe that \(P[W \leq a] = F_W(a) = 1/2\) for \(a\) in the range \(3 \leq a \leq 5\). In this range,
\[F_W(a) = 1/4 + 3(a - 3)/8 = 1/2 \quad (5) \]

This implies \(a = 11/3\).

Problem 3.1.4 Solution

(a) By definition, \([nx]\) is the smallest integer that is greater than or equal to \(nx\). This implies \(nx \leq [nx] \leq nx + 1\).

(b) By part (a),
\[\frac{nx}{n} \leq \frac{[nx]}{n} \leq \frac{nx + 1}{n} \quad (1) \]

That is,
\[x \leq \frac{[nx]}{n} \leq x + \frac{1}{n} \quad (2) \]

This implies
\[x \leq \lim_{n \to \infty} \frac{[nx]}{n} \leq \lim_{n \to \infty} x + \frac{1}{n} = x \quad (3) \]
(c) In the same way, $\lfloor nx \rfloor$ is the largest integer that is less than or equal to nx. This implies $nx - 1 \leq \lfloor nx \rfloor \leq nx$. It follows that

$$\frac{nx - 1}{n} \leq \frac{\lfloor nx \rfloor}{n} \leq \frac{nx}{n} \tag{4}$$

That is,

$$x - \frac{1}{n} \leq \frac{\lfloor nx \rfloor}{n} \leq x \tag{5}$$

This implies

$$\lim_{n \to \infty} x - \frac{1}{n} = x \leq \lim_{n \to \infty} \frac{\lfloor nx \rfloor}{n} \leq x \tag{6}$$

Problem 3.2.1 Solution

$$f_X(x) = \begin{cases} cx & 0 \leq x \leq 2 \\ 0 & \text{otherwise} \end{cases} \tag{1}$$

(a) From the above PDF we can determine the value of c by integrating the PDF and setting it equal to 1.

$$\int_0^2 cx \, dx = 2c = 1 \tag{2}$$

Therefore $c = 1/2$.

(b) $P[0 \leq X \leq 1] = \int_0^1 \frac{x}{2} \, dx = 1/4$

(c) $P[-1/2 \leq X \leq 1/2] = \int_{-1/2}^{1/2} \frac{x}{2} \, dx = 1/16$

(d) The CDF of X is found by integrating the PDF from 0 to x.

$$F_X(x) = \int_0^x f_X(x') \, dx' = \begin{cases} 0 & x < 0 \\ x^2/4 & 0 \leq x \leq 2 \\ 1 & x > 2 \end{cases} \tag{3}$$

Problem 3.2.2 Solution

From the CDF, we can find the PDF by direct differentiation. The CDF and corresponding PDF are

$$F_X(x) = \begin{cases} 0 & x < -1 \\ (x + 1)/2 & -1 \leq x \leq 1 \\ 1 & x > 1 \end{cases} \quad f_X(x) = \begin{cases} 1/2 & -1 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases} \tag{1}$$

Problem 3.2.3 Solution

We find the PDF by taking the derivative of $F_U(u)$ on each piece that $F_U(u)$ is defined. The CDF and corresponding PDF of U are

$$F_U(u) = \begin{cases} 0 & u < -5 \\ (u + 5)/8 & -5 \leq u < -3 \\ 1/4 & -3 \leq u < 3 \\ 1/4 + 3(u - 3)/8 & 3 \leq u < 5 \\ 1 & u \geq 5 \end{cases} \quad f_U(u) = \begin{cases} 0 & u < -5 \\ 1/8 & -5 \leq u < -3 \\ 0 & -3 \leq u < 3 \\ 3/8 & 3 \leq u < 5 \\ 0 & u \geq 5 \end{cases} \tag{1}$$
Problem 3.2.4 Solution
For \(x < 0 \), \(F_X(x) = 0 \). For \(x \geq 0 \),
\[
F_X(x) = \int_0^x f_X(y) \, dy
\]
(1)
\[
= \int_0^x a^2 y e^{-a^2 y^2/2} \, dy
\]
(2)
\[
= -e^{-a^2 y^2/2} \bigg|_0^x = 1 - e^{-a^2 x^2/2}
\]
(3)
A complete expression for the CDF of \(X \) is
\[
F_X(x) = \begin{cases}
0 & x < 0 \\
1 - e^{-a^2 x^2/2} & x \geq 0
\end{cases}
\]
(4)

Problem 3.2.5 Solution
\[
f_X(x) = \begin{cases}
a x^2 + bx & 0 \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]
(1)
First, we note that \(a \) and \(b \) must be chosen such that the above PDF integrates to 1.
\[
\int_0^1 (a x^2 + b x) \, dx = a/3 + b/2 = 1
\]
(2)
Hence, \(b = 2 - 2a/3 \) and our PDF becomes
\[
f_X(x) = x(ax + 2 - 2a/3)
\]
(3)
For the PDF to be non-negative for \(x \in [0, 1] \), we must have \(ax + 2 - 2a/3 \geq 0 \) for all \(x \in [0, 1] \). This requirement can be written as
\[
a(2/3 - x) \leq 2 \quad (0 \leq x \leq 1)
\]
(4)
For \(x = 2/3 \), the requirement holds for all \(a \). However, the problem is tricky because we must consider the cases \(0 \leq x < 2/3 \) and \(2/3 < x \leq 1 \) separately because of the sign change of the inequality. When \(0 \leq x < 2/3 \), we have \(2/3 - x > 0 \) and the requirement is most stringent at \(x = 0 \) where we require \(2a/3 \leq 2 \) or \(a \leq 3 \). When \(2/3 < x \leq 1 \), we can write the constraint as \(a(x - 2/3) \geq -2 \). In this case, the constraint is most stringent at \(x = 1 \), where we must have \(a/3 \geq -2 \) or \(a \geq -6 \). Thus, a complete expression for our requirements are
\[
-6 \leq a \leq 3 \quad b = 2 - 2a/3
\]
(5)
As we see in the following plot, the shape of the PDF \(f_X(x) \) varies greatly with the value of \(a \).
Problem 3.3.1 Solution

\[f_X(x) = \begin{cases}
\frac{1}{4} & -1 \leq x \leq 3 \\
0 & \text{otherwise}
\end{cases} \] \hspace{1cm} (1)

We recognize that \(X \) is a uniform random variable from \([-1,3]\).

(a) \(E[X] = 1 \) and \(\text{Var}[X] = \frac{(3+1)^2}{12} = 4/3 \).

(b) The new random variable \(Y \) is defined as \(Y = h(X) = X^2 \). Therefore

\[h(E[X]) = h(1) = 1 \] \hspace{1cm} (2)

and

\[E[h(X)] = E[X^2] = \text{Var}[X] + E[X]^2 = \frac{4}{3} + 1 = \frac{7}{3} \] \hspace{1cm} (3)

(c) Finally

\[E[Y] = E[h(X)] = E[X^2] = \frac{7}{3} \] \hspace{1cm} (4)

\[\text{Var}[Y] = E[X^4] - E[X^2]^2 = \int_{-1}^{3} \frac{x^4}{4} \, dx - \frac{49}{9} = \frac{61}{5} - \frac{49}{9} \] \hspace{1cm} (5)

Problem 3.3.2 Solution

(a) Since the PDF is uniform over \([1,9]\)

\[E[X] = \frac{1 + 9}{2} = 5 \quad \text{Var}[X] = \frac{(9 - 1)^2}{12} = \frac{16}{3} \] \hspace{1cm} (1)

(b) Define \(h(X) = 1/\sqrt{X} \) then

\[h(E[X]) = 1/\sqrt{5} \] \hspace{1cm} (2)

\[E[h(X)] = \int_{1}^{9} \frac{x^{-1/2}}{8} \, dx = 1/2 \] \hspace{1cm} (3)
(c)

\[E[Y] = E[h(X)] = \frac{1}{2} \quad (4) \]

\[\text{Var}[Y] = E[Y^2] - (E[Y])^2 = \int_1^9 \frac{x^{-1}}{8} \, dx - E[X]^2 = \frac{\ln 9}{8} - 1/4 \quad (5) \]

Problem 3.3.3 Solution

The CDF of \(X \) is

\[F_X(x) = \begin{cases}
0 & x < 0 \\
\frac{x}{2} & 0 \leq x < 2 \\
1 & x \geq 2
\end{cases} \] (1)

(a) To find \(E[X] \), we first find the PDF by differentiating the above CDF.

\[f_X(x) = \begin{cases}
\frac{1}{2} & 0 \leq x \leq 2 \\
0 & \text{otherwise}
\end{cases} \] (2)

The expected value is then

\[E[X] = \int_0^2 \frac{x}{2} \, dx = 1 \] (3)

(b)

\[E[X^2] = \int_0^2 \frac{x^2}{2} \, dx = \frac{8}{3} \] (4)

\[\text{Var}[X] = E[X^2] - E[X]^2 = \frac{8}{3} - 1 = \frac{5}{3} \] (5)

Problem 3.3.4 Solution

We can find the expected value of \(X \) by direct integration of the given PDF.

\[f_Y(y) = \begin{cases}
y/2 & 0 \leq y \leq 2 \\
0 & \text{otherwise}
\end{cases} \] (1)

The expectation is

\[E[Y] = \int_0^2 \frac{y^2}{2} \, dy = \frac{4}{3} \] (2)

To find the variance, we first find the second moment

\[E[Y^2] = \int_0^2 \frac{y^3}{2} \, dy = 2. \] (3)

The variance is then \(\text{Var}[Y] = E[Y^2] - E[Y]^2 = 2 - (4/3)^2 = \frac{2}{9} \).

Problem 3.3.5 Solution

The CDF of \(Y \) is

\[F_Y(y) = \begin{cases}
0 & y < -1 \\
(y + 1)/2 & -1 \leq y < 1 \\
1 & y \geq 1
\end{cases} \] (1)
(a) We can find the expected value of Y by first differentiating the above CDF to find the PDF

$$f_Y(y) = \begin{cases} 1/2 & -1 \leq y \leq 1, \\ 0 & \text{otherwise}. \end{cases}$$ (2)

It follows that

$$E[Y] = \int_{-1}^{1} y/2 \, dy = 0.$$ (3)

(b)

$$E[Y^2] = \int_{-1}^{1} \frac{y^2}{2} \, dy = 1/3$$ (4)

$$\text{Var}[Y] = E[Y^2] - (E[Y])^2 = 1/3 - 0 = 1/3.$$ (5)

Problem 3.3.6 Solution

To evaluate the moments of V, we need the PDF $f_V(v)$, which we find by taking the derivative of the CDF $F_V(v)$. The CDF and corresponding PDF of V are

$$F_V(v) = \begin{cases} 0 & v < -5 \\ (v + 5)^2/144 & -5 \leq v < 7 \\ 1 & v \geq 7 \end{cases}$$

$$f_V(v) = \begin{cases} 0 & v < -5 \\ (v + 5)/72 & -5 \leq v < 7 \\ 0 & v \geq 7 \end{cases}$$ (1)

(a) The expected value of V is

$$E[V] = \int_{-\infty}^{\infty} v f_V(v) \, dv = \frac{1}{72} \int_{-5}^{7} (v^2 + 5v) \, dv$$

$$= \frac{1}{72} \left(\frac{v^3}{3} + \frac{5v^2}{2} \right) \bigg|_{-5}^{7} = \frac{1}{72} \left(\frac{343}{3} + \frac{245}{2} + \frac{125}{3} - \frac{125}{2} \right) = 3.$$ (2)

(b) To find the variance, we first find the second moment

$$E[V^2] = \int_{-\infty}^{\infty} v^2 f_V(v) \, dv = \frac{1}{72} \int_{-5}^{7} (v^3 + 5v^2) \, dv$$

$$= \frac{1}{72} \left(\frac{v^4}{4} + \frac{5v^3}{3} \right) \bigg|_{-5}^{7} = 6719/432 = 15.55.$$ (3)

The variance is $\text{Var}[V] = E[V^2] - (E[V])^2 = 2831/432 = 6.55.$

(c) The third moment of V is

$$E[V^3] = \int_{-\infty}^{\infty} v^3 f_V(v) \, dv = \frac{1}{72} \int_{-5}^{7} (v^4 + 5v^3) \, dv$$

$$= \frac{1}{72} \left(\frac{v^5}{5} + \frac{5v^4}{4} \right) \bigg|_{-5}^{7} = 86.2.$$ (4)
With the variable substitution \(y = \frac{x}{\mu} \), we obtain
\[
E[X^n] = \alpha \mu^n \int_1^\infty y^{-(\alpha-n+1)} \, dy \tag{3}
\]
We see that \(E[X^n] < \infty \) if and only if \(\alpha - n + 1 > 1 \), or, equivalently, \(n < \alpha \). In this case,
\[
E[X^n] = \frac{\alpha \mu^n}{-(\alpha - n + 1) + 1} \left. y^{-(\alpha-n+1)+1} \right|_{y=1}^{y=\infty} = \frac{-\alpha \mu^n}{\alpha - n} \tag{4}
\]
\[
E[X^n] = \frac{\alpha \mu^n}{\alpha - n} \tag{5}
\]

Problem 3.4.1 Solution
The reflected power \(Y \) has an exponential (\(\lambda = 1/P_0 \)) PDF. From Theorem 3.8, \(E[Y] = P_0 \). The probability that an aircraft is correctly identified is
\[
P[Y > P_0] = \int_{P_0}^\infty \frac{1}{P_0} e^{-y/P_0} \, dy = e^{-1}. \tag{1}
\]
Fortunately, real radar systems offer better performance.

Problem 3.4.2 Solution
From Appendix A, we observe that an exponential PDF \(Y \) with parameter \(\lambda > 0 \) has PDF
\[
f_Y(y) = \begin{cases}
\lambda e^{-\lambda y} & y \geq 0 \\
0 & \text{otherwise} \end{cases} \tag{1}
\]
In addition, the mean and variance of \(Y \) are
\[
E[Y] = \frac{1}{\lambda} \quad \text{Var}[Y] = \frac{1}{\lambda^2} \tag{2}
\]
(a) Since \(\text{Var}[Y] = 25 \), we must have \(\lambda = 1/5 \).

(b) The expected value of \(Y \) is \(E[Y] = 1/\lambda = 5 \).

(c) \[
P[Y > 5] = \int_5^\infty f_Y(y) \, dy = -e^{-y/5}|_{y=5}^\infty = e^{-1} \tag{3}
\]

Problem 3.4.3 Solution
From Appendix A, an Erlang random variable \(X \) with parameters \(\lambda > 0 \) and \(n \) has PDF
\[
f_X(x) = \begin{cases}
\lambda^n x^{n-1} e^{-\lambda x} / (n-1)! & x \geq 0 \\
0 & \text{otherwise} \end{cases} \tag{1}
\]
In addition, the mean and variance of \(X \) are
\[
E[X] = \frac{n}{\lambda} \quad \text{Var}[X] = \frac{n}{\lambda^2} \tag{2}
\]
(a) Since \(\lambda = 1/3 \) and \(E[X] = n/\lambda = 15 \), we must have \(n = 5 \).

(b) Substituting the parameters \(n = 5 \) and \(\lambda = 1/3 \) into the given PDF, we obtain
\[
f_X(x) = \begin{cases}
(1/3)^5 x^4 e^{-x/3} / 24 & x \geq 0 \\
0 & \text{otherwise} \end{cases} \tag{3}
\]
(c) From above, we know that \(\text{Var}[X] = n/\lambda^2 = 45 \).
Problem 3.4.4 Solution
Since \(Y \) is an Erlang random variable with parameters \(\lambda = 2 \) and \(n = 2 \), we find in Appendix A that
\[
 f_Y(y) = \begin{cases}
 4ye^{-2y} & y \geq 0 \\
 0 & \text{otherwise}
 \end{cases}
\]
(1)

(a) Appendix A tells us that \(E[Y] = n/\lambda = 1 \).

(b) Appendix A also tells us that \(\text{Var}[Y] = n/\lambda^2 = 1/2 \).

(c) The probability that \(1/2 \leq Y < 3/2 \) is
\[
P[1/2 \leq Y < 3/2] = \int_{1/2}^{3/2} f_Y(y) \, dy = \int_{1/2}^{3/2} 4ye^{-2y} \, dy
\]
(2)

This integral is easily completed using the integration by parts formula \(\int u \, dv = uv - \int v \, du \) with
\[
u = 2y, \quad dv = 2e^{-2y} dy
\]
\[
\begin{align*}
u &= 2y \\
dv &= 2e^{-2y} \, dy
\end{align*}
\]
Making these substitutions, we obtain
\[
P[1/2 \leq Y < 3/2] = -2ye^{-2y} \bigg|_{1/2}^{3/2} + \int_{1/2}^{3/2} 2e^{-2y} \, dy
\]
(3)
\[
= 2e^{-1} - 4e^{-3} = 0.537
\]
(4)

Problem 3.4.5 Solution

(a) The PDF of a continuous uniform \((-5, 5)\) random variable is
\[
f_X(x) = \begin{cases}
 1/10 & -5 \leq x \leq 5 \\
 0 & \text{otherwise}
 \end{cases}
\]
(1)

(b) For \(x < -5 \), \(F_X(x) = 0 \). For \(x \geq 5 \), \(F_X(x) = 1 \). For \(-5 \leq x \leq 5\), the CDF is
\[
F_X(x) = \int_{-5}^{x} f_X(\tau) \, d\tau = \frac{x + 5}{10}
\]
(2)

The complete expression for the CDF of \(X \) is
\[
F_X(x) = \begin{cases}
 0 & x < -5 \\
 (x + 5)/10 & -5 \leq x \leq 5 \\
 1 & x > 5
 \end{cases}
\]
(3)

(c) The expected value of \(X \) is
\[
\int_{-5}^{5} \frac{x}{10} \, dx = \left[\frac{x^2}{20} \right]_{-5}^{5} = 0
\]
(4)

Another way to obtain this answer is to use Theorem 3.6 which says the expected value of \(X \) is \(E[X] = (5 + -5)/2 = 0 \).
(d) The fifth moment of \(X\) is
\[
\int_{-5}^{5} \frac{x^5}{10} \, dx = \frac{x^6}{60} \bigg|_{-5}^{5} = 0
\]
(5)

(e) The expected value of \(e^X\) is
\[
\int_{-5}^{5} \frac{e^x}{10} \, dx = \frac{e^5 - e^{-5}}{10} = 14.84
\]
(6)

Problem 3.4.6 Solution

We know that \(X\) has a uniform PDF over \([a, b]\) and has mean \(\mu_X = 7\) and variance \(\text{Var}[X] = 3\). All that is left to do is determine the values of the constants \(a\) and \(b\), to complete the model of the uniform PDF.

\[
E[X] = \frac{a + b}{2} = 7 \quad \text{Var}[X] = \frac{(b - a)^2}{12} = 3
\]
(1)

Since we assume \(b > a\), this implies

\[
a + b = 14 \quad b - a = 6
\]
(2)

Solving these two equations, we arrive at

\[
a = 4 \quad b = 10
\]
(3)

And the resulting PDF of \(X\) is,

\[
f_X (x) = \begin{cases}
\frac{1}{64} & \text{for } 4 \leq x \leq 10 \\
0 & \text{otherwise}
\end{cases}
\]
(4)

Problem 3.4.7 Solution

Given that

\[
f_X (x) = \begin{cases}
\frac{1}{2}e^{-x/2} & x \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]
(1)

(a) \[P[1 \leq X \leq 2] = \int_{1}^{2} \frac{1}{2}e^{-x/2} \, dx = e^{-1/2} - e^{-1} = 0.2387 \]
(2)

(b) The CDF of \(X\) may be be expressed as

\[
F_X (x) = \begin{cases}
0 & x < 0 \\
\int_{0}^{x} \frac{1}{2}e^{-t/2} \, dt & x \geq 0
\end{cases}
\]
(3)

(c) \(X\) is an exponential random variable with parameter \(a = 1/2\). By Theorem 3.8, the expected value of \(X\) is \(E[X] = 1/a = 2\).

(d) By Theorem 3.8, the variance of \(X\) is \(\text{Var}[X] = 1/a^2 = 4\).
Problem 3.4.8 Solution
Given the uniform PDF

\[f_U(u) = \begin{cases} \frac{1}{b-a} & a \leq u \leq b \\ 0 & \text{otherwise} \end{cases} \] (1)

The mean of \(U \) can be found by integrating

\[E[U] = \int_a^b \frac{u}{b-a} \, du = \frac{b^2 - a^2}{2(b-a)} = \frac{b + a}{2} \] (2)

Where we factored \((b^2 - a^2) = (b-a)(b+a)\). The variance of \(U \) can also be found by finding \(E[U^2] \).

\[E[U^2] = \int_a^b \frac{u^2}{b-a} \, du = \frac{b^3 - a^3}{3(b-a)} \] (3)

Therefore the variance is

\[\text{Var}[U] = \frac{(b^3 - a^3)}{3(b-a)} - \left(\frac{b + a}{2} \right)^2 = \frac{(b-a)^2}{12} \] (4)

Problem 3.4.9 Solution
Let \(X \) denote the holding time of a call. The PDF of \(X \) is

\[f_X(x) = \begin{cases} \frac{1}{\tau}e^{-x/\tau} & x \geq 0 \\ 0 & \text{otherwise} \end{cases} \] (1)

We will use \(C_A(X) \) and \(C_B(X) \) to denote the cost of a call under the two plans. From the problem statement, we note that \(C_A(X) = 10X \) so that \(E[C_A(X)] = 10E[X] = 10\tau \). On the other hand

\[C_B(X) = 99 + 10(X - 20)^+ \] (2)

where \(y^+ = y \) if \(y \geq 0 \); otherwise \(y^+ = 0 \) for \(y < 0 \). Thus,

\[E[C_B(X)] = E[99 + 10(X - 20)^+] \] (3)

\[= 99 + 10E[(X - 20)^+] \] (4)

Given \(X \leq 20 \), \((X - 20)^+ = 0 \). Thus

\[E[(X - 20)^+|X \leq 20] = 0 \] and

\[E[C_B(X)] = 99 + 10E[(X - 20)|X > 20]P[X > 20] \] (6)

Finally, we observe that \(P[X > 20] = e^{-20/\tau} \) and that

\[E[(X - 20)|X > 20] = \tau \] (7)

since given \(X \geq 20 \), \(X - 20 \) has a PDF identical to \(X \) by the memoryless property of the exponential random variable. Thus,

\[E[C_B(X)] = 99 + 10\tau e^{-20/\tau} \] (8)

Some numeric comparisons show that \(E[C_B(X)] \leq E[C_A(X)] \) if \(\tau > 12.34 \) minutes. That is, the flat price for the first 20 minutes is a good deal only if your average phone call is sufficiently long.
Problem 3.3.7 Solution
To find the moments, we first find the PDF of U by taking the derivative of $F_U(u)$. The CDF and corresponding PDF are

\[
F_U(u) = \begin{cases}
0 & u < -5 \\
(u + 5)/8 & -5 \leq u < -3 \\
1/4 & -3 \leq u < 3 \\
1/4 + 3(u - 3)/8 & 3 \leq u < 5 \\
1 & u \geq 5.
\end{cases}
\]

\[
f_U(u) = \begin{cases}
0 & u < -5 \\
1/8 & -5 \leq u < -3 \\
0 & -3 \leq u < 3 \\
3/8 & 3 \leq u < 5 \\
0 & u \geq 5.
\end{cases}
\]

(a) The expected value of U is

\[
E[U] = \int_{-\infty}^{\infty} u f_U(u) \, du = \int_{-5}^{-3} \frac{u}{8} \, du + \int_{3}^{5} \frac{3u}{8} \, du = \frac{u^2}{16}\bigg|_{-5}^{-3} + \frac{3u^2}{16}\bigg|_{3}^{5} = 2
\]

(b) The second moment of U is

\[
E[U^2] = \int_{-\infty}^{\infty} u^2 f_U(u) \, du = \int_{-5}^{-3} \frac{u^2}{8} \, du + \int_{3}^{5} \frac{3u^2}{8} \, du = \frac{u^3}{24}\bigg|_{-5}^{-3} + \frac{u^5}{8}\bigg|_{3}^{5} = 49/3
\]

The variance of U is $\text{Var}[U] = E[U^2] - (E[U])^2 = 37/3$.

(c) Note that $2^U = e^{(ln2)U}$. This implies that

\[
\int 2^u \, du = \int e^{(ln2)u} \, du = \frac{1}{\ln2} e^{(ln2)u} = \frac{2^u}{\ln2}
\]

The expected value of 2^U is then

\[
E[2^U] = \int_{-\infty}^{\infty} 2^u f_U(u) \, du = \int_{-5}^{-3} \frac{2^u}{8} \, du + \int_{3}^{5} \frac{3 \cdot 2^u}{8} \, du = \frac{2^u}{8 \ln2}\bigg|_{-5}^{-3} + \frac{3 \cdot 2^u}{8 \ln2}\bigg|_{3}^{5} = \frac{2307}{256 \ln2} = 13.001
\]

Problem 3.3.8 Solution
The Pareto (α, μ) random variable has PDF

\[
f_X(x) = \begin{cases}
(\alpha/\mu) \left(\frac{x}{\mu}\right)^{-(\alpha+1)} & x \geq \mu \\
0 & \text{otherwise}
\end{cases}
\]

The nth moment is

\[
E[X^n] = \int_{\mu}^{\infty} x^n \frac{\alpha}{\mu} \left(\frac{x}{\mu}\right)^{-(\alpha+1)} \, dx = \mu^n \int_{\mu}^{\infty} \frac{\alpha}{\mu} \left(\frac{x}{\mu}\right)^{-(\alpha-n+1)} \, dx
\]
Problem 3.4.10 Solution

The integral \(I_1 \) is

\[
I_1 = \int_0^\infty \lambda e^{-\lambda x} \, dx = -e^{-\lambda x} \bigg|_0^\infty = 1
\]

(1)

For \(n > 1 \), we have

\[
I_n = \int_0^\infty \frac{\lambda^{n-1} x^{n-1}}{(n-1)!} \lambda e^{-\lambda x} \, dt
\]

(2)

We define \(u \) and \(dv \) as shown above in order to use the integration by parts formula \(\int u \, dv = uv - \int v \, du \). Since

\[
\int_0^\infty e^{-\lambda x} \, dx = 1, \quad (n-1)!
\]

we can write

\[
I_n = u v \bigg|_0^\infty - \int_0^\infty v \, du
\]

(4)

Hence, \(I_n = 1 \) for all \(n \geq 1 \).

Problem 3.4.11 Solution

For an Erlang \((n, \lambda)\) random variable \(X\), the \(k\)th moment is

\[
E[X^k] = \int_0^\infty x^k f_X(x) \, dx = \int_0^\infty \frac{\lambda^n x^{n+k-1}}{(n-1)!} e^{-\lambda x} \, dx
\]

(1)

\[
= \frac{(n+k-1)!}{\lambda^k(n-1)!} \int_0^\infty \lambda e^{-\lambda x} \, dx = \frac{(n+k-1)!}{\lambda^k(n-1)!} (n+k-1)!
\]

(2)

The above marked integral equals 1 since it is the integral of an Erlang PDF with parameters \(\lambda \) and \(n+k \) over all possible values. Hence,

\[
E[X^k] = \frac{(n+k-1)!}{\lambda^k(n-1)!}
\]

(3)

This implies that the first and second moments are

\[
E[X] = \frac{n!}{(n-1)!\lambda} = \frac{n}{\lambda} \quad E[X^2] = \frac{(n+1)!}{\lambda^2(n-1)!} = \frac{(n+1)n}{\lambda^2}
\]

(4)

It follows that the variance of \(X \) is \(n/\lambda^2 \).

Problem 3.4.12 Solution

In this problem, we prove Theorem 3.11 which says that for \(x \geq 0 \), the CDF of an Erlang \((n, \lambda)\) random variable \(X_n\) satisfies

\[
F_{X_n}(x) = 1 - \sum_{k=0}^{n-1} \frac{(\lambda x)^k e^{-\lambda x}}{k!}
\]

(1)

We do this in two steps. First, we derive a relationship between \(F_{X_n}(x) \) and \(F_{X_{n-1}}(x) \). Second, we use that relationship to prove the theorem by induction.
(a) By Definition 3.7, the CDF of Erlang \((n, \lambda)\) random variable \(X_n\) is

\[
F_{X_n}(x) = \int_{-\infty}^{x} f_{X_n}(t) \, dt = \int_{0}^{x} \frac{\lambda^n t^{n-1} e^{-\lambda t}}{(n-1)!} \, dt. \tag{2}
\]

(b) To use integration by parts, we define

\[
u = \frac{t^{n-1}}{(n-1)!} \quad dv = \lambda^n e^{-\lambda t} \, dt \tag{3}
\]

\[
u = \frac{t^{n-2}}{(n-2)!} \quad v = -\lambda^{n-1} e^{-\lambda t} \tag{4}
\]

Thus, using the integration by parts formula \(\int u \, dv = uv - \int v \, du\), we have

\[
F_{X_n}(x) = \int_{0}^{x} \frac{\lambda^n t^{n-1} e^{-\lambda t}}{(n-1)!} \, dt = -\frac{\lambda^{n-1} x^{n-1} e^{-\lambda x}}{(n-1)!} + F_{X_{n-1}}(x) \tag{5}
\]

\[
= -\frac{\lambda^{n-1} x^{n-1} e^{-\lambda x}}{(n-1)!} + \frac{F_{X_{n-1}}(x)}{n!} \tag{6}
\]

(c) Now we do proof by induction. For \(n = 1\), the Erlang \((n, \lambda)\) random variable \(X_1\) is simply an exponential random variable. Hence for \(x \geq 0\), \(F_{X_1}(x) = 1 - e^{-\lambda x}\). Now we suppose the claim is true for \(F_{X_{n-1}}(x)\) so that

\[
F_{X_{n-1}}(x) = 1 - \sum_{k=0}^{n-2} \frac{(\lambda x)^k e^{-\lambda x}}{k!}. \tag{7}
\]

Using the result of part (a), we can write

\[
F_{X_n}(x) = F_{X_{n-1}}(x) - \frac{(\lambda x)^{n-1} e^{-\lambda x}}{(n-1)!}
\]

\[
= 1 - \sum_{k=0}^{n-2} \frac{(\lambda x)^k e^{-\lambda x}}{k!} - \frac{(\lambda x)^{n-1} e^{-\lambda x}}{(n-1)!}
\]

which proves the claim.

Problem 3.4.13 Solution

For \(n = 1\), we have the fact \(E[X] = 1/\lambda\) that is given in the problem statement. Now we assume that \(E[X_{n-1}] = (n-1)!/\lambda^{n-1}\). To complete the proof, we show that this implies that \(E[X^n] = n!/\lambda^n\). Specifically, we write

\[
E[X^n] = \int_{0}^{\infty} x^n \lambda e^{-\lambda x} \, dx \tag{1}
\]

Now we use the integration by parts formula \(\int u \, dv = uv - \int v \, du\) with \(u = x^n\) and \(dv = \lambda e^{-\lambda x} \, dx\). This implies \(du = nx^{n-1} \, dx\) and \(v = -e^{-\lambda x}\) so that

\[
E[X^n] = -x^n e^{-\lambda x} \bigg|_{0}^{\infty} + \int_{0}^{\infty} nx^{n-1} e^{-\lambda x} \, dx \tag{2}
\]

\[
= 0 + \frac{n}{\lambda} \int_{0}^{\infty} x^{n-1} \lambda e^{-\lambda x} \, dx \tag{3}
\]

\[
= \frac{n}{\lambda} E[X^{n-1}] \tag{4}
\]
By our induction hypothesis, \(E[X^{n-1}] = (n-1)!/\lambda^{n-1} \) which implies
\[
E[X^n] = n!/\lambda^n
\] (5)

Problem 3.4.14 Solution

(a) Since \(f_X(x) \geq 0 \) and \(x \geq r \) over the entire integral, we can write
\[
\int_r^\infty x f_X(x) \, dx \geq \int_r^\infty r f_X(x) \, dx = r P[X > r]
\] (1)

(b) We can write the expected value of \(X \) in the form
\[
E[X] = \int_0^r x f_X(x) \, dx + \int_r^\infty x f_X(x) \, dx
\] (2)

Hence,
\[
r P[X > r] \leq \int_r^\infty x f_X(x) \, dx = E[X] - \int_0^r x f_X(x) \, dx
\] (3)

Allowing \(r \) to approach infinity yields
\[
\lim_{r \to \infty} r P[X > r] \leq E[X] - \lim_{r \to \infty} \int_0^r x f_X(x) \, dx = E[X] - E[X] = 0
\] (4)

Since \(r P[X > r] \geq 0 \) for all \(r \geq 0 \), we must have \(\lim_{r \to \infty} r P[X > r] = 0 \).

(c) We can use the integration by parts formula \(\int u \, dv = uv - \int v \, du \) by defining \(u = 1 - F_X(x) \) and \(dv = dx \). This yields
\[
\int_0^\infty [1 - F_X(x)] \, dx = x[1 - F_X(x)]_0^\infty + \int_0^\infty x f_X(x) \, dx
\] (5)

By applying part (a), we now observe that
\[
x[1 - F_X(x)]_0^\infty = \lim_{r \to \infty} r[1 - F_X(r)] - 0 = \lim_{r \to \infty} r P[X > r]
\] (6)

By part (b), \(\lim_{r \to \infty} r P[X > r] = 0 \) and this implies \(x[1 - F_X(x)]_0^\infty = 0 \). Thus,
\[
\int_0^\infty [1 - F_X(x)] \, dx = \int_0^\infty x f_X(x) \, dx = E[X]
\] (7)

Problem 3.5.1 Solution

Given that the peak temperature, \(T \), is a Gaussian random variable with mean 85 and standard deviation 10 we can use the fact that \(F_T(t) = \Phi((t - \mu_T)/\sigma_T) \) and Table 3.1 on page 123 to evaluate the following

\[
P[T > 100] = 1 - P[T \leq 100] = 1 - F_T(100) = 1 - \Phi\left(\frac{100 - 85}{10}\right)
\] (1)

\[
= 1 - \Phi(1.5) = 1 - 0.933 = 0.066
\] (2)

\[
P[T < 60] = \Phi\left(\frac{60 - 85}{10}\right) = \Phi(-2.5)
\] (3)

\[
= 1 - \Phi(2.5) = 1 - 0.993 = 0.007
\] (4)

\[
P[70 \leq T \leq 100] = F_T(100) - F_T(70)
\] (5)

\[
= \Phi(1.5) - \Phi(-1.5) = 2\Phi(1.5) - 1 = .866
\] (6)
Problem 3.5.2 Solution

The standard normal Gaussian random variable Z has mean $\mu = 0$ and variance $\sigma^2 = 1$. Making these substitutions in Definition 3.8 yields

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \quad (1)$$

Problem 3.5.3 Solution

X is a Gaussian random variable with zero mean but unknown variance. We do know, however, that

$$P[|X| \leq 10] = 0.1 \quad (1)$$

We can find the variance $\text{Var}[X]$ by expanding the above probability in terms of the $\Phi(\cdot)$ function.

$$P[-10 \leq X \leq 10] = F_X(10) - F_X(-10) = 2\Phi \left(\frac{10}{\sigma_X} \right) - 1 \quad (2)$$

This implies $\Phi(10/\sigma_X) = 0.55$. Using Table 3.1 for the Gaussian CDF, we find that $10/\sigma_X = 0.15$ or $\sigma_X = 66.6$.

Problem 3.5.4 Solution

Repeating Definition 3.11,

$$Q(z) = \frac{1}{\sqrt{2\pi}} \int_z^{\infty} e^{-u^2/2} du \quad (1)$$

Making the substitution $x = u/\sqrt{2}$, we have

$$Q(z) = \frac{1}{\sqrt{\pi}} \int_{z/\sqrt{2}}^{\infty} e^{-x^2} dx = \frac{1}{2} \text{erfc} \left(\frac{z}{\sqrt{2}} \right) \quad (2)$$

Problem 3.5.5 Solution

Moving to Antarctica, we find that the temperature, T is still Gaussian but with variance 225. We also know that with probability 1/2, T exceeds 10 degrees. First we would like to find the mean temperature, and we do so by looking at the second fact.

$$P[T > 10] = 1 - P[T \leq 10] = 1 - \Phi \left(\frac{10 - \mu_T}{15} \right) = 1/2 \quad (1)$$

By looking at the table we find that if $\Phi(\Gamma) = 1/2$, then $\Gamma = 0$. Therefore,

$$\Phi \left(\frac{10 - \mu_T}{15} \right) = 1/2 \quad (2)$$

implies that $(10 - \mu_T)/15 = 0$ or $\mu_T = 10$. Now we have a Gaussian T with mean 10 and standard
deviation 15. So we are prepared to answer the following problems.

\[
P(T > 32) = 1 - P(T \leq 32) = 1 - \Phi \left(\frac{32 - 10}{15} \right) = 1 - \Phi(1.45) = 1 - 0.926 = 0.074
\]

\[
P(T < 0) = F_T(0) = \Phi \left(\frac{0 - 10}{15} \right) = \Phi(-2/3) = 1 - \Phi(2/3) = 1 - 0.749 = 0.251
\]

\[
P(T > 60) = 1 - P(T \leq 60) = 1 - F_T(60) = 1 - \Phi \left(\frac{60 - 10}{15} \right) = 1 - \Phi(10/3) = Q(3.33) = 4.34 \cdot 10^{-4}
\]

Problem 3.5.6 Solution

In this problem, we use Theorem 3.14 and the tables for the \(\Phi\) and \(Q\) functions to answer the questions. Since \(E[Y_{20}] = 40(20) = 800\) and \(\text{Var}[Y_{20}] = 100(20) = 2000\), we can write

\[
P(Y_{20} > 1000) = P \left[\frac{Y_{20} - 800}{\sqrt{2000}} > \frac{1000 - 800}{\sqrt{2000}} \right] = P \left[Z > \frac{200}{20\sqrt{5}} \right] = Q(4.47) = 3.91 \times 10^{-6}
\]

The second part is a little trickier. Since \(E[Y_{25}] = 1000\), we know that the prof will spend around $1000 in roughly 25 years. However, to be certain with probability 0.99 that the prof spends $1000 will require more than 25 years. In particular, we know that

\[
P(Y_n > 1000) = P \left[\frac{Y_n - 40n}{\sqrt{100n}} > \frac{1000 - 40n}{\sqrt{100n}} \right] = 1 - \Phi \left(\frac{100 - 4n}{\sqrt{n}} \right) = 0.99
\]

Hence, we must find \(n\) such that

\[
\Phi \left(\frac{100 - 4n}{\sqrt{n}} \right) = 0.01
\]

Recall that \(\Phi(x) = 0.01\) for a negative value of \(x\). This is consistent with our earlier observation that we would need \(n > 25\) corresponding to \(100 - 4n < 0\). Thus, we use the identity \(\Phi(x) = 1 - \Phi(-x)\) to write

\[
\Phi \left(\frac{100 - 4n}{\sqrt{n}} \right) = 1 - \Phi \left(\frac{4n - 100}{\sqrt{n}} \right) = 0.01
\]

Equivalently, we have

\[
\Phi \left(\frac{4n - 100}{\sqrt{n}} \right) = 0.99
\]

From the table of the \(\Phi\) function, we have that \((4n - 100)/\sqrt{n} = 2.33\), or

\[
(n - 25)^2 = (0.58)^2n = 0.3393n.
\]

Solving this quadratic yields \(n = 28.09\). Hence, only after 28 years are we 99 percent sure that the prof will have spent $1000. Note that a second root of the quadratic yields \(n = 22.25\). This root is not a valid solution to our problem. Mathematically, it is a solution of our quadratic in which we choose the negative root of \(\sqrt{n}\). This would correspond to assuming the standard deviation of \(Y_n\) is negative.
Problem 3.5.7 Solution
We are given that there are 100,000,000 men in the United States and 23,000 of them are at least 7 feet tall, and the heights of U.S men are independent Gaussian random variables with mean 5′10″.

(a) Let H denote the height in inches of a U.S male. To find σ_X, we look at the fact that the probability that $P[H \geq 84]$ is the number of men who are at least 7 feet tall divided by the total number of men (the frequency interpretation of probability). Since we measure H in inches, we have

$$P[H \geq 84] = \frac{23,000}{100,000,000} = \Phi\left(\frac{70 - 84}{\sigma_X}\right) = 0.00023$$

(1)

Since $\Phi(-x) = 1 - \Phi(x) = Q(x)$,

$$Q(14/\sigma_X) = 2.3 \cdot 10^{-4}$$

(2)

From Table 3.2, this implies $14/\sigma_X = 3.5$ or $\sigma_X = 4$.

(b) The probability that a randomly chosen man is at least 8 feet tall is

$$P[H \geq 96] = Q\left(\frac{96 - 70}{4}\right) = Q(6.5)$$

(3)

Unfortunately, Table 3.2 doesn’t include $Q(6.5)$, although it should be apparent that the probability is very small. In fact, $Q(6.5) = 4.0 \times 10^{-11}$.

(c) First we need to find the probability that a man is at least 7′6″.

$$P[H \geq 90] = Q\left(\frac{90 - 70}{4}\right) = Q(5) \approx 3 \cdot 10^{-7} = \beta$$

(4)

Although Table 3.2 stops at $Q(4.99)$, if you’re curious, the exact value is $Q(5) = 2.87 \cdot 10^{-7}$. Now we can begin to find the probability that no man is at least 7′6″. This can be modeled as 100,000,000 repetitions of a Bernoulli trial with parameter $1 - \beta$. The probability that no man is at least 7′6″ is

$$(1 - \beta)^{100,000,000} = 9.4 \times 10^{-14}$$

(5)

(d) The expected value of N is just the number of trials multiplied by the probability that a man is at least 7′6″.

$$E[N] = 100,000,000 \cdot \beta = 30$$

(6)

Problem 3.5.8 Solution
This problem is in the wrong section since the erf(·) function is defined later on in Section 3.9 as

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^2} du.$$

(1)
(a) Since Y is Gaussian $(0, 1/\sqrt{2})$, Y has variance $1/2$ and
\[f_Y(y) = \frac{1}{\sqrt{2\pi(1/2)}} e^{-y^2/[2(1/2)]} = \frac{1}{\sqrt{\pi}} e^{-y^2}. \quad (2) \]

For $y \geq 0$, $F_Y(y) = \int_{-\infty}^{y} f_Y(u) \, du = 1/2 + \int_{0}^{y} f_Y(u) \, du$. Substituting $f_Y(u)$ yields
\[F_Y(y) = \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_{0}^{y} e^{-u^2} \, du = \frac{1}{2} + \text{erf}(y). \quad (3) \]

(b) Since Y is Gaussian $(0, 1/\sqrt{2})$, $Z = \sqrt{2}Y$ is Gaussian with expected value $E[Z] = \sqrt{2}E[Y] = 0$ and variance $\text{Var}[Z] = 2 \text{Var}[Y] = 1$. Thus Z is Gaussian $(0, 1)$ and
\[\Phi(z) = F_Z(z) = P[\sqrt{2}Y \leq z] = P\left[Y \leq \frac{z}{\sqrt{2}}\right] = F_Y\left(\frac{z}{\sqrt{2}}\right) = \frac{1}{2} + \text{erf}\left(\frac{z}{\sqrt{2}}\right). \quad (4) \]

Problem 3.5.9 Solution
First we note that since W has an $N[\mu, \sigma^2]$ distribution, the integral we wish to evaluate is
\[I = \int_{-\infty}^{\infty} f_W(w) \, dw = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} e^{-(w-\mu)^2/2\sigma^2} \, dw \quad (1) \]

(a) Using the substitution $x = (w-\mu)/\sigma$, we have $dx = dw/\sigma$ and
\[I = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} \, dx \quad (2) \]

(b) When we write I^2 as the product of integrals, we use y to denote the other variable of integration so that
\[I^2 = \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} \, dx\right) \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^2/2} \, dy\right) \quad (3) \]
\[= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} \, dx \, dy \quad (4) \]

(c) By changing to polar coordinates, $x^2 + y^2 = r^2$ and $dx \, dy = r \, dr \, d\theta$ so that
\[I^2 = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2/2} r \, dr \, d\theta \quad (5) \]
\[= \frac{1}{2\pi} \int_{0}^{2\pi} -e^{-r^2/2} \bigg|_{0}^{\infty} \, d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \, d\theta = 1 \quad (6) \]

Problem 3.5.10 Solution
This problem is mostly calculus and only a little probability. From the problem statement, the SNR Y is an exponential $(1/\gamma)$ random variable with PDF
\[f_Y(y) = \begin{cases} \frac{1}{\gamma} e^{-y/\gamma} & y \geq 0, \\ 0 & \text{otherwise}. \end{cases} \quad (1) \]
Thus, from the problem statement, the BER is
\[\mathcal{P}_e = E[P_e(Y)] = \int_{-\infty}^{\infty} Q(\sqrt{2y}) f_Y(y) \, dy = \int_{0}^{\infty} Q(\sqrt{2y}) \frac{y}{\gamma} e^{-y/\gamma} \, dy \] (2)

Like most integrals with exponential factors, it’s a good idea to try integration by parts. Before doing so, we recall that if \(X \) is a Gaussian \((0, 1)\) random variable with CDF \(F_X(x) \), then
\[Q(x) = 1 - F_X(x). \] (3)

It follows that \(Q(x) \) has derivative
\[Q'(x) = \frac{dQ(x)}{dx} = -\frac{dF_X(x)}{dx} = -\frac{1}{\sqrt{2\pi}} e^{-x^2/2} \] (4)

To solve the integral, we use the integration by parts formula \(\int_{a}^{b} u \, dv = uv \bigg|_{a}^{b} - \int_{a}^{b} v \, du \), where
\[u = Q(\sqrt{2y}) \quad \quad \quad \quad dv = \frac{1}{\gamma} e^{-y/\gamma} \, dy \] (5)
\[du = Q'(\sqrt{2y}) \frac{1}{\sqrt{2y}} = -\frac{e^{-y}}{2\sqrt{\pi y}} \quad \quad \quad \quad v = -e^{-y/\gamma} \] (6)

From integration by parts, it follows that
\[\mathcal{P}_e = uv \bigg|_{0}^{\infty} - \int_{0}^{\infty} v \, du = -Q(\sqrt{2y}) e^{-y/\gamma} \bigg|_{0}^{\infty} - \int_{0}^{\infty} \frac{1}{\sqrt{y}} e^{-y[1+(1/\gamma)]} \, dy \] (7)
\[= 0 + Q(0) e^{-0} - \frac{1}{2\sqrt{\pi}} \int_{0}^{\infty} y^{-1/2} e^{-y/\bar{\gamma}} \, dy \] (8)

where \(\bar{\gamma} = \gamma/(1 + \gamma) \). Next, recalling that \(Q(0) = 1/2 \) and making the substitution \(t = y/\bar{\gamma} \), we obtain
\[\mathcal{P}_e = \frac{1}{2} \left(1 - \frac{1}{2\sqrt{\pi}} \int_{0}^{\infty} t^{-1/2} e^{-t} \, dt \right) \] (9)

From Math Fact B.11, we see that the remaining integral is the \(\Gamma(z) \) function evaluated \(z = 1/2 \). Since \(\Gamma(1/2) = \sqrt{\pi} \),
\[\mathcal{P}_e = \frac{1}{2} \left(1 - \frac{1}{2\sqrt{\pi}} \Gamma(1/2) \right) = \frac{1}{2} \left[1 - \sqrt{\frac{\gamma}{1 + \gamma}} \right] = \frac{1}{2} \left[1 - \sqrt{1 + \gamma} \right] \] (10)

Problem 3.6.1 Solution

(a) Using the given CDF
\[P [X < -1] = F_X (-1^-) = 0 \] (1)
\[P [X \leq -1] = F_X (-1) = -1/3 + 1/3 = 0 \] (2)

Where \(F_X (-1^-) \) denotes the limiting value of the CDF found by approaching \(-1\) from the left. Likewise, \(F_X (-1^+) \) is interpreted to be the value of the CDF found by approaching \(-1\) from the right. We notice that these two probabilities are the same and therefore the probability that \(X \) is exactly \(-1\) is zero.
Here we see that there is a discrete jump at $X = 0$. Approached from the left the CDF yields a value of $1/3$ but approached from the right the value is $2/3$. This means that there is a non-zero probability that $X = 0$, in fact that probability is the difference of the two values.

$$P[X = 0] = P[X \leq 0] - P[X < 0] = 2/3 - 1/3 = 1/3$$

The difference in the last two probabilities above is that the first was concerned with the probability that X was strictly greater then 0, and the second with the probability that X was greater than or equal to zero. Since the the second probability is a larger set (it includes the probability that $X = 0$) it should always be greater than or equal to the first probability. The two differ by the probability that $X = 0$, and this difference is non-zero only when the random variable exhibits a discrete jump in the CDF.

Problem 3.6.2 Solution

Similar to the previous problem we find

(a)

$$P[X < -1] = F_X (-1^-) = 0 \quad P[X \leq -1] = F_X (-1) = 1/4$$

Here we notice the discontinuity of value $1/4$ at $x = -1$.

(b)

$$P[X < 0] = F_X (0^-) = 1/2 \quad P[X \leq 0] = F_X (0) = 1/2$$

Since there is no discontinuity at $x = 0$, $F_X (0^-) = F_X (0^+) = F_X (0)$.

(c)

$$P[X > 1] = 1 - P[X \leq 1] = 1 - F_X (1) = 0$$

$$P[X \geq 1] = 1 - P[X < 1] = 1 - F_X (1^-) = 1 - 3/4 = 1/4$$

Again we notice a discontinuity of size $1/4$, here occurring at $x = 1$.

Problem 3.6.3 Solution

(a) By taking the derivative of the CDF $F_X (x)$ given in Problem 3.6.2, we obtain the PDF

$$f_X (x) = \begin{cases} \frac{\delta(x+1)}{4} + 1/4 + \frac{\delta(x-1)}{4} & -1 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$
(b) The first moment of X is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$$

$$= x/4|_{x=-1} + x^2/8|_{-1}^1 + x/4|_{x=1} = -1/4 + 0 + 1/4 = 0.$$

(3)

(c) The second moment of X is

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) \, dx$$

$$= x^2/4|_{x=-1} + x^3/12|_{-1}^1 + x^2/4|_{x=1} = 1/4 + 1/6 + 1/4 = 2/3.$$

Since $E[X] = 0$, $\text{Var}[X] = E[X^2] = 2/3$.

Problem 3.6.4 Solution
The PMF of a Bernoulli random variable with mean p is

$$P_X(x) = \begin{cases}
1-p & x = 0 \\
p & x = 1 \\
0 & \text{otherwise}
\end{cases} \quad (1)$$

The corresponding PDF of this discrete random variable is

$$f_X(x) = (1-p)\delta(x) + p\delta(x-1) \quad (2)$$

Problem 3.6.5 Solution
The PMF of a geometric random variable with mean $1/p$ is

$$P_X(x) = \begin{cases}
p(1-p)^{x-1} & x = 1, 2, \ldots \\
0 & \text{otherwise}
\end{cases} \quad (1)$$

The corresponding PDF is

$$f_X(x) = p\delta(x-1) + p(1-p)\delta(x-2) + \cdots \quad (2)$$

$$= \sum_{j=1}^{\infty} p(1-p)^{j-1}\delta(x-j) \quad (3)$$

Problem 3.6.6 Solution

(a) Since the conversation time cannot be negative, we know that $F_W(w) = 0$ for $w < 0$. The conversation time W is zero iff either the phone is busy, no one answers, or if the conversation time X of a completed call is zero. Let A be the event that the call is answered. Note that the event A^c implies $W = 0$. For $w \geq 0$,

$$F_W(w) = P[A^c] + P[A] F_{W|A}(w) = (1/2) + (1/2)F_X(w) \quad (1)$$

Thus the complete CDF of W is

$$F_W(w) = \begin{cases}
0 & w < 0 \\
1/2 + (1/2)F_X(w) & w \geq 0
\end{cases} \quad (2)$$
(b) By taking the derivative of $F_W(w)$, the PDF of W is

$$f_W(w) = \begin{cases} (1/2)\delta(w) + (1/2)f_X(w) & \text{otherwise} \end{cases}$$

Next, we keep in mind that since X must be nonnegative, $f_X(x) = 0$ for $x < 0$. Hence,

$$f_W(w) = (1/2)\delta(w) + (1/2)f_X(w)$$

(c) From the PDF $f_W(w)$, calculating the moments is straightforward.

$$E[W] = \int_{-\infty}^{\infty} w f_W(w) \, dw = (1/2) \int_{-\infty}^{\infty} w f_X(w) \, dw = E[X]/2$$

The second moment is

$$E[W^2] = \int_{-\infty}^{\infty} w^2 f_W(w) \, dw = (1/2) \int_{-\infty}^{\infty} w^2 f_X(w) \, dw = E[X^2]/2$$

The variance of W is

$$\text{Var}[W] = E[W^2] - (E[W])^2 = E[X^2]/2 - (E[X]/2)^2 = (1/2)\text{Var}[X] + (E[X])^2/4$$

Problem 3.6.7 Solution

The professor is on time 80 percent of the time and when he is late his arrival time is uniformly distributed between 0 and 300 seconds. The PDF of T, is

$$f_T(t) = \begin{cases} 0.8\delta(t - 0) + \frac{0.2}{300} & 0 \leq t \leq 300 \\ 0 & \text{otherwise} \end{cases}$$

The CDF can be found be integrating

$$F_T(t) = \begin{cases} 0 & t < -1 \\ 0.8 + \frac{0.2t}{300} & 0 \leq t < 300 \\ 1 & t \geq 300 \end{cases}$$

Problem 3.6.8 Solution

Let G denote the event that the throw is good, that is, no foul occurs. The CDF of D obeys

$$F_D(y) = P[D \leq y|G] P[G] + P[D \leq y|G^c] P[G^c]$$

Given the event G,

$$P[D \leq y|G] = P[X \leq y - 60] = 1 - e^{-(y-60)/10} \quad (y \geq 60)$$

Of course, for $y < 60$, $P[D \leq y|G] = 0$. From the problem statement, if the throw is a foul, then $D = 0$. This implies

$$P[D \leq y|G^c] = u(y)$$
where $u(\cdot)$ denotes the unit step function. Since $P[G] = 0.7$, we can write

$$F_D(y) = P[G]P[D \leq y|G] + P[G^c]P[D \leq y|G^c]$$

(4)

$$= \begin{cases}
0.3u(y) & y < 60 \\
0.3 + 0.7(1 - e^{-(y-60)/10}) & y \geq 60
\end{cases}$$

(5)

Another way to write this CDF is

$$F_D(y) = 0.3u(y) + 0.7u(y-60)(1 - e^{-(y-60)/10})$$

(6)

However, when we take the derivative, either expression for the CDF will yield the PDF. However, taking the derivative of the first expression perhaps may be simpler:

$$f_D(y) = \begin{cases}
0.3\delta(y) & y < 60 \\
0.07e^{-(y-60)/10} & y \geq 60
\end{cases}$$

(7)

Taking the derivative of the second expression for the CDF is a little tricky because of the product of the exponential and the step function. However, applying the usual rule for the differentiation of a product does give the correct answer:

$$f_D(y) = 0.3\delta(y) + 0.7\delta(y-60)(1 - e^{-(y-60)/10}) + 0.07u(y-60)e^{-(y-60)/10}$$

(8)

$$= 0.3\delta(y) + 0.07u(y-60)e^{-(y-60)/10}$$

(9)

The middle term $\delta(y-60)(1 - e^{-(y-60)/10})$ dropped out because at $y = 60$, $e^{-(y-60)/10} = 1$.

Problem 3.6.9 Solution

The professor is on time and lectures the full 80 minutes with probability 0.7. In terms of math,

$$P[T = 80] = 0.7.$$ \hspace{1cm} (1)

Likewise when the professor is more than 5 minutes late, the students leave and a 0 minute lecture is observed. Since he is late 30% of the time and given that he is late, his arrival is uniformly distributed between 0 and 10 minutes, the probability that there is no lecture is

$$P[T = 0] = (0.3)(0.5) = 0.15$$ \hspace{1cm} (2)

The only other possible lecture durations are uniformly distributed between 75 and 80 minutes, because the students will not wait longer than 5 minutes, and that probability must add to a total of $1 - 0.7 - 0.15 = 0.15$. So the PDF of T can be written as

$$f_T(t) = \begin{cases}
0.15\delta(t) & t = 0 \\
0.03 & 75 \leq t < 80 \\
0.7\delta(t-80) & t = 80 \\
0 & \text{otherwise}
\end{cases}$$

(3)

Problem 3.7.1 Solution

Since $0 \leq X \leq 1$, $Y = X^2$ satisfies $0 \leq Y \leq 1$. We can conclude that $F_Y(y) = 0$ for $y < 0$ and that $F_Y(y) = 1$ for $y \geq 1$. For $0 \leq y < 1$,

$$F_Y(y) = P[X^2 \leq y] = P[X \leq \sqrt{y}]$$

(1)
Since \(f_X(x) = 1 \) for \(0 \leq x \leq 1 \), we see that for \(0 \leq y < 1 \),
\[
P \left[X \leq \sqrt{y} \right] = \int_{0}^{\sqrt{y}} dx = \sqrt{y} \tag{2}
\]
Hence, the CDF of \(Y \) is
\[
F_Y(y) = \begin{cases}
0 & y < 0 \\
\sqrt{y} & 0 \leq y < 1 \\
1 & y \geq 1
\end{cases} \tag{3}
\]
By taking the derivative of the CDF, we obtain the PDF
\[
f_Y(y) = \begin{cases}
\frac{1}{(2\sqrt{y})} & 0 \leq y < 1 \\
0 & \text{otherwise}
\end{cases} \tag{4}
\]

Problem 3.7.2 Solution

Since \(Y = \sqrt{X} \), the fact that \(X \) is nonegative and that we assume the square root is always positive implies \(F_Y(y) = 0 \) for \(y < 0 \). In addition, for \(y \geq 0 \), we can find the CDF of \(Y \) by writing
\[
F_Y(y) = P [Y \leq y] = P \left[\sqrt{X} \leq y \right] = P \left[X \leq y^2 \right] = F_X(y^2) \tag{1}
\]
For \(x \geq 0 \), \(F_X(x) = 1 - e^{-\lambda x} \). Thus,
\[
F_Y(y) = \begin{cases}
1 - e^{-\lambda y^2} & y \geq 0 \\
0 & \text{otherwise}
\end{cases} \tag{2}
\]
By taking the derivative with respect to \(y \), it follows that the PDF of \(Y \) is
\[
f_Y(y) = \begin{cases}
2\lambda ye^{-\lambda y^2} & y \geq 0 \\
0 & \text{otherwise}
\end{cases} \tag{3}
\]
In comparing this result to the Rayleigh PDF given in Appendix A, we observe that \(Y \) is a Rayleigh \((a)\) random variable with \(a = \sqrt{2\lambda} \).

Problem 3.7.3 Solution

Since \(X \) is non-negative, \(W = X^2 \) is also non-negative. Hence for \(w < 0 \), \(f_W(w) = 0 \). For \(w \geq 0 \),
\[
F_W(w) = P [W \leq w] = P \left[X^2 \leq w \right] = P \left[X \leq \sqrt{w} \right] = 1 - e^{-\lambda\sqrt{w}} \tag{3}
\]
Taking the derivative with respect to \(w \) yields \(f_W(w) = \lambda e^{-\lambda\sqrt{w}}/(2\sqrt{w}) \). The complete expression for the PDF is
\[
f_W(w) = \begin{cases}
\frac{\lambda e^{-\lambda\sqrt{w}}}{2\sqrt{w}} & w \geq 0 \\
0 & \text{otherwise}
\end{cases} \tag{4}
\]
Problem 3.7.4 Solution
From Problem 3.6.1, random variable X has CDF

$$F_X(x) = \begin{cases}
0 & x < -1 \\
\frac{x}{3} + \frac{1}{3} & -1 \leq x < 0 \\
\frac{x}{3} + \frac{2}{3} & 0 \leq x < 1 \\
1 & 1 \leq x
\end{cases} \quad (1)$$

(a) We can find the CDF of Y, $F_Y(y)$ by noting that Y can only take on two possible values, 0 and 100. And the probability that Y takes on these two values depends on the probability that $X < 0$ and $X \geq 0$, respectively. Therefore

$$F_Y(y) = P[Y \leq y] = \begin{cases}
0 & y < 0 \\
P[X < 0] & 0 \leq y < 100 \\
1 & y \geq 100
\end{cases} \quad (2)$$

The probabilities concerned with X can be found from the given CDF $F_X(x)$. This is the general strategy for solving problems of this type: to express the CDF of Y in terms of the CDF of X. Since $P[X < 0] = F_X(0^-) = 1/3$, the CDF of Y is

$$F_Y(y) = P[Y \leq y] = \begin{cases}
0 & y < 0 \\
\frac{1}{3} & 0 \leq y < 100 \\
1 & y \geq 100
\end{cases} \quad (3)$$

(b) The CDF $F_Y(y)$ has jumps of $1/3$ at $y = 0$ and $2/3$ at $y = 100$. The corresponding PDF of Y is

$$f_Y(y) = \delta(y)/3 + 2\delta(y-100)/3 \quad (4)$$

(c) The expected value of Y is

$$E[Y] = \int_{-\infty}^{\infty} y f_Y(y) \, dy = 0 \cdot \frac{1}{3} + 100 \cdot \frac{2}{3} = 66.66 \quad (5)$$

Problem 3.7.5 Solution
Before solving for the PDF, it is helpful to have a sketch of the function $X = -\ln(1 - U)$.

(a) From the sketch, we observe that X will be nonnegative. Hence $F_X(x) = 0$ for $x < 0$. Since U has a uniform distribution on $[0, 1]$, for $0 \leq u \leq 1$, $P[U \leq u] = u$. We use this fact to find the CDF of X. For $x \geq 0$,

$$F_X(x) = P[-\ln(1 - U) \leq x] = P[1 - U \geq e^{-x}] = P[U \leq 1 - e^{-x}] \quad (1)$$

102
For \(x \geq 0 \), \[0 \leq 1 - e^{-x} \leq 1 \]
and so
\[F_X (x) = F_U (1 - e^{-x}) = 1 - e^{-x} \]
(2)

The complete CDF can be written as
\[F_X (x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-x} & x \geq 0 \end{cases} \]
(3)

(b) By taking the derivative, the PDF is
\[f_X (x) = \begin{cases} e^{-x} & x \geq 0 \\ 0 & \text{otherwise} \end{cases} \]
(4)

Thus, \(X \) has an exponential PDF. In fact, since most computer languages provide uniform [0,1] random numbers, the procedure outlined in this problem provides a way to generate exponential random variables from uniform random variables.

(c) Since \(X \) is an exponential random variable with parameter \(a = 1 \), \(E[X] = 1 \).

Problem 3.7.6 Solution

We wish to find a transformation that takes a uniformly distributed random variable on [0,1] to the following PDF for \(Y \).
\[f_Y (y) = \begin{cases} 3y^2 & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases} \]
(1)

We begin by realizing that in this case the CDF of \(Y \) must be
\[F_Y (y) = \begin{cases} 0 & y < 0 \\ y^3 & 0 \leq y \leq 1 \\ 1 & \text{otherwise} \end{cases} \]
(2)

Therefore, for \(0 \leq y \leq 1 \),
\[P [Y \leq y] = P [g(X) \leq y] = y^3 \]
(3)

Thus, using \(g(X) = X^{1/3} \), we see that for \(0 \leq y \leq 1 \),
\[P [g(X) \leq y] = P [X^{1/3} \leq y] = P [X \leq y^3] = y^3 \]
(4)

which is the desired answer.

Problem 3.7.7 Solution

Since the microphone voltage \(V \) is uniformly distributed between -1 and 1 volts, \(V \) has PDF and CDF
\[f_V (v) = \begin{cases} 1/2 & -1 \leq v \leq 1 \\ 0 & \text{otherwise} \end{cases} \]
\[F_V (v) = \begin{cases} 0 & v < -1 \\ (v + 1)/2 & -1 \leq v \leq 1 \\ 1 & v > 1 \end{cases} \]
(1)

The voltage is processed by a limiter whose output magnitude is given by below
\[L = \begin{cases} |V| & |V| \leq 0.5 \\ 0.5 & \text{otherwise} \end{cases} \]
(2)
(a)
\[P[L = 0.5] = P[|V| \geq 0.5] = P[V \geq 0.5] + P[V \leq -0.5] \]
\[= 1 - F_V(0.5) + F_V(-0.5) \]
\[= 1 - 1.5/2 + 0.5/2 = 1/2 \]

(b) For \(0 \leq l \leq 0.5\),
\[F_L(l) = P[|V| \leq l] = P[-l \leq V \leq l] = F_V(l) - F_V(-l) \]
\[= 1/2(l + 1) - 1/2(-l + 1) = l \]

So the CDF of \(L\) is
\[F_L(l) = \begin{cases}
0 & l < 0 \\
 l & 0 \leq l < 0.5 \\
1 & l \geq 0.5
\end{cases} \]

(c) By taking the derivative of \(F_L(l)\), the PDF of \(L\) is
\[f_L(l) = \begin{cases}
1 + (0.5)\delta(l - 0.5) & 0 \leq l \leq 0.5 \\
0 & \text{otherwise} \end{cases} \]

The expected value of \(L\) is
\[E[L] = \int_{-\infty}^{\infty} l f_L(l) \, dl = \int_{0}^{0.5} l \, dl + 0.5 \int_{0}^{0.5} l(0.5)\delta(l - 0.5) \, dl = 0.375 \]

Problem 3.7.8 Solution

Let \(X\) denote the position of the pointer and \(Y\) denote the area within the arc defined by the stopping position of the pointer.

(a) If the disc has radius \(r\), then the area of the disc is \(\pi r^2\). Since the circumference of the disc is 1 and \(X\) is measured around the circumference, \(Y = \pi r^2 X\). For example, when \(X = 1\), the shaded area is the whole disc and \(Y = \pi r^2\). Similarly, if \(X = 1/2\), then \(Y = \pi r^2/2\) is half the area of the disc. Since the disc has circumference 1, \(r = 1/(2\pi)\) and
\[Y = \pi r^2 X = \frac{X}{4\pi} \]

(b) The CDF of \(Y\) can be expressed as
\[F_Y(y) = P[Y \leq y] = P \left[\frac{X}{4\pi} \leq y \right] = P[X \leq 4\pi y] = F_X(4\pi y) \]

Therefore the CDF is
\[F_Y(y) = \begin{cases}
0 & y < 0 \\
4\pi y & 0 \leq y \leq \frac{1}{4\pi} \\
1 & y \geq \frac{1}{4\pi}
\end{cases} \]

(c) By taking the derivative of the CDF, the PDF of \(Y\) is
\[f_Y(y) = \begin{cases}
4\pi & 0 \leq y \leq \frac{1}{4\pi} \\
0 & \text{otherwise} \end{cases} \]

(d) The expected value of \(Y\) is
\[E[Y] = \int_{0}^{1/(4\pi)} 4\pi y \, dy = 1/(8\pi) \]
Problem 3.7.9 Solution
The uniform \((0, 2)\) random variable \(U\) has PDF and CDF

\[
f_U(u) = \begin{cases}
1/2 & 0 \leq u \leq 2, \\
0 & \text{otherwise,}
\end{cases} \\
F_U(u) = \begin{cases}
0 & u < 0, \\
u/2 & 0 \leq u < 2, \\
1 & u > 2.
\end{cases}
\]

The uniform random variable \(U\) is subjected to the following clipper.

\[W = g(U) = \begin{cases}
U & U \leq 1 \\
1 & U > 1
\end{cases}\]

To find the CDF of the output of the clipper, \(W\), we remember that \(W = U\) for \(0 \leq U \leq 1\) while \(W = 1\) for \(1 \leq U \leq 2\). First, this implies \(W\) is nonnegative, i.e., \(F_W(w) = 0\) for \(w < 0\). Furthermore, for \(0 \leq w \leq 1\),

\[F_W(w) = P[W \leq w] = P[U \leq w] = F_U(u) = w/2\]

Lastly, we observe that it is always true that \(W \leq 1\). This implies \(F_W(w) = 1\) for \(w \geq 1\). Therefore the CDF of \(W\) is

\[F_W(w) = \begin{cases}
0 & w < 0 \\
w/2 & 0 \leq w < 1 \\
1 & w \geq 1
\end{cases}\]

From the jump in the CDF at \(w = 1\), we see that \(P[W = 1] = 1/2\). The corresponding PDF can be found by taking the derivative and using the delta function to model the discontinuity.

\[f_W(w) = \begin{cases}
1/2 + (1/2)\delta(w - 1) & 0 \leq w \leq 1 \\
0 & \text{otherwise}
\end{cases}\]

The expected value of \(W\) is

\[E[W] = \int_{-\infty}^{\infty} w f_W(w) \, dw = \int_{0}^{1} w[1/2 + (1/2)\delta(w - 1)] \, dw = 1/4 + 1/2 = 3/4.\]

Problem 3.7.10 Solution
Given the following function of random variable \(X\),

\[Y = g(X) = \begin{cases}
10 & X < 0 \\
-10 & X \geq 0
\end{cases}\]

we follow the same procedure as in Problem 3.7.4. We attempt to express the CDF of \(Y\) in terms of the CDF of \(X\). We know that \(Y\) is always less than \(-10\). We also know that \(-10 \leq Y < 10\) when \(X \geq 0\), and finally, that \(Y = 10\) when \(X < 0\). Therefore

\[F_Y(y) = P[Y \leq y] = \begin{cases}
0 & y < -10 \\
P[X \geq 0] = 1 - F_X(0) & -10 \leq y < 10 \\
1 & y \geq 10
\end{cases}\]
Problem 3.7.11 Solution
The PDF of U is
\[f_U(u) = \begin{cases} 1/2 & -1 \leq u \leq 1 \\ 0 & \text{otherwise} \end{cases} \] (1)

Since $W \geq 0$, we see that $F_W(w) = 0$ for $w < 0$. Next, we observe that the rectifier output W is a mixed random variable since
\[P[W = 0] = P[U < 0] = \int_{-1}^{0} f_U(u) \, du = 1/2 \] (2)
The above facts imply that
\[F_W(0) = P[W \leq 0] = P[W = 0] = 1/2 \] (3)

Next, we note that for $0 < w < 1$,
\[F_W(w) = P[U \leq w] = \int_{-1}^{w} f_U(u) \, du = (w + 1)/2 \] (4)

Finally, $U \leq 1$ implies $W \leq 1$, which implies $F_W(w) = 1$ for $w \geq 1$. Hence, the complete expression for the CDF is
\[F_W(w) = \begin{cases} 0 & w < 0 \\ (w + 1)/2 & 0 \leq w \leq 1 \\ 1 & w > 1 \end{cases} \] (5)

By taking the derivative of the CDF, we find the PDF of W; however, we must keep in mind that the discontinuity in the CDF at $w = 0$ yields a corresponding impulse in the PDF.
\[f_W(w) = \begin{cases} (\delta(w) + 1)/2 & 0 \leq w \leq 1 \\ 0 & \text{otherwise} \end{cases} \] (6)

From the PDF, we can calculate the expected value
\[E[W] = \int_{0}^{1} w(\delta(w) + 1)/2 \, dw = 0 + \int_{0}^{1} (w/2) \, dw = 1/4 \] (7)

Perhaps an easier way to find the expected value is to use Theorem 2.10. In this case,
\[E[W] = \int_{-\infty}^{\infty} g(u) f_W(w) \, du = \int_{0}^{1} u(1/2) \, du = 1/4 \] (8)

As we expect, both approaches give the same answer.

Problem 3.7.12 Solution
Theorem 3.19 states that for a constant $a > 0$, $Y = aX$ has CDF and PDF
\[F_Y(y) = F_X(y/a) \quad f_Y(y) = \frac{1}{a} f_X(y/a) \] (1)

(a) If X is uniform (b, c), then $Y = aX$ has PDF
\[f_Y(y) = \frac{1}{a} f_X(y/a) = \begin{cases} \frac{1}{a(c-b)} & b \leq y/a \leq c \\ 0 & \text{otherwise} \end{cases} = \begin{cases} \frac{1}{ac-ab} & ab \leq y \leq ac \\ 0 & \text{otherwise} \end{cases} \] (2)

Thus Y has the PDF of a uniform (ab, ac) random variable.
(b) Using Theorem 3.19, the PDF of $Y = aX$ is

$$f_Y(y) = \frac{1}{a}f_X\left(\frac{y}{a}\right) = \begin{cases} \frac{\lambda e^{-\lambda (y/a)}}{a} & y/a \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{(\lambda/a)e^{-\lambda y}}{y} & y \geq 0 \\ 0 & \text{otherwise} \end{cases} \quad (3)$$

Hence Y is an exponential (λ/a) exponential random variable.

(c) Using Theorem 3.19, the PDF of $Y = aX$ is

$$f_Y(y) = \frac{1}{a}f_X\left(\frac{y}{a}\right) = \begin{cases} \frac{\lambda^n(y/a)^{n-1}e^{-\lambda (y/a)}}{a(n-1)!} & y/a \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{(\lambda/a)^ny^{n-1}e^{-\lambda y}}{(n-1)!} & y \geq 0, \\ 0 & \text{otherwise,} \end{cases} \quad (5)$$

which is an Erlang (n, λ) PDF.

(d) If X is a Gaussian (μ, σ) random variable, then $Y = aX$ has PDF

$$f_Y(y) = f_X\left(\frac{y}{a}\right) = \frac{1}{a\sqrt{2\pi\sigma^2}}e^{-((y/a)-\mu)^2/2\sigma^2}$$

$$= \frac{1}{\sqrt{2\pi a^2\sigma^2}}e^{-(y-a\mu)^2/(a^2\sigma^2)} \quad (7)$$

$$= \frac{1}{\sqrt{2\pi a^2\sigma^2}}e^{-(y-a\mu)^2/(2\sigma^2)} \quad (8)$$

Thus Y is a Gaussian random variable with expected value $E[Y] = a\mu$ and $\text{Var}[Y] = a^2\sigma^2$. That is, Y is a Gaussian $(a\mu, a\sigma)$ random variable.

Problem 3.7.13 Solution

If X has a uniform distribution from 0 to 1 then the PDF and corresponding CDF of X are

$$f_X(x) = \begin{cases} 1 & 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases} \quad F_X(x) = \begin{cases} 0 & x < 0 \\ x & 0 \leq x \leq 1 \\ 1 & x > 1 \end{cases} \quad (1)$$

For $b - a > 0$, we can find the CDF of the function $Y = a + (b - a)X$

$$F_Y(y) = P[Y \leq y] = P[a + (b - a)X \leq y]$$

$$= P\left[X \leq \frac{y - a}{b - a}\right]$$

$$= F_X\left(\frac{y - a}{b - a}\right) = \frac{y - a}{b - a} \quad (3)$$

Therefore the CDF of Y is

$$F_Y(y) = \begin{cases} 0 & y < a \\ \frac{y - a}{b - a} & a \leq y \leq b \\ 1 & y \geq b \end{cases} \quad (5)$$

By differentiating with respect to y we arrive at the PDF

$$f_Y(y) = \begin{cases} 1/(b - a) & a \leq x \leq b \\ 0 & \text{otherwise} \end{cases} \quad (6)$$

which we recognize as the PDF of a uniform (a, b) random variable.
Problem 3.7.14 Solution
Since $X = F^{-1}(U)$, it is desirable that the function $F^{-1}(u)$ exist for all $0 \leq u \leq 1$. However, for the continuous uniform random variable U, $P[U = 0] = P[U = 1] = 0$. Thus, it is a zero probability event that $F^{-1}(U)$ will be evaluated at $U = 0$ or $U = 1$. As a result, it doesn’t matter whether $F^{-1}(u)$ exists at $u = 0$ or $u = 1$.

Problem 3.7.15 Solution
The relationship between X and Y is shown in the following figure:

![Graph of X and Y relationship](image)

(a) Note that $Y = 1/2$ if and only if $0 \leq X \leq 1$. Thus,

$$P[Y = 1/2] = P[0 \leq X \leq 1] = \int_{0}^{1} f_X(x) \, dx = \int_{0}^{1} (x/2) \, dx = 1/4 \quad (1)$$

(b) Since $Y \geq 1/2$, we can conclude that $F_Y(y) = 0$ for $y < 1/2$. Also, $F_Y(1/2) = P[Y = 1/2] = 1/4$. Similarly, for $1/2 < y \leq 1$,

$$F_Y(y) = P[0 \leq X \leq 1] = P[Y = 1/2] = 1/4 \quad (2)$$

Next, for $1 < y \leq 2$,

$$F_Y(y) = P[X \leq y] = \int_{0}^{y} f_X(x) \, dx = y^2/4 \quad (3)$$

Lastly, since $Y \leq 2$, $F_Y(y) = 1$ for $y \geq 2$. The complete expression of the CDF is

$$F_Y(y) = \begin{cases}
0 & \text{if } y < 1/2 \\
1/4 & \text{if } 1/2 \leq y \leq 1 \\
y^2/4 & \text{if } 1 < y < 2 \\
1 & \text{if } y \geq 2
\end{cases} \quad (4)$$

Problem 3.7.16 Solution
We can prove the assertion by considering the cases where $a > 0$ and $a < 0$, respectively. For the case where $a > 0$ we have

$$F_Y(y) = P[Y \leq y] = P\left[X \leq \frac{y-b}{a} \right] = F_X\left(\frac{y-b}{a} \right) \quad (1)$$

Therefore by taking the derivative we find that

$$f_Y(y) = \frac{1}{a} f_X\left(\frac{y-b}{a} \right) \quad a > 0 \quad (2)$$
Similarly for the case when \(a < 0 \) we have

\[
F_Y(y) = P[Y \leq y] = P\left[X \geq \frac{y - b}{a} \right] = 1 - F_X\left(\frac{y - b}{a} \right)
\]

(3)

And by taking the derivative, we find that for negative \(a \),

\[
f_Y(y) = -\frac{1}{a} f_X\left(\frac{y - b}{a} \right) \quad a < 0
\]

(4)

A valid expression for both positive and negative \(a \) is

\[
f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y - b}{a} \right)
\]

(5)

Therefore the assertion is proved.

Problem 3.7.17 Solution

Understanding this claim may be harder than completing the proof. Since \(0 \leq F(x) \leq 1 \), we know that \(0 \leq U \leq 1 \). This implies \(F_U(u) = 0 \) for \(u < 0 \) and \(F_U(u) = 1 \) for \(u \geq 1 \). Moreover, since \(F(x) \) is an increasing function, we can write for \(0 \leq u \leq 1 \),

\[
F_U(u) = P[F(X) \leq u] = P\left[X \leq F^{-1}(u) \right] = F_X(F^{-1}(u))
\]

(1)

Since \(F_X(x) = F(x) \), we have for \(0 \leq u \leq 1 \),

\[
F_U(u) = F(F^{-1}(u)) = u
\]

(2)

Hence the complete CDF of \(U \) is

\[
F_U(u) = \begin{cases}
0 & u < 0 \\
\quad u & 0 \leq u < 1 \\
1 & u \geq 1
\end{cases}
\]

(3)

That is, \(U \) is a uniform \([0, 1]\) random variable.

Problem 3.7.18 Solution

(a) Given \(F_X(x) \) is a continuous function, there exists \(x_0 \) such that \(F_X(x_0) = u \). For each value of \(u \), the corresponding \(x_0 \) is unique. To see this, suppose there were also \(x_1 \) such that \(F_X(x_1) = u \). Without loss of generality, we can assume \(x_1 > x_0 \) since otherwise we could exchange the points \(x_0 \) and \(x_1 \). Since \(F_X(x_0) = F_X(x_1) = u \), the fact that \(F_X(x) \) is nondecreasing implies \(F_X(x) = u \) for all \(x \in [x_0, x_1] \), i.e., \(F_X(x) \) is flat over the interval \([x_0, x_1]\), which contradicts the assumption that \(F_X(x) \) has no flat intervals. Thus, for any \(u \in (0, 1) \), there is a unique \(x_0 \) such that \(F_X(x_0) = u \). Moreover, the same \(x_0 \) is the minimum of all \(x' \) such that \(F_X(x') \geq u \). The uniqueness of \(x_0 \) such that \(F_X(x_0) = u \) permits us to define \(F(u) = x_0 = F_X^{-1}(u) \).

(b) In this part, we are given that \(F_X(x) \) has a jump discontinuity at \(x_0 \). That is, there exists \(u_0^- = F_X(x_0^-) \) and \(u_0^+ = F_X(x_0^+) \) with \(u_0^- < u_0^+ \). Consider any \(u \) in the interval \([u_0^-, u_0^+]\). Since \(F_X(x_0^-) = F_X(x_0^+) \) and \(F_X(x) \) is nondecreasing,

\[
F_X(x) \geq F_X(x_0) = u_0^+, \quad x \geq x_0.
\]

(1)
Moreover,
\[F_X(x) < F_X(x_0) = u_0, \quad x < x_0. \]
(2)

Thus for any \(u \) satisfying \(u_0^- \leq u \leq u_0^+ \), \(F_X(x) < u \) for \(x < x_0 \) and \(F_X(x) \geq u \) for \(x \geq x_0 \). Thus, \(\bar{F}(u) = \min\{x|F_X(x) \geq u\} = x_0 \).

(c) We note that the first two parts of this problem were just designed to show the properties of \(\bar{F}(u) \). First, we observe that
\[P[\hat{X} \leq x] = P[\bar{F}(U) \leq x] = P[\min\{x'|F_X(x') \geq U\} \leq x]. \]
(3)

To prove the claim, we define, for any \(x \), the events
\[A : \min\{x'|F_X(x') \geq U\} \leq x, \]
(4)
\[B : U \leq F_X(x). \]
(5)

Note that \(P[A] = P[\hat{X} \leq x] \). In addition, \(P[B] = P[U \leq F_X(x)] = F_X(x) \) since \(P[U \leq u] = u \) for any \(u \in [0, 1] \).

We will show that the events \(A \) and \(B \) are the same. This fact implies
\[P[\hat{X} \leq x] = P[A] = P[B] = P[U \leq F_X(x)] = F_X(x). \]
(6)

All that remains is to show \(A \) and \(B \) are the same. As always, we need to show that \(A \subset B \) and that \(B \subset A \).

- To show \(A \subset B \), suppose \(A \) is true and \(\min\{x'|F_X(x') \geq U\} \leq x \). This implies there exists \(x_0 \leq x \) such that \(F_X(x_0) \geq U \). Since \(x_0 \leq x \), it follows from \(F_X(x) \) being nondecreasing that \(F_X(x_0) \leq F_X(x) \). We can thus conclude that
\[U \leq F_X(x_0) \leq F_X(x). \]
(7)

That is, event \(B \) is true.

- To show \(B \subset A \), we suppose event \(B \) is true so that \(U \leq F_X(x) \). We define the set
\[L = \{x'|F_X(x') \geq U\}. \]
(8)

We note \(x \in L \). It follows that the minimum element \(\min\{x'|x' \in L\} \leq x \). That is,
\[\min\{x'|F_X(x') \geq U\} \leq x, \]
(9)

which is simply event \(A \).

Problem 3.8.1 Solution

The PDF of \(X \) is
\[f_X(x) = \begin{cases}
1/10 & -5 \leq x \leq 5 \\
0 & \text{otherwise}
\end{cases} \]
(1)
(a) The event \(B \) has probability

\[
P[B] = P[-3 \leq X \leq 3] = \int_{-3}^{3} \frac{1}{10} \, dx = \frac{3}{5}
\]

(2)

From Definition 3.15, the conditional PDF of \(X \) given \(B \) is

\[
f_{X|B}(x) = \begin{cases}
 f_X(x)/P[B] & x \in B \\
 0 & \text{otherwise}
\end{cases} = \begin{cases}
 1/6 & |x| \leq 3 \\
 0 & \text{otherwise}
\end{cases}
\]

(3)

(b) Given \(B \), we see that \(X \) has a uniform PDF over \([a, b]\) with \(a = -3 \) and \(b = 3 \). From Theorem 3.6, the conditional expected value of \(X \) is \(E[X|B] = (a + b)/2 = 0. \)

(c) From Theorem 3.6, the conditional variance of \(X \) is \(\text{Var}[X|B] = (b - a)^2/12 = 3. \)

Problem 3.8.2 Solution

From Definition 3.6, the PDF of \(Y \) is

\[
f_Y(y) = \begin{cases}
 (1/5)e^{-y/5} & y \geq 0 \\
 0 & \text{otherwise}
\end{cases}
\]

(1)

(a) The event \(A \) has probability

\[
P[A] = P[Y < 2] = \int_{0}^{2} (1/5)e^{-y/5} \, dy = -e^{-y/5}\bigg|_{0}^{2} = 1 - e^{-2/5}
\]

(2)

From Definition 3.15, the conditional PDF of \(Y \) given \(A \) is

\[
f_{Y|A}(y) = \begin{cases}
 f_Y(y)/P[A] & x \in A \\
 0 & \text{otherwise}
\end{cases} = \begin{cases}
 (1/5)e^{-y/5}/(1 - e^{-2/5}) & 0 \leq y < 2 \\
 0 & \text{otherwise}
\end{cases}
\]

(3)

(b) The conditional expected value of \(Y \) given \(A \) is

\[
E[Y|A] = \int_{-\infty}^{\infty} yf_{Y|A}(y) \, dy = \frac{1/5}{1 - e^{-2/5}} \int_{0}^{2} ye^{-y/5} \, dy
\]

(5)

Using the integration by parts formula \(\int u \, dv = uv - \int v \, du \) with \(u = y \) and \(dv = e^{-y/5} \, dy \) yields

\[
E[Y|A] = \frac{1/5}{1 - e^{-2/5}} \left(-5ye^{-y/5}\bigg|_{0}^{2} + \int_{0}^{2} 5e^{-y/5} \, dy \right)
\]

(6)

\[
= \frac{1/5}{1 - e^{-2/5}} \left(-10e^{-2/5} - 25e^{-y/5}\bigg|_{0}^{2} \right)
\]

(7)

\[
= 5 - 7e^{-2/5}
\]

(8)
Problem 3.8.3 Solution
The condition right side of the circle is \(R = [0, 1/2] \). Using the PDF in Example 3.5, we have

\[
P[R] = \int_0^{1/2} f_Y(y) \, dy = \int_0^{1/2} 3y^2 \, dy = 1/8
\] (1)

Therefore, the conditional PDF of \(Y \) given event \(R \) is

\[
f_{Y|R}(y) = \begin{cases}
24y^2 & 0 \leq y \leq 1/2 \\
0 & \text{otherwise}
\end{cases}
\] (2)

The conditional expected value and mean square value are

\[
E[Y|R] = \int_{-\infty}^{\infty} y f_{Y|R}(y) \, dy = \int_0^{1/2} 24y^3 \, dy = 3/8 \text{ meter}
\] (3)

\[
E[Y^2|R] = \int_{-\infty}^{\infty} y^2 f_{Y|R}(y) \, dy = \int_0^{1/2} 24y^4 \, dy = 3/20 \text{ m}^2
\] (4)

The conditional variance is

\[
\text{Var}[Y|R] = E[Y^2|R] - (E[Y|R])^2 = \frac{3}{20} - \left(\frac{3}{8}\right)^2 = 3/320 \text{ m}^2
\] (5)

The conditional standard deviation is \(\sigma_{Y|R} = \sqrt{\text{Var}[Y|R]} = 0.0968 \) meters.

Problem 3.8.4 Solution
From Definition 3.8, the PDF of \(W \) is

\[
f_W(w) = \frac{1}{\sqrt{32\pi}} e^{-w^2/32}
\] (1)

(a) Since \(W \) has expected value \(\mu = 0 \), \(f_W(w) \) is symmetric about \(w = 0 \). Hence \(P[C] = P[W > 0] = 1/2 \). From Definition 3.15, the conditional PDF of \(W \) given \(C \) is

\[
f_{W|C}(w) = \begin{cases}
f_W(w) / P[C] & w \in C \\
0 & \text{otherwise}
\end{cases} = \begin{cases}
2e^{-w^2/32}/\sqrt{32\pi} & w > 0 \\
0 & \text{otherwise}
\end{cases}
\] (2)

(b) The conditional expected value of \(W \) given \(C \) is

\[
E[W|C] = \int_{-\infty}^{\infty} wf_{W|C}(w) \, dw = \frac{2}{4\sqrt{2\pi}} \int_0^{\infty} we^{-w^2/32} \, dw
\] (3)

Making the substitution \(v = w^2/32 \), we obtain

\[
E[W|C] = \frac{32}{\sqrt{32\pi}} \int_0^{\infty} e^{-v} \, dv = \frac{32}{\sqrt{32\pi}}
\] (4)

(c) The conditional second moment of \(W \) is

\[
E[W^2|C] = \int_{-\infty}^{\infty} w^2 f_{W|C}(w) \, dw = 2 \int_0^{\infty} w^2 f_W(w) \, dw
\] (5)
We observe that \(w^2 f_W(w) \) is an even function. Hence

\[
E \left[W^2 | C \right] = 2 \int_0^\infty w^2 f_W(w) \, dw \\
= \int_{-\infty}^\infty w^2 f_W(w) \, dw = E \left[W^2 \right] = \sigma^2 = 16
\]

(6)

Lastly, the conditional variance of \(W \) given \(C \) is

\[
\text{Var}[W|C] = E \left[W^2 | C \right] - (E[W|C])^2 = 16 - 32/\pi = 5.81
\]

(8)

Problem 3.8.5 Solution

(a) We first find the conditional PDF of \(T \). The PDF of \(T \) is

\[
f_T(t) = \begin{cases}
100e^{-100t} & t \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

(1)

The conditioning event has probability

\[
P[T > 0.02] = \int_{0.02}^\infty f_T(t) \, dt = -e^{-100t} \bigg|_{0.02}^\infty = e^{-2}
\]

(2)

From Definition 3.15, the conditional PDF of \(T \) is

\[
f_{T|T>0.02}(t) = \begin{cases}
\frac{f_T(t)}{P[T > 0.02]} & t \geq 0.02 \\
0 & \text{otherwise}
\end{cases}
\]

(3)

The conditional expected value of \(T \) is

\[
E[T|T > 0.02] = \int_{0.02}^\infty t(100)e^{-100(t-0.02)} \, dt
\]

(4)

The substitution \(\tau = t - 0.02 \) yields

\[
E[T|T > 0.02] = \int_0^\infty (\tau + 0.02)(100)e^{-100\tau} \, d\tau \\
= \int_0^\infty (\tau + 0.02)f_T(\tau) \, d\tau = E[T + 0.02] = 0.03
\]

(5)

(b) The conditional second moment of \(T \) is

\[
E \left[T^2 | T > 0.02 \right] = \int_{0.02}^\infty t^2(100)e^{-100(t-0.02)} \, dt
\]

(7)

The substitution \(\tau = t - 0.02 \) yields

\[
E \left[T^2 | T > 0.02 \right] = \int_0^\infty (\tau + 0.02)^2(100)e^{-100\tau} \, d\tau \\
= \int_0^\infty (\tau + 0.02)^2f_T(\tau) \, d\tau \\
= E \left[(T + 0.02)^2 \right]
\]

(8)
Now we can calculate the conditional variance.

\[
\text{Var}[T|T > 0.02] = E[T^2|T > 0.02] - (E[T|T > 0.02])^2
\]

\[
= E[(T + 0.02)^2] - (E[T + 0.02])^2
\]

\[
= \text{Var}[T + 0.02]
\]

\[
= \text{Var}[T] = 0.01
\]

Problem 3.8.6 Solution

(a) In Problem 3.6.8, we found that the PDF of \(D\) is

\[
f_D(y) = \begin{cases}
0.3\delta(y) & y < 60 \\
0.07e^{-(y-60)/10} & y \geq 60
\end{cases}
\]

First, we observe that \(D > 0\) if the throw is good so that \(P[D > 0] = 0.7\). A second way to find this probability is

\[
P[D > 0] = \int_0^\infty P[D > 0] f_D(y) \, dy = 0.7
\]

From Definition 3.15, we can write

\[
f_{D|D>0}(y) = \begin{cases}
\frac{f_D(y)}{P[D>0]} & \text{if } y > 0 \\
0 & \text{otherwise}
\end{cases} = \begin{cases}
\frac{1}{10}e^{-(y-60)/10} & y \geq 60 \\
0 & \text{otherwise}
\end{cases}
\]

(b) If instead we learn that \(D \leq 70\), we can calculate the conditional PDF by first calculating

\[
P[D \leq 70] = \int_0^{70} f_D(y) \, dy
\]

\[
= \int_0^{60} 0.3\delta(y) \, dy + \int_60^{70} 0.07e^{-(y-60)/10} \, dy
\]

\[
= 0.3 + 0.7e^{-(y-60)/10} \bigg|_60^{70} = 1 - 0.7e^{-1}
\]

The conditional PDF is

\[
f_{D|D\leq70}(y) = \begin{cases}
\frac{f_D(y)}{P[D\leq70]} & \text{if } y \leq 70 \\
0 & \text{otherwise}
\end{cases}
\]

\[
= \begin{cases}
\frac{0.3}{1-0.7e^{-1}}\delta(y) & 0 \leq y < 60 \\
\frac{0.07}{1-0.7e^{-1}}e^{-(y-60)/10} & 60 \leq y \leq 70 \\
0 & \text{otherwise}
\end{cases}
\]

Problem 3.8.7 Solution

(a) Given that a person is healthy, \(X\) is a Gaussian \((\mu = 90, \sigma = 20)\) random variable. Thus,

\[
f_{X|H}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2} = \frac{1}{20\sqrt{2\pi}} e^{-(x-90)^2/800}
\]

114
(b) Given the event H, we use the conditional PDF $f_{X|H}(x)$ to calculate the required probabilities
\[P\left[T^+|H \right] = P\left[X \geq 140|H \right] = P\left[X - 90 \geq 50|H \right] = P\left[\frac{X - 90}{20} \geq 2.5|H \right] = 1 - \Phi(2.5) = 0.006 \] (2)

Similarly,
\[P\left[T^-|H \right] = P\left[X \leq 110|H \right] = P\left[X - 90 \leq 20|H \right] = P\left[\frac{X - 90}{20} \leq 1|H \right] = \Phi(1) = 0.841 \] (3)

(c) Using Bayes Theorem, we have
\[P\left[H|T^- \right] = \frac{P\left[T^-|H \right] P\left[H \right]}{P\left[T^- \right]} = \frac{P\left[T^-|H \right] P\left[H \right]}{P\left[T^-|D \right] P\left[D \right] + P\left[T^-|H \right] P\left[H \right]} \] (6)

In the denominator, we need to calculate
\[P\left[T^-|D \right] = P\left[X \leq 110|D \right] = P\left[X - 160 \leq -50|D \right] = P\left[\frac{X - 160}{40} \leq -1.25|D \right] = \Phi(-1.25) = 1 - \Phi(1.25) = 0.106 \] (7)

Thus,
\[P\left[H|T^- \right] = \frac{P\left[T^-|H \right] P\left[H \right]}{0.841(0.9) + 0.106(0.1) + 0.841(0.9)} = 0.986 \] (10)

(d) Since T^-, T^0, and T^+ are mutually exclusive and collectively exhaustive,
\[P\left[T^0|H \right] = 1 - P\left[T^-|H \right] - P\left[T^+|H \right] = 1 - 0.841 - 0.006 = 0.153 \] (12)

We say that a test is a failure if the result is T^0. Thus, given the event H, each test has conditional failure probability of $q = 0.153$, or success probability $p = 1 - q = 0.847$. Given H, the number of trials N until a success is a geometric (p) random variable with PMF
\[P_{N|H}(n) = \begin{cases} (1-p)^{n-1}p & n = 1,2,\ldots, \\ 0 & \text{otherwise.} \end{cases} \] (13)

Problem 3.8.8 Solution
(a) The event \(B_i \) that \(Y = \Delta/2 + i\Delta \) occurs if and only if \(i\Delta \leq X < (i + 1)\Delta \). In particular, since \(X \) has the uniform \((-r/2, r/2)\) PDF
\[
f_X(x) = \begin{cases}
\frac{1}{r} & -r/2 \leq x < r/2, \\
0 & \text{otherwise},
\end{cases}
\]
we observe that
\[
P[B_i] = \int_{(i+1)\Delta}^{(i+1)\Delta} \frac{1}{r} dx = \frac{\Delta}{r}. \tag{2}
\]
In addition, the conditional PDF of \(X \) given \(B_i \) is
\[
f_{X|B_i}(x) = \begin{cases}
f_X(x) / P[B] & x \in B_i \\
0 & \text{otherwise}
\end{cases} = \begin{cases}
\frac{1}{\Delta} & i\Delta \leq x < (i + 1)\Delta \\
0 & \text{otherwise}
\end{cases} \tag{3}
\]
It follows that given \(B_i \), \(Z = X - Y = X - \Delta/2 - i\Delta \), which is a uniform \((-\Delta/2, \Delta/2)\) random variable. That is,
\[
f_{Z|B_i}(z) = \begin{cases}
1/\Delta & -\Delta/2 \leq z < \Delta/2 \\
0 & \text{otherwise} \tag{4}
\end{cases}
\]
(b) We observe that \(f_{Z|B_i}(z) \) is the same for every \(i \). Thus, we can write
\[
f_Z(z) = \sum_i P[B_i] f_{Z|B_i}(z) = f_{Z|B_0}(z) \sum_i P[B_i] = f_{Z|B_0}(z) \tag{5}
\]
Thus, \(Z \) is a uniform \((-\Delta/2, \Delta/2)\) random variable. From the definition of a uniform \((a, b)\) random variable, \(Z \) has mean and variance
\[
E[Z] = 0, \quad \text{Var}[Z] = \frac{(\Delta/2 - (-\Delta/2))^2}{12} = \frac{\Delta^2}{12}. \tag{6}
\]

Problem 3.8.9 Solution

For this problem, almost any non-uniform random variable \(X \) will yield a non-uniform random variable \(Z \). For example, suppose \(X \) has the “triangular” PDF
\[
f_X(x) = \begin{cases}
8x/r^2 & 0 \leq x \leq r/2 \\
0 & \text{otherwise} \tag{1}
\end{cases}
\]
In this case, the event \(B_i \) that \(Y = i\Delta + \Delta/2 \) occurs if and only if \(i\Delta \leq X < (i + 1)\Delta \). Thus
\[
P[B_i] = \int_{(i+1)\Delta}^{(i+1)\Delta} \frac{8x}{r^2} dx = \frac{8\Delta(i\Delta + \Delta/2)}{r^2}. \tag{2}
\]
It follows that the conditional PDF of \(X \) given \(B_i \) is
\[
f_{X|B_i}(x) = \begin{cases}
f_X(x) / P[B_i] & x \in B_i \\
0 & \text{otherwise}
\end{cases} = \begin{cases}
\frac{x}{\Delta(i\Delta + \Delta/2)} & i\Delta \leq x < (i + 1)\Delta \\
0 & \text{otherwise} \tag{3}
\end{cases}
\]
Given event \(B_i \), \(Y = i\Delta + \Delta/2 \), so that \(Z = X - Y = X - i\Delta - \Delta/2 \). This implies
\[
f_{Z|B_i}(z) = f_{X|B_i}(z + i\Delta + \Delta/2) = \begin{cases}
\frac{z+i\Delta+\Delta/2}{\Delta(i\Delta + \Delta/2)} & -\Delta/2 \leq z < \Delta/2 \\
0 & \text{otherwise} \tag{4}
\end{cases}
\]
We observe that the PDF of \(Z \) depends on which event \(B_i \) occurs. Moreover, \(f_{Z|B_i}(z) \) is non-uniform for all \(B_i \).
Problem 3.9.1 Solution
Taking the derivative of the CDF $F_Y(y)$ in Quiz 3.1, we obtain

$$f_Y(y) = \begin{cases}
1/4 & 0 \leq y \leq 4 \\
0 & \text{otherwise}
\end{cases} \quad (1)$$

We see that Y is a uniform $(0, 4)$ random variable. By Theorem 3.20, if X is a uniform $(0, 1)$ random variable, then $Y = 4X$ is a uniform $(0, 4)$ random variable. Using rand as MATLAB’s uniform $(0, 1)$ random variable, the program quiz31rv is essentially a one line program:

```matlab
function y=quiz31rv(m)
    y=4*rand(m,1);
end
```

Problem 3.9.2 Solution
The modem receiver voltage is generated by taking a ± 5 voltage representing data, and adding to it a Gaussian $(0, 2)$ noise variable. Although situations in which two random variables are added together are not analyzed until Chapter 4, generating samples of the receiver voltage is easy in MATLAB. Here is the code:

```matlab
function x=modemrv(m)
    X=+-5 + N where N is Gaussian (0,2)
    sb=[-5; 5]; pb=[0.5; 0.5];
    b=finiterv(sb,pb,m);
    noise=gaussrv(0,2,m);
    x=b+noise;
end
```

The commands

```matlab
x=modemrv(10000); hist(x,100);
```

generate 10,000 sample of the modem receiver voltage and plots the relative frequencies using 100 bins. Here is an example plot:

As expected, the result is qualitatively similar (“hills” around $X = -5$ and $X = 5$) to the sketch in Figure 3.3.
Problem 3.9.3 Solution

The code for $\hat{Q}(z)$ is the MATLAB function

```matlab
function p=qapprox(z);
%approximation to the Gaussian
% (0,1) complementary CDF Q(z)
t=1./((1.0+(0.231641888.*z(:))));
a=[0.127414796; -0.142248368; 0.7107068705; ... -0.7265760135; 0.5307027145];
p=([t t.^2 t.^3 t.^4 t.^5]*a).*exp(-(z(:).^2)/2);
```

This code generates two plots of the relative error $e(z)$ as a function of z:

```matlab
z=0:0.02:6;
q=1.0-phi(z(:));
qhat=qapprox(z);
e=(q-qhat)./q;
plot(z,e); figure;
semilogy(z,abs(e));
```

Here are the output figures of `qtest.m`:

The left side plot graphs $e(z)$ versus z. It appears that the $e(z) = 0$ for $z \leq 3$. In fact, $e(z)$ is nonzero over that range, but the relative error is so small that it isn’t visible in comparison to $e(6) \approx -3.5 \times 10^{-3}$. To see the error for small z, the right hand graph plots $|e(z)|$ versus z in log scale where we observe very small relative errors on the order of 10^{-7}.

Problem 3.9.4 Solution

By Theorem 3.9, if X is an exponential (λ) random variable, then $K = \lceil X \rceil$ is a geometric (p) random variable with $p = 1 - e^{-\lambda}$. Thus, given p, we can write $\lambda = -\ln(1 - p)$ and $\lceil X \rceil$ is a geometric (p) random variable. Here is the MATLAB function that implements this technique:

```matlab
function k=georv(p,m);
lambda= -log(1-p);
k=ceil(exponentialrv(lambda,m));
```

To compare this technique with that use in `geometricrv.m`, we first examine the code for `exponentialrv.m`:

```matlab
function x=exponentialrv(lambda,m)
x=-(1/lambda)*log(1-rand(m,1));
```

118
To analyze how \(m = 1 \) random sample is generated, let \(R = \text{rand}(1,1) \). In terms of mathematics, \(\text{exponentialrv}(\lambda,1) \) generates the random variable

\[
X = -\frac{\ln(1 - R)}{\lambda}
\]

(1)

For \(\lambda = -\ln(1 - p) \), we have that

\[
K = \lceil X \rceil = \left\lceil \frac{\ln(1 - R)}{\ln(1 - p)} \right\rceil
\]

(2)

This is precisely the same function implemented by \text{geometricrv.m}. In short, the two methods for generating geometric \((p)\) random samples are one in the same.

Problem 3.9.5 Solution

Given \(0 \leq u \leq 1 \), we need to find the “inverse” function that finds the value of \(w \) satisfying \(u = F_W(w) \). The problem is that for \(u = 1/4 \), any \(w \) in the interval \([-3, 3]\) satisfies \(F_W(w) = 1/4 \). However, in terms of generating samples of random variable \(W \), this doesn’t matter. For a uniform \((0,1)\) random variable \(U \), \(P[U = 1/4] = 0 \). Thus we can choose any \(w \in [-3, 3] \). In particular, we define the inverse CDF as

\[
w = F_W^{-1}(u) = \begin{cases}
8u - 5 & 0 \leq u \leq 1/4 \\
(8u + 7)/3 & 1/4 < u \leq 1
\end{cases}
\]

(1)

Note that because \(0 \leq F_W(w) \leq 1 \), the inverse \(F_W^{-1}(u) \) is defined only for \(0 \leq u \leq 1 \). Careful inspection will show that \(u = (w + 5)/8 \) for \(-5 \leq w \leq -3\) and that \(u = 1/4 + 3(w - 3)/8 \) for \(-3 \leq w \leq 5\). Thus, for a uniform \((0,1)\) random variable \(U \), the function \(W = F_W^{-1}(U) \) produces a random variable with CDF \(F_W(w) \). To implement this solution in MATLAB, we define

```matlab
function w=iwcdf(u);
    w=((u>=0).*(u <= 0.25).*(8*u-5))+...
        ((u > 0.25).*(u<=1).*((8*u+7)/3));
```

so that the MATLAB code \(\text{W=icdfrv}(@\text{iwcdf},m) \) generates \(m \) samples of random variable \(W \).

Problem 3.9.6 Solution

(a) To test the exponential random variables, the following code

```matlab
function exponentialtest(lambda,n)
    delta=0.01;
    x=exponentialrv(lambda,n);
    xr=(0:delta:(5.0/lambda))';
    fxsample=(histc(x,xr)/(n*delta));
    fx=exponentialpdf(lambda,xr);
    plot(xr,fx,xr,fxsample);
```

generates \(n \) samples of an exponential \(\lambda \) random variable and plots the relative frequency \(n_i/(n\Delta) \) against the corresponding exponential PDF. Note that the \text{histc} function generates a histogram using \(xr \) to define the edges of the bins. Two representative plots for \(n = 1,000 \) and \(n = 100,000 \) samples appear in the following figure.
For $n = 1,000$, the jaggedness of the relative frequency occurs because δ is sufficiently small that the number of sample of X in each bin $i\Delta < X \leq (i+1)\Delta$ is fairly small. For $n = 100,000$, the greater smoothness of the curve demonstrates how the relative frequency is becoming a better approximation to the actual PDF.

(b) Similar results hold for Gaussian random variables. The following code generates the same comparison between the Gaussian PDF and the relative frequency of n samples.

```matlab
function gausstest(mu,sigma2,n)
delta=0.01;
x=gaussrv(mu,sigma2,n);
xr=(0:delta:(mu+(3*sqrt(sigma2))))';
fxsample=(histc(x,xr)/(n*delta));
fx=gausspdf(mu,sigma2,xr);
plot(xr,fx,xr,fxsample);
end
```

Here are two typical plots produced by `gaussiantest.m`:

Problem 3.9.7 Solution
First we need to build a uniform $(-r/2, r/2)$ b-bit quantizer. The function `uquantize` does this.

```matlab
function y=uquantize(r,b,x)
%uniform (-r/2,r/2) b bit quantizer
n=2^b;
delta=r/n;
x=min(x,(r-delta/2)/2);
x=max(x,-(r-delta/2)/2);
y=(delta/2)+delta*floor(x/delta);
end
```

120
Note that if \(|x| > r/2\), then \(x\) is truncated so that the quantizer output has maximum amplitude.

Next, we generate Gaussian samples, quantize them and record the errors:

```matlab
function stdev=quantizegauss(r,b,m)
x=gaussrv(0,1,m);
x=x((x<=r/2)&(x>=-r/2));
y=uquantize(r,b,x);
z=x-y;
hist(z,100);
stdev=sqrt(sum(z.^2)/length(z));
```

For a Gaussian random variable \(X\), \(P(|X| > r/2) > 0\) for any value of \(r\). When we generate enough Gaussian samples, we will always see some quantization errors due to the finite \((-r/2, r/2)\) range. To focus our attention on the effect of \(b\) bit quantization, `quantizegauss.m` eliminates Gaussian samples outside the range \((-r/2, r/2)\). Here are outputs of `quantizegauss` for \(b = 1, 2, 3\) bits.

It is obvious that for \(b = 1\) bit quantization, the error is decidedly not uniform. However, it appears that the error is uniform for \(b = 2\) and \(b = 3\). You can verify that uniform errors is a reasonable model for larger values of \(b\).

Problem 3.9.8 Solution

To solve this problem, we want to use Theorem 3.22. One complication is that in the theorem, \(U\) denotes the uniform random variable while \(X\) is the derived random variable. In this problem, we are using \(U\) for the random variable we want to derive. As a result, we will use Theorem 3.22 with the roles of \(X\) and \(U\) reversed. Given \(U\) with CDF \(F_U(u) = F(u)\), we need to find the inverse function \(F^{-1}(x) = F_U^{-1}(x)\) so that for a uniform \((0, 1)\) random variable \(X\), \(U = F^{-1}(X)\).

Recall that random variable \(U\) defined in Problem 3.3.7 has CDF

\[
F_U(u) = \begin{cases}
0 & u < -5 \\
(u + 5)/8 & -5 \leq u < -3 \\
1/4 & -3 \leq u < 3 \\
1/4 + 3(u-3)/8 & 3 \leq u < 5 \\
1 & u \geq 5.
\end{cases}
\]

At \(x = 1/4\), there are multiple values of \(u\) such that \(F_U(u) = 1/4\). However, except for \(x = 1/4\), the inverse \(F_U^{-1}(x)\) is well defined over \(0 < x < 1\). At \(x = 1/4\), we can arbitrarily define a value for \(F_U^{-1}(1/4)\) because when we produce sample values of \(F_U^{-1}(X)\), the event \(X = 1/4\) has probability zero. To generate the inverse CDF, given a value of \(x\), \(0 < x < 1\), we are to find the value of \(u\) such that \(x = F_U(u)\). From the CDF we see that

\[
0 \leq x \leq \frac{1}{4} \Rightarrow x = \frac{u + 5}{8} \quad (2)
\]

\[
\frac{1}{4} < x \leq 1 \Rightarrow x = \frac{1}{4} + \frac{3}{8}(u - 3) \quad (3)
\]

121
These conditions can be inverted to express \(u \) as a function of \(x \).

\[
u = F^{-1}(x) = \begin{cases}
8x - 5 & 0 \leq x \leq 1/4 \\
(8x + 7)/3 & 1/4 < x \leq 1
\end{cases}
\]

(5)

In particular, when \(X \) is a uniform \((0, 1)\) random variable, \(U = F^{-1}(X) \) will generate samples of the random variable \(U \). A MATLAB program to implement this solution is now straightforward:

```matlab
function u=urv(m)
%Usage: u=urv(m)
%Generates m samples of the random variable U defined in Problem 3.3.7
x=rand(m,1);
u=(x<=1/4).*(8*x-5);u=u+(x>1/4).*(8*x+7)/3;
```

To see that this generates the correct output, we can generate a histogram of a million sample values of \(U \) using the commands

\[
u=urv(1000000); hist(u,100);
\]

The output is shown in the following graph, alongside the corresponding PDF of \(U \).

Note that the scaling constant \(10^4 \) on the histogram plot comes from the fact that the histogram was generated using \(10^6 \) sample points and 100 bins. The width of each bin is \(\Delta = 10/100 = 0.1 \).

Consider a bin of width \(\Delta \) centered at \(u_0 \). A sample value of \(U \) would fall in that bin with probability \(f_U(u_0)\Delta \). Given that we generate \(m = 10^6 \) samples, we would expect about \(mf_U(u_0)\Delta = 10^5f_U(u_0) \) samples in each bin. For \(-5 < u_0 < -3\), we would expect to see about \(1.25 \times 10^4 \) samples in each bin. For \(3 < u_0 < 5\), we would expect to see about \(3.75 \times 10^4 \) samples in each bin. As can be seen, these conclusions are consistent with the histogram data.

Finally, we comment that if you generate histograms for a range of values of \(m \), the number of samples, you will see that the histograms will become more and more similar to a scaled version of the PDF. This gives the (false) impression that any bin centered on \(u_0 \) has a number of samples increasingly close to \(mf_U(u_0)\Delta \). Because the histogram is always the same height, what is actually happening is that the vertical axis is effectively scaled by \(1/m \) and the height of a histogram bar is proportional to the fraction of \(m \) samples that land in that bin. We will see in Chapter 7 that the fraction of samples in a bin does converge to the probability of a sample being in that bin as the number of samples \(m \) goes to infinity.

Problem 3.9.9 Solution

From Quiz 3.6, random variable \(X \) has CDF The CDF of \(X \) is

\[
F_X(x) = \begin{cases}
0 & x < -1, \\
(x + 1)/4 & -1 \leq x < 1, \\
1 & x \geq 1.
\end{cases}
\]

(1)
Following the procedure outlined in Problem 3.7.18, we define for $0 < u \leq 1$,

$$\tilde{F}(u) = \min \{x | F_X(x) \geq u \}.$$ \hfill (2)

We observe that if $0 < u < 1/4$, then we can choose x so that $F_X(x) = u$. In this case, $(x+1)/4 = u$, or equivalently, $x = 4u - 1$. For $1/4 \leq u \leq 1$, the minimum x that satisfies $F_X(x) \geq u$ is $x = 1$. These facts imply

$$\tilde{F}(u) = \begin{cases}
4u - 1 & 0 < u < 1/4 \\
1 & 1/4 \leq u \leq 1
\end{cases}$$ \hfill (3)

It follows that if U is a uniform $(0, 1)$ random variable, then $\tilde{F}(U)$ has the same CDF as X. This is trivial to implement in MATLAB.

```matlab
function x=quiz36rv(m)
%Usage x=quiz36rv(m)
%Returns the vector x holding m samples
%of the random variable X of Quiz 3.6
u=rand(m,1);
123
```

123
Problem Solutions – Chapter 4

Problem 4.1.1 Solution

(a) The probability \(P[X \leq 2, Y \leq 3] \) can be found be evaluating the joint CDF \(F_{X,Y}(x, y) \) at \(x = 2 \) and \(y = 3 \). This yields

\[
P[X \leq 2, Y \leq 3] = F_{X,Y}(2, 3) = (1 - e^{-2})(1 - e^{-3})
\]

(b) To find the marginal CDF of \(X \), \(F_X(x) \), we simply evaluate the joint CDF at \(y = \infty \).

\[
F_X(x) = F_{X,Y}(x, \infty) = \begin{cases} 1 - e^{-x} & x \geq 0 \\ 0 & \text{otherwise} \end{cases}
\]

(c) Likewise for the marginal CDF of \(Y \), we evaluate the joint CDF at \(X = \infty \).

\[
F_Y(y) = F_{X,Y}(\infty, y) = \begin{cases} 1 - e^{-y} & y \geq 0 \\ 0 & \text{otherwise} \end{cases}
\]

Problem 4.1.2 Solution

(a) Because the probability that any random variable is less than \(-\infty\) is zero, we have

\[
F_{X,Y}(x, -\infty) = P[X \leq x, Y \leq -\infty] \leq P[Y \leq -\infty] = 0
\]

(b) The probability that any random variable is less than infinity is always one.

\[
F_{X,Y}(x, \infty) = P[X \leq x, Y \leq \infty] = P[X \leq x] = F_X(x)
\]

(c) Although \(P[Y \leq \infty] = 1 \), \(P[X \leq -\infty] = 0 \). Therefore the following is true.

\[
F_{X,Y}(-\infty, \infty) = P[X \leq -\infty, Y \leq \infty] \leq P[X \leq -\infty] = 0
\]

(d) Part (d) follows the same logic as that of part (a).

\[
F_{X,Y}(-\infty, y) = P[X \leq -\infty, Y \leq y] \leq P[X \leq -\infty] = 0
\]

(e) Analogous to Part (b), we find that

\[
F_{X,Y}(\infty, y) = P[X \leq \infty, Y \leq y] = P[Y \leq y] = F_Y(y)
\]
Problem 4.1.3 Solution
We wish to find \(P[x_1 \leq X \leq x_2] \) or \(P[y_1 \leq Y \leq y_2] \). We define events \(A = \{y_1 \leq Y \leq y_2\} \) and \(B = \{y_1 \leq Y \leq y_2\} \) so that

\[
P[A \cup B] = P[A] + P[B] - P[AB]
\]

Keep in mind that the intersection of events \(A \) and \(B \) are all the outcomes such that both \(A \) and \(B \) occur, specifically, \(AB = \{x_1 \leq X \leq x_2, y_1 \leq Y \leq y_2\} \). It follows that

\[
P[A \cup B] = P[x_1 \leq X \leq x_2] + P[y_1 \leq Y \leq y_2] - P[x_1 \leq X \leq x_2, y_1 \leq Y \leq y_2].
\]

By Theorem 4.5,

\[
P[x_1 \leq X \leq x_2, y_1 \leq Y \leq y_2] = F_{X,Y}(x_2, y_2) - F_{X,Y}(x_2, y_1) - F_{X,Y}(x_1, y_2) + F_{X,Y}(x_1, y_1).
\]

Expressed in terms of the marginal and joint CDFs,

\[
P[A \cup B] = F_X(x_2) - F_X(x_1) + F_Y(y_2) - F_Y(y_1)
\]

\[
- F_{X,Y}(x_2, y_2) + F_{X,Y}(x_2, y_1) + F_{X,Y}(x_1, y_2) - F_{X,Y}(x_1, y_1)
\]

Problem 4.1.4 Solution
It’s easy to show that the properties of Theorem 4.1 are satisfied. However, those properties are necessary but not sufficient to show \(F(x, y) \) is a CDF. To convince ourselves that \(F(x, y) \) is a valid CDF, we show that for all \(x_1 \leq x_2 \) and \(y_1 \leq y_2 \),

\[
P[x_1 < X_1 \leq x_2, y_1 < Y_1 \leq y_2] \geq 0
\]

In this case, for \(x_1 \leq x_2 \) and \(y_1 \leq y_2 \), Theorem 4.5 yields

\[
P[x_1 < X \leq x_2, y_1 < Y \leq y_2] = F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1)
\]

\[
= F_X(x_2) F_Y(y_2) - F_X(x_1) F_Y(y_2)
\]

\[
- F_X(x_2) F_Y(y_1) + F_X(x_1) F_Y(y_1)
\]

\[
= [F_X(x_2) - F_X(x_1)] [F_Y(y_2) - F_Y(y_1)]
\]

\[
\geq 0
\]

Hence, \(F_X(x) F_Y(y) \) is a valid joint CDF.

Problem 4.1.5 Solution
In this problem, we prove Theorem 4.5 which states

\[
P[x_1 < X \leq x_2, y_1 < Y \leq y_2] = F_{X,Y}(x_2, y_2) - F_{X,Y}(x_2, y_1)
\]

\[
- F_{X,Y}(x_1, y_2) + F_{X,Y}(x_1, y_1)
\]

(a) The events \(A, B, \) and \(C \) are

\begin{align*}
(a) \quad \text{The events } A, B, \text{ and } C \text{ are} \\
\end{align*}
(b) In terms of the joint CDF \(F_{X,Y}(x, y) \), we can write

\[
P[A] = F_{X,Y}(x_1, y_2) - F_{X,Y}(x_1, y_1) \\
P[B] = F_{X,Y}(x_2, y_1) - F_{X,Y}(x_1, y_1) \\
P[A \cup B \cup C] = F_{X,Y}(x_2, y_2) - F_{X,Y}(x_1, y_1)
\]

(4) \hspace{1cm} (5) \hspace{1cm} (6)

(c) Since \(A, B, \) and \(C \) are mutually exclusive,

\[
P[A \cup B \cup C] = P[A] + P[B] + P[C]
\]

(7)

However, since we want to express

\[
P[C] = P[x_1 < X \leq x_2, y_1 < Y \leq y_2]
\]

(8)

in terms of the joint CDF \(F_{X,Y}(x, y) \), we write

\[
P[C] = P[A \cup B \cup C] - P[A] - P[B]
\]

\[
= F_{X,Y}(x_2, y_2) - F_{X,Y}(x_1, y_2) - F_{X,Y}(x_2, y_1) + F_{X,Y}(x_1, y_1)
\]

(9) \hspace{1cm} (10)

which completes the proof of the theorem.

Problem 4.1.6 Solution

The given function is

\[
F_{X,Y}(x, y) = \begin{cases}
1 - e^{-(x+y)} & \text{if } x, y \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

(1)

First, we find the CDF \(F_X(x) \) and \(F_Y(y) \).

\[
F_X(x) = F_{X,Y}(x, \infty) = \begin{cases}
1 & x \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

(2)

\[
F_Y(y) = F_{X,Y}(\infty, y) = \begin{cases}
1 & y \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

(3)

Hence, for any \(x \geq 0 \) or \(y \geq 0 \),

\[
P[X > x] = 0 \quad P[Y > y] = 0
\]

(4)

For \(x \geq 0 \) and \(y \geq 0 \), this implies

\[
P[\{X > x\} \cup \{Y > y\}] \leq P[X > x] + P[Y > y] = 0
\]

(5)

However,

\[
P[\{X > x\} \cup \{Y > y\}] = 1 - P[X \leq x, Y \leq y] = 1 - (1 - e^{-(x+y)}) = e^{-(x+y)}
\]

(6)

Thus, we have the contradiction that \(e^{-(x+y)} \leq 0 \) for all \(x, y \geq 0 \). We can conclude that the given function is not a valid CDF.
Problem 4.2.1 Solution

In this problem, it is helpful to label points with nonzero probability on the \(X,Y\) plane:

\[
\begin{array}{c|c|c|c}
\hline
y & 0 & 1 & 2 & 3 & 4 \\
\hline
x & 0 & 2c & 4c & 6c & 12c \\
\hline
\end{array}
\]

(a) We must choose \(c\) so the PMF sums to one:

\[\sum_{x=1,2,4} \sum_{y=1,3} P_{X,Y}(x,y) = c \sum_{x=1,2,4} x \sum_{y=1,3} y = c [1(1+3) + 2(1+3) + 4(1+3)] = 28c\]

Thus \(c = 1/28\).

(b) The event \(\{Y < X\}\) has probability

\[P[Y < X] = \sum_{x=1,2,4} \sum_{y<x} P_{X,Y}(x,y) = \frac{1(0) + 2(1) + 4(1+3)}{28} = \frac{18}{28} = \frac{9}{14}\]

(c) The event \(\{Y > X\}\) has probability

\[P[Y > X] = \sum_{x=1,2,4} \sum_{y>x} P_{X,Y}(x,y) = \frac{1(3) + 2(3) + 4(0)}{28} = \frac{9}{28}\]

(d) There are two ways to solve this part. The direct way is to calculate

\[P[Y = X] = \sum_{x=1,2,4} \sum_{y=x} P_{X,Y}(x,y) = \frac{1(1) + 2(0)}{28} = \frac{1}{28}\]

The indirect way is to use the previous results and the observation that

(e)

\[P[Y = 3] = \sum_{x=1,2,4} P_{X,Y}(x,3) = \frac{(1)(3) + (2)(3) + (4)(3)}{28} = \frac{21}{28} = \frac{3}{4}\]

Problem 4.2.2 Solution

On the \(X,Y\) plane, the joint PMF is
(a) To find \(c \), we sum the PMF over all possible values of \(X \) and \(Y \). We choose \(c \) so the sum equals one.

\[
\sum_x \sum_y P_{X,Y}(x, y) = \sum_{x=-2,0} \sum_{y=-1,0,1} c|x + y| = 6c + 2c + 6c = 14c
\]

Thus \(c = 1/14 \).

(b)

\[
P[Y < X] = P_{X,Y}(0, -1) + P_{X,Y}(2, -1) + P_{X,Y}(2, 0) + P_{X,Y}(2, 1)
\]

\[
= c + c + 2c + 3c = 7c = 1/2
\]

(c)

\[
P[Y > X] = P_{X,Y}(-2, -1) + P_{X,Y}(-2, 0) + P_{X,Y}(-2, 1) + P_{X,Y}(0, 1)
\]

\[
= 3c + 2c + c + c = 7c = 1/2
\]

(d) From the sketch of \(P_{X,Y}(x, y) \) given above, \(P[X = Y] = 0 \).

(e)

\[
P[X < 1] = P_{X,Y}(-2, -1) + P_{X,Y}(-2, 0) + P_{X,Y}(-2, 1) + P_{X,Y}(0, -1) + P_{X,Y}(0, 1)
\]

\[
= 8c = 8/14.
\]

Problem 4.2.3 Solution

Let \(r \) (reject) and \(a \) (accept) denote the result of each test. There are four possible outcomes: \(rr, ra, ar, aa \). The sample tree is
Now we construct a table that maps the sample outcomes to values of X and Y.

<table>
<thead>
<tr>
<th>outcome</th>
<th>$P(\cdot)$</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>rr</td>
<td>p^2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ra</td>
<td>$p(1-p)$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ar</td>
<td>$p(1-p)$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>aa</td>
<td>$(1-p)^2$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This table is essentially the joint PMF $P_{X,Y}(x,y)$.

$$P_{X,Y}(x,y) = \begin{cases}
 p^2 & x = 1, y = 1 \\
 p(1-p) & x = 0, y = 1 \\
 p(1-p) & x = 1, y = 0 \\
 (1-p)^2 & x = 0, y = 0 \\
 0 & \text{otherwise}
\end{cases}$$

Problem 4.2.4 Solution
The sample space is the set $S = \{hh, ht, th, tt\}$ and each sample point has probability $1/4$. Each sample outcome specifies the values of X and Y as given in the following table

<table>
<thead>
<tr>
<th>outcome</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>hh</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ht</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>th</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>tt</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

The joint PMF can be represented by the table

$$P_{X,Y}(x,y) = \begin{array}{c|cc}
 x = 0 & 0 & 1/4 \\
 x = 1 & 1/4 & 1/4 \\
 x = 2 & 1/4 & 0
\end{array}$$

Problem 4.2.5 Solution
As the problem statement says, reasonable arguments can be made for the labels being X and Y or x and y. As we see in the arguments below, the lowercase choice of the text is somewhat arbitrary.

- **Lowercase axis labels**: For the lowercase labels, we observe that we are depicting the masses associated with the joint PMF $P_{X,Y}(x,y)$ whose arguments are x and y. Since the PMF function is defined in terms of x and y, the axis labels should be x and y.

- **Uppercase axis labels**: On the other hand, we are depicting the possible outcomes (labeled with their respective probabilities) of the pair of random variables X and Y. The corresponding axis labels should be X and Y just as in Figure 4.2. The fact that we have labeled the possible outcomes by their probabilities is irrelevant. Further, since the expression for the PMF $P_{X,Y}(x,y)$ given in the figure could just as well have been written $P_{X,Y}(\cdot,\cdot)$, it is clear that the lowercase x and y are not what matter.
Problem 4.2.6 Solution
As the problem statement indicates, \(Y = y < n \) if and only if

- \(A \): the first \(y \) tests are acceptable, and
- \(B \): test \(y + 1 \) is a rejection.

Thus \(P[Y = y] = P[AB] \). Note that \(Y \leq X \) since the number of acceptable tests before the first failure cannot exceed the number of acceptable circuits. Moreover, given the occurrence of \(AB \), the event \(X = x < n \) occurs if and only if there are \(x - y \) acceptable circuits in the remaining \(n - y - 1 \) tests. Since events \(A, B \) and \(C \) depend on disjoint sets of tests, they are independent events. Thus, for \(0 \leq y \leq x < n \),

\[
P_{X,Y}(x, y) = P[X = x, Y = y] = P[ABC] = P[A] P[B] P[C] = p^y (1 - p)^{n - y - 1} \frac{(n - y - 1)}{(x - y)} p^{x - y} (1 - p)^{n - y - 1 - (x - y)}
\]

The case \(y = x = n \) occurs when all \(n \) tests are acceptable and thus \(P_{X,Y}(n, n) = p^n \).

Problem 4.2.7 Solution
The joint PMF of \(X \) and \(K \) is \(P_{K,X}(k, x) = P[K = k, X = x] \), which is the probability that \(K = k \) and \(X = x \). This means that both events must be satisfied. The approach we use is similar to that used in finding the Pascal PMF in Example 2.15. Since \(X \) can take on only the two values 0 and 1, let’s consider each in turn. When \(X = 0 \) that means that a rejection occurred on the last test and that the other \(k - 1 \) rejections must have occurred in the previous \(n - 1 \) tests. Thus,

\[
P_{K,X}(k, 0) = \binom{n - 1}{k - 1} (1 - p)^{k - 1} p^{n - 1 - (k - 1)} (1 - p) k = 1, \ldots, n
\]

When \(X = 1 \) the last test was acceptable and therefore we know that the \(K = k \leq n - 1 \) tails must have occurred in the previous \(n - 1 \) tests. In this case,

\[
P_{K,X}(k, 1) = \binom{n - 1}{k} (1 - p)^k p^{n - 1 - k} \]

\[
0 \text{ otherwise}
\]

We can combine these cases into a single complete expression for the joint PMF.

\[
P_{K,X}(k, x) = \begin{cases}
\binom{n - 1}{k - 1} (1 - p)^{k - 1} p^{n - 1 - (k - 1)} & x = 0, k = 1, 2, \ldots, n \\
\binom{n - 1}{k} (1 - p)^k p^{n - k} & x = 1, k = 0, 1, \ldots, n - 1 \\
0 & \text{otherwise}
\end{cases}
\]

Problem 4.2.8 Solution
Each circuit test produces an acceptable circuit with probability \(p \). Let \(K \) denote the number of rejected circuits that occur in \(n \) tests and \(X \) is the number of acceptable circuits before the first reject. The joint PMF, \(P_{K,X}(k, x) = P[K = k, X = x] \) can be found by realizing that \(\{K = k, X = x\} \) occurs if and only if the following events occur:
A The first x tests must be acceptable.

B Test $x+1$ must be a rejection since otherwise we would have $x+1$ acceptable at the beginning.

C The remaining $n-x-1$ tests must contain $k-1$ rejections.

Since the events A, B and C are independent, the joint PMF for $x+k \leq r$, $x \geq 0$ and $k \geq 0$ is

$$P_{K,X}(k, x) = \begin{cases} \begin{array}{l} \frac{p^x}{P[A]} \left(1 - p\right) \frac{\binom{n-x-1}{k-1} (1-p)^{k-1} p^{n-x-1-(k-1)}}{P[C]} \\ \end{array} \end{cases} \quad (1)$$

After simplifying, a complete expression for the joint PMF is

$$P_{K,X}(k, x) = \begin{cases} \begin{array}{l} \binom{n-x-1}{k-1} p^{n-k} (1-p)^k \\ 0 \end{array} \end{cases} \begin{array}{l} x + k \leq n, x \geq 0, k \geq 0 \\ otherwise \end{array} \quad (2)$$

Problem 4.3.1 Solution

On the X,Y plane, the joint PMF $P_{X,Y}(x, y)$ is

By choosing $c = 1/28$, the PMF sums to one.

(a) The marginal PMFs of X and Y are

$$P_X(x) = \sum_{y=1,3} P_{X,Y}(x, y) = \begin{cases} \begin{array}{l} 4/28 \quad x = 1 \\ 8/28 \quad x = 2 \\ 16/28 \quad x = 4 \\ 0 \quad otherwise \end{array} \end{cases} \quad (1)$$

$$P_Y(y) = \sum_{x=1,2,4} P_{X,Y}(x, y) = \begin{cases} \begin{array}{l} 7/28 \quad y = 1 \\ 21/28 \quad y = 3 \\ 0 \quad otherwise \end{array} \end{cases} \quad (2)$$

(b) The expected values of X and Y are

$$E[X] = \sum_{x=1,2,4} x P_X(x) = (4/28) + 2(8/28) + 4(16/28) = 3 \quad (3)$$

$$E[Y] = \sum_{y=1,3} y P_Y(y) = 7/28 + 3(21/28) = 5/2 \quad (4)$$
(c) The second moments are

\[E \left[X^2 \right] = \sum_{x=1,2,4} xP_X(x) = 1^2(4/28) + 2^2(8/28) + 4^2(16/28) = 73/7 \]
(5)

\[E \left[Y^2 \right] = \sum_{y=1,3} yP_Y(y) = 1^2(7/28) + 3^2(21/28) = 7 \]
(6)

The variances are

\[\text{Var}[X] = E \left[X^2 \right] - (E[X])^2 = 10/7 \quad \text{Var}[Y] = E \left[Y^2 \right] - (E[Y])^2 = 3/4 \]
(7)

The standard deviations are \(\sigma_X = \sqrt{10/7} \) and \(\sigma_Y = \sqrt{3/4} \).

Problem 4.3.2 Solution

On the \(X,Y \) plane, the joint PMF is

The PMF sums to one when \(c = 1/14 \).

(a) The marginal PMFs of \(X \) and \(Y \) are

\[P_X(x) = \sum_{y=-1,0,1} P_{X,Y}(x,y) = \begin{cases} 6/14 & x = -2, 2 \\ 2/14 & x = 0 \\ 0 & \text{otherwise} \end{cases} \]
(1)

\[P_Y(y) = \sum_{x=-2,0,2} P_{X,Y}(x,y) = \begin{cases} 5/14 & y = -1, 1 \\ 4/14 & y = 0 \\ 0 & \text{otherwise} \end{cases} \]
(2)

(b) The expected values of \(X \) and \(Y \) are

\[E[X] = \sum_{x=-2,0,2} xP_X(x) = -2(6/14) + 2(6/14) = 0 \]
(3)

\[E[Y] = \sum_{y=-1,0,1} yP_Y(y) = -1(5/14) + 1(5/14) = 0 \]
(4)

(c) Since \(X \) and \(Y \) both have zero mean, the variances are

\[\text{Var}[X] = E \left[X^2 \right] = \sum_{x=-2,0,2} x^2P_X(x) = (-2)^2(6/14) + 2^2(6/14) = 24/7 \]
(5)

\[\text{Var}[Y] = E \left[Y^2 \right] = \sum_{y=-1,0,1} y^2P_Y(y) = (-1)^2(5/14) + 1^2(5/14) = 5/7 \]
(6)

The standard deviations are \(\sigma_X = \sqrt{24/7} \) and \(\sigma_Y = \sqrt{5/7} \).
Problem 4.3.3 Solution
We recognize that the given joint PMF is written as the product of two marginal PMFs $P_N(n)$ and $P_K(k)$ where

$$P_N(n) = \sum_{k=0}^{100} P_{N,K}(n, k) = \begin{cases} \frac{100^ne^{-100}}{n!} & n = 0, 1, \ldots \quad (1) \\ 0 & \text{otherwise} \end{cases}$$

$$P_K(k) = \sum_{n=0}^{\infty} P_{N,K}(n, k) = \begin{cases} (100)^k p^k (1-p)^{100-k} & k = 0, 1, \ldots, 100 \\ 0 & \text{otherwise} \end{cases} \quad (2)$$

Problem 4.3.4 Solution
The joint PMF of N, K is

$$P_{N,K}(n, k) = \begin{cases} (1-p)^{n-1} p / n & k = 1, 2, \ldots, n \\ 0 & n = 1, 2 \ldots \quad (1) \end{cases}$$

For $n \geq 1$, the marginal PMF of N is

$$P_N(n) = \sum_{k=1}^{n} P_{N,K}(n, k) = \sum_{k=1}^{n} (1-p)^{n-1} p / n = (1-p)^{n-1} p \quad (2)$$

The marginal PMF of K is found by summing $P_{N,K}(n, k)$ over all possible N. Note that if $K = k$, then $N \geq k$. Thus,

$$P_K(k) = \sum_{n=k}^{\infty} \frac{1}{n} (1-p)^{n-1} p \quad (3)$$

Unfortunately, this sum cannot be simplified.

Problem 4.3.5 Solution
For $n = 0, 1, \ldots$, the marginal PMF of N is

$$P_N(n) = \sum_{k} P_{N,K}(n, k) = \sum_{k=0}^{n} \frac{100^ne^{-100}}{(n+1)!} = \frac{100^ne^{-100}}{n!} \quad (1)$$

For $k = 0, 1, \ldots$, the marginal PMF of K is

$$P_K(k) = \sum_{n=k}^{\infty} \frac{100^ne^{-100}}{(n+1)!} = \frac{1}{100} \sum_{n=k}^{\infty} \frac{100^{n+1}e^{-100}}{(n+1)!} = \frac{1}{100} \sum_{n=k}^{\infty} P_N(n + 1) \quad (3)$$

$$= P[N > k] / 100 \quad (4)$$

Problem 4.4.1 Solution
(a) The joint PDF of X and Y is

$$f_{X,Y}(x,y) = \begin{cases}
 c & x+y \leq 1, x, y \geq 0 \\
 0 & \text{otherwise}
\end{cases} \quad (1)$$

To find the constant c we integrate over the region shown. This gives

$$\int_{0}^{1} \int_{0}^{1-x} c \, dy \, dx = cx - \frac{cx}{2} \bigg|_{0}^{1} = \frac{c}{2} = 1 \quad (2)$$

Therefore $c = 2$.

(b) To find the $P[X \leq Y]$ we look to integrate over the area indicated by the graph

$$P[X \leq Y] = \int_{0}^{1/2} \int_{x}^{1-x} dy \, dx \quad (3)$$
$$= \int_{0}^{1/2} (2 - 4x) \, dx \quad (4)$$
$$= \frac{1}{2} \quad (5)$$

(c) The probability $P[X + Y \leq 1/2]$ can be seen in the figure. Here we can set up the following integrals

$$P[X + Y \leq 1/2] = \int_{0}^{1/2} \int_{0}^{1/2-x} 2 \, dy \, dx \quad (6)$$
$$= \int_{0}^{1/2} (1 - 2x) \, dx \quad (7)$$
$$= 1/2 - 1/4 = 1/4 \quad (8)$$

Problem 4.4.2 Solution

Given the joint PDF

$$f_{X,Y}(x,y) = \begin{cases}
 cxy^2 & 0 \leq x, y \leq 1 \\
 0 & \text{otherwise}
\end{cases} \quad (1)$$

(a) To find the constant c integrate $f_{X,Y}(x,y)$ over the all possible values of X and Y to get

$$1 = \int_{0}^{1} \int_{0}^{1} cxy^2 \, dx \, dy = c/6 \quad (2)$$

Therefore $c = 6$.

134
(b) The probability $P[X \geq Y]$ is the integral of the joint PDF $f_{X,Y}(x, y)$ over the indicated shaded region.

\[
P[X \geq Y] = \int_0^1 \int_0^x 6xy^2 \, dy \, dx
\]

\[= \int_0^1 2x^4 \, dx\]

\[= \frac{2}{5}\]

Similarly, to find $P[Y \leq X^2]$ we can integrate over the region shown in the figure.

\[
P[Y \leq X^2] = \int_0^1 \int_0^{x^2} 6xy^2 \, dy \, dx
\]

\[= \frac{1}{4}\]

(c) Here we can choose to either integrate $f_{X,Y}(x, y)$ over the lighter shaded region, which would require the evaluation of two integrals, or we can perform one integral over the darker region by recognizing

\[P[\min(X,Y) \leq 1/2] = 1 - P[\min(X,Y) > 1/2]\]

\[= 1 - \int_{1/2}^1 \int_{1/2}^{x^2} 6xy^2 \, dx \, dy\]

\[= 1 - \int_{1/2}^1 \frac{9y^2}{4} \, dy = \frac{11}{32}\]

(d) The probability $P[\max(X,Y) \leq 3/4]$ can be found by integrating over the shaded region shown below.

\[P[\max(X,Y) \leq 3/4] = P[X \leq 3/4, Y \leq 3/4]\]

\[= \int_0^{3/4} \int_0^{3/4} 6xy^2 \, dx \, dy\]

\[= \left(\frac{3}{4}\right)^2 \left(\frac{3}{4}\right)^3\]

\[= \left(\frac{3}{4}\right)^5 = 0.237\]

Problem 4.4.3 Solution

The joint PDF of X and Y is

\[f_{X,Y}(x, y) = \begin{cases} 6e^{-(2x+3y)} & x \geq 0, y \geq 0, \\ 0 & \text{otherwise}. \end{cases}\]
(a) The probability that \(X \geq Y \) is:

\[
P[X \geq Y] = \int_0^\infty \int_0^x 6e^{-(2x+3y)} \, dy \, dx
\]

\[
= \int_0^\infty 2e^{-2x} (-e^{-3y} |_{y=x}^{y=0}) \, dx
\]

\[
= \int_0^\infty [2e^{-2x} - 2e^{-5x}] \, dx = 3/5
\]

The \(P[X + Y \leq 1] \) is found by integrating over the region where \(X + Y \leq 1 \)

\[
P[X + Y \leq 1] = \int_0^1 \int_0^{1-x} 6e^{-(2x+3y)} \, dy \, dx
\]

\[
= \int_0^1 2e^{-2x} \left[-e^{-3y} |_{y=1-x}^{y=0} \right] \, dx
\]

\[
= \int_0^1 2e^{-2x} \left[1 - e^{-3(1-x)} \right] \, dx
\]

\[
= -e^{-2x} - 2e^{-3x} |_{x=0}^{x=1}
\]

\[
= 1 + 2e^{-3} - 3e^{-2}
\]

(b) The event \(\min(X, Y) \geq 1 \) is the same as the event \(\{X \geq 1, Y \geq 1\} \). Thus,

\[
P[\min(X, Y) \geq 1] = \int_1^\infty \int_1^\infty 6e^{-(2x+3y)} \, dy \, dx = e^{-(2+3)}
\]

(c) The event \(\max(X, Y) \leq 1 \) is the same as the event \(\{X \leq 1, Y \leq 1\} \) so that

\[
P[\max(X, Y) \leq 1] = \int_0^1 \int_0^1 6e^{-(2x+3y)} \, dy \, dx = (1 - e^{-2})(1 - e^{-3})
\]

Problem 4.4.4 Solution

The only difference between this problem and Example 4.5 is that in this problem we must integrate the joint PDF over the regions to find the probabilities. Just as in Example 4.5, there are five cases. We will use variable \(u \) and \(v \) as dummy variables for \(x \) and \(y \).

- \(x < 0 \) or \(y < 0 \)

In this case, the region of integration doesn’t overlap the region of nonzero probability and

\[
F_{X,Y}(x,y) = \int_{-\infty}^y \int_{-\infty}^x f_{X,Y}(u,v) \, du \, dv = 0
\]
In this case, the region where the integral has a nonzero contribution is

\[
F_{X,Y}(x, y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u, v) \, dv \, dx
\]

\[
= \int_0^y \int_0^x 8uv \, du \, dv
\]

\[
= \int_0^y 4(x^2 - v^2)v \, dv
\]

\[
= 2x^2v^2 - v^4 \bigg|_{v=0}^{v=y} = 2x^2y^2 - y^4
\]

\[
F_{X,Y}(x, y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u, v) \, dv \, du
\]

\[
= \int_0^x \int_0^u 8uv \, du \, dv
\]

\[
= \int_0^x 4u^3 \, du = x^4
\]

\[
F_{X,Y}(x, y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u, v) \, dv \, du
\]

\[
= \int_0^y \int_0^1 8uv \, du \, dv
\]

\[
= \int_0^y 4v(1 - v^2) \, dv
\]

\[
= 2y^2 - y^4
\]
In this case, the region of integration completely covers the region of nonzero probability and

\[F_{X,Y}(x, y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u, v) \, du \, dv \]

(13)

\[= 1 \]

(14)

The complete answer for the joint CDF is

\[F_{X,Y}(x, y) = \begin{cases}
0 & x < 0 \text{ or } y < 0 \\
2x^2y^2 - y^4 & 0 < y \leq x \leq 1 \\
x^4 & 0 \leq x \leq y, 0 \leq x \leq 1 \\
2y^2 - y^4 & 0 \leq y \leq 1, x \geq 1 \\
1 & x \geq 1, y \geq 1
\end{cases} \]

(15)

Problem 4.5.1 Solution

(a) The joint PDF (and the corresponding region of nonzero probability) are

\[f_{X,Y}(x, y) = \begin{cases}
1/2 & -1 \leq x \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases} \]

(1)

(b)

\[P[X > 0] = \int_{0}^{1} \int_{x}^{1} \frac{1}{2} \, dy \, dx = \int_{0}^{1} \frac{1-x}{2} \, dx = 1/4 \]

(2)

This result can be deduced by geometry. The shaded triangle of the \(X,Y\) plane corresponding to the event \(X > 0\) is 1/4 of the total shaded area.

(c) For \(x > 1\) or \(x < -1\), \(f_X(x) = 0\). For \(-1 \leq x \leq 1\),

\[f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy = \int_{x}^{1} \frac{1}{2} \, dy = (1-x)/2. \]

(3)

The complete expression for the marginal PDF is

\[f_X(x) = \begin{cases}
(1-x)/2 & -1 \leq x \leq 1, \\
0 & \text{otherwise}.
\end{cases} \]

(4)
(d) From the marginal PDF \(f_X(x) \), the expected value of \(X \) is

\[
E[X] = \int_{-\infty}^{\infty} xf_X(x) \, dx = \frac{1}{2} \int_{-1}^{1} x(1-x) \, dx
\]

\[
= \frac{x^2}{4} - \frac{x^3}{6} \bigg|_{-1}^{1} = -\frac{1}{3}.
\]

Problem 4.5.2 Solution

\[
f_{X,Y}(x, y) = \begin{cases}
2 & x + y \leq 1, x, y \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

Using the figure to the left we can find the marginal PDFs by integrating over the appropriate regions.

\[
f_X(x) = \int_{0}^{1-x} 2 \, dy = \begin{cases}
2(1-x) & 0 \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

Likewise for \(f_Y(y) \):

\[
f_Y(y) = \int_{0}^{1-y} 2 \, dx = \begin{cases}
2(1-y) & 0 \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

Problem 4.5.3 Solution

Random variables \(X \) and \(Y \) have joint PDF

\[
f_{X,Y}(x, y) = \begin{cases}
\frac{1}{(\pi r^2)} & 0 \leq x^2 + y^2 \leq r^2 \\
0 & \text{otherwise}
\end{cases}
\]

(a) The marginal PDF of \(X \) is

\[
f_X(x) = 2 \int_{-\sqrt{r^2-x^2}}^{\sqrt{r^2-x^2}} \frac{1}{\pi r^2} \, dy = \begin{cases}
\frac{2\sqrt{r^2-x^2}}{\pi r^2} & -r \leq x \leq r, \\
0 & \text{otherwise.}
\end{cases}
\]

(b) Similarly, for random variable \(Y \),

\[
f_Y(y) = 2 \int_{-\sqrt{r^2-y^2}}^{\sqrt{r^2-y^2}} \frac{1}{\pi r^2} \, dx = \begin{cases}
\frac{2\sqrt{r^2-y^2}}{\pi r^2} & -r \leq y \leq r, \\
0 & \text{otherwise.}
\end{cases}
\]

Problem 4.5.4 Solution

The joint PDF of \(X \) and \(Y \) and the region of nonzero probability are

\[
f_{X,Y}(x, y) = \begin{cases}
\frac{5x^2}{2} & -1 \leq x \leq 1, 0 \leq y \leq x^2 \\
0 & \text{otherwise}
\end{cases}
\]

We can find the appropriate marginal PDFs by integrating the joint PDF.
(a) The marginal PDF of X is

$$f_X(x) = \int_0^{x^2} \frac{5x^2}{2} dy = \begin{cases} \frac{5x^4}{2} & -1 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(b) Note that $f_Y(y) = 0$ for $y > 1$ or $y < 0$. For $0 \leq y \leq 1$,

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx$$

$$= \int_{-\sqrt{y}}^{-1} \frac{5x^2}{2} \, dx + \int_{\sqrt{y}}^{1} \frac{5x^2}{2} \, dx$$

$$= 5(1 - y^{3/2})/3$$

The complete expression for the marginal CDF of Y is

$$f_Y(y) = \begin{cases} 5(1 - y^{3/2})/3 & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Problem 4.5.5 Solution

In this problem, the joint PDF is

$$f_{X,Y}(x, y) = \begin{cases} \frac{2|x||y|^4}{r^4} & 0 \leq x^2 + y^2 \leq r^2 \\ 0 & \text{otherwise} \end{cases}$$

(a) Since $|xy| = |y||x|$, for $-r \leq x \leq r$, we can write

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy = \frac{2|x|}{r^4} \int_{-\sqrt{r^2-x^2}}^{\sqrt{r^2-x^2}} |y| \, dy$$

Since $|y|$ is symmetric about the origin, we can simplify the integral to

$$f_X(x) = \frac{4|x|}{r^4} \int_{0}^{\sqrt{r^2-x^2}} y \, dy = \frac{2|x|}{r^4} \left[y^2 \right]_{0}^{\sqrt{r^2-x^2}} = \frac{2|x|(r^2 - x^2)}{r^4}$$

Note that for $|x| > r$, $f_X(x) = 0$. Hence the complete expression for the PDF of X is

$$f_X(x) = \begin{cases} \frac{2|x|(r^2 - x^2)}{r^4} & -r \leq x \leq r \\ 0 & \text{otherwise} \end{cases}$$

(b) Note that the joint PDF is symmetric in x and y so that $f_Y(y) = f_X(y)$.

Problem 4.5.6 Solution
(a) The joint PDF of X and Y and the region of nonzero probability are

$$f_{X,Y}(x, y) = \begin{cases} cy & 0 \leq y \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(b) To find the value of the constant, c, we integrate the joint PDF over all x and y.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx \, dy = \int_{0}^{1} \int_{0}^{x} cy \, dy \, dx = \int_{0}^{1} \frac{cx^2}{2} \, dx = \frac{cx^3}{6} \bigg|_{0}^{1} = \frac{c}{6}. \quad (2)$$

Thus $c = 6$.

(c) We can find the CDF $F_X(x) = P[X \leq x]$ by integrating the joint PDF over the event $X \leq x$. For $x < 0$, $F_X(x) = 0$. For $x > 1$, $F_X(x) = 1$. For $0 \leq x \leq 1$,

$$F_X(x) = \int_{x' \leq x} f_{X,Y}(x', y) \, dy' \, dx' \quad (3)$$

$$= \int_{0}^{x} \int_{0}^{x'} 6y' \, dy' \, dx' \quad (4)$$

$$= \int_{0}^{x} 3(x')^2 \, dx' = x^3. \quad (5)$$

The complete expression for the joint CDF is

$$F_X(x) = \begin{cases} 0 & x < 0 \\ x^3 & 0 \leq x \leq 1 \\ 1 & x > 1 \end{cases} \quad (6)$$

(d) Similarly, we find the CDF of Y by integrating $f_{X,Y}(x, y)$ over the event $Y \leq y$. For $y < 0$, $F_Y(y) = 0$ and for $y > 1$, $F_Y(y) = 1$. For $0 \leq y \leq 1$,

$$F_Y(y) = \int_{y' \leq y} f_{X,Y}(x', y') \, dy' \, dx' \quad (7)$$

$$= \int_{y}^{1} \int_{y'}^{1} 6y' \, dx' \, dy' \quad (8)$$

$$= \int_{0}^{y} 6y'(1 - y') \, dy' \quad (9)$$

$$= 3(y')^2 - 2(y')^3 \bigg|_{0}^{1} = 3y^2 - 2y^3. \quad (10)$$

The complete expression for the CDF of Y is

$$F_Y(y) = \begin{cases} 0 & y < 0 \\ 3y^2 - 2y^3 & 0 \leq y \leq 1 \\ 1 & y > 1 \end{cases} \quad (11)$$
(c) To find \(P[Y \leq X/2] \), we integrate the joint PDF \(f_{X,Y}(x, y) \) over the region \(y \leq x/2 \).

\[
P[Y \leq X/2] = \int_{0}^{1} \int_{0}^{\frac{x}{2}} 6y \, dy \, dx = \int_{0}^{1} 3y^2 \frac{x}{2} \, dx = \int_{0}^{1} \frac{3x^2}{4} \, dx = \frac{1}{4}
\]

Problem 4.6.1 Solution

In this problem, it is helpful to label possible points \(X, Y \) along with the corresponding values of \(W = X - Y \). From the statement of Problem 4.6.1,

(a) To find the PMF of \(W \), we simply add the probabilities associated with each possible value of \(W \):

\[
P_{W}(-2) = P_{X,Y}(1,3) = \frac{3}{28} \quad P_{W}(-1) = P_{X,Y}(2,3) = \frac{6}{28} \quad P_{W}(0) = P_{X,Y}(1,1) = \frac{1}{28} \quad P_{W}(1) = P_{X,Y}(2,1) + P_{X,Y}(4,3) = \frac{14}{28}
\]

\[
P_{W}(3) = P_{X,Y}(4,1) = \frac{4}{28}
\]

For all other values of \(w \), \(P_{W}(w) = 0 \).

(b) The expected value of \(W \) is

\[
E[W] = \sum_{w} wP_{W}(w)
\]

\[
= -2\left(\frac{3}{28}\right) + -1\left(\frac{6}{28}\right) + 0\left(\frac{1}{28}\right) + 1\left(\frac{14}{28}\right) + 3\left(\frac{4}{28}\right) = \frac{1}{2}
\]

(c) \(P[W > 0] = P_{W}(1) + P_{W}(3) = \frac{18}{28} \).
Problem 4.6.2 Solution

In Problem 4.2.2, the joint PMF $P_{X,Y}(x, y)$ is given in terms of the parameter c. For this problem, we first need to find c. Before doing so, it is convenient to label each possible X, Y point with the corresponding value of $W = X + 2Y$.

To find c, we sum the PMF over all possible values of X and Y. We choose c so the sum equals one.

$$
\sum_x \sum_y P_{X,Y}(x, y) = \sum_{x=-2,0,2} \sum_{y=-1,0,1} c |x + y|
$$

(1)

$$
= 6c + 2c + 6c = 14c
$$

(2)

Thus $c = 1/14$. Now we can solve the actual problem.

(a) From the above graph, we can calculate the probability of each possible value of w.

$$
P_W(-4) = P_{X,Y}(-2, -1) = 3c
$$

(3)

$$
P_W(-2) = P_{X,Y}(-2, 0) + P_{X,Y}(0, -1) = 3c
$$

(4)

$$
P_W(0) = P_{X,Y}(-2, 1) + P_{X,Y}(2, -1) = 2c
$$

(5)

$$
P_W(2) = P_{X,Y}(0, 1) + P_{X,Y}(2, 0) = 3c
$$

(6)

$$
P_W(4) = P_{X,Y}(2, 1) = 3c
$$

(7)

With $c = 1/14$, we can summarize the PMF as

$$
P_W(w) = \begin{cases}
3/14 & w = -4, -2, 2, 4 \\
2/14 & w = 0 \\
0 & \text{otherwise}
\end{cases}
$$

(8)

(b) The expected value is now straightforward:

$$
E[W] = \frac{3}{14}(-4 + -2 + 2 + 4) + \frac{2}{14}0 = 0.
$$

(9)

(c) Lastly, $P[W > 0] = P_W(2) + P_W(4) = 3/7$.

Problem 4.6.3 Solution

We observe that when $X = x$, we must have $Y = w - x$ in order for $W = w$. That is,

$$
P_W(w) = \sum_{x=-\infty}^{\infty} P[X = x, Y = w - x] = \sum_{x=-\infty}^{\infty} P_{X,Y}(x, w - x)
$$

(1)
Problem 4.6.4 Solution

The x, y pairs with nonzero probability are shown in the figure. For $w = 0, 1, \ldots, 10$, we observe that

\[
P[W > w] = P[\min(X, Y) > w] \quad (1)
\]

\[
= P[X > w, Y > w] \quad (2)
\]

\[
= 0.01(10 - w)^2 \quad (3)
\]

To find the PMF of W, we observe that for $w = 1, \ldots, 10$,

\[
P_W(w) = P[W > w - 1] - P[W > w] \quad (4)
\]

\[
= 0.01[(10 - w - 1)^2 - (10 - w)^2] = 0.01(21 - 2w) \quad (5)
\]

The complete expression for the PMF of W is

\[
P_W(w) = \begin{cases}
0.01(21 - 2w) & w = 1, 2, \ldots, 10 \\
0 & \text{otherwise}
\end{cases} \quad (6)
\]

Problem 4.6.5 Solution

The x, y pairs with nonzero probability are shown in the figure. For $v = 1, \ldots, 11$, we observe that

\[
P[V < v] = P[\max(X, Y) < v] \quad (1)
\]

\[
= P[X < v, Y < v] \quad (2)
\]

\[
= 0.01(v - 1)^2 \quad (3)
\]

To find the PMF of V, we observe that for $v = 1, \ldots, 10$,

\[
P_V(v) = P[V < v + 1] - P[V < v] \quad (4)
\]

\[
= 0.01[v^2 - (v - 1)^2] \quad (5)
\]

\[
= 0.01(2v - 1) \quad (6)
\]

The complete expression for the PMF of V is

\[
P_V(v) = \begin{cases}
0.01(2v - 1) & v = 1, 2, \ldots, 10 \\
0 & \text{otherwise}
\end{cases} \quad (7)
\]

144
Problem 4.6.6 Solution

(a) The minimum value of \(W \) is \(W = 0 \), which occurs when \(X = 0 \) and \(Y = 0 \). The maximum value of \(W \) is \(W = 1 \), which occurs when \(X = 1 \) or \(Y = 1 \). The range of \(W \) is \(S_W = \{w|0 \leq w \leq 1\} \).

(b) For \(0 \leq w \leq 1 \), the CDF of \(W \) is

\[
F_W (w) = \int_0^w \int_0^w (x + y) dy dx
\]

Substituting \(f_{X,Y}(x,y) = x + y \) yields

\[
F_W (w) = \int_0^w \int_0^w (x + y) dy dx = \int_0^w (wx + w^2/2) dx = w^3
\]

The complete expression for the CDF is

\[
F_W (w) = \begin{cases}
0 & w < 0 \\
w^3 & 0 \leq w \leq 1 \\
1 & \text{otherwise}
\end{cases}
\]

The PDF of \(W \) is found by differentiating the CDF.

\[
f_W (w) = \frac{dF_W (w)}{dw} = \begin{cases}
3w^2 & 0 \leq w \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

Problem 4.6.7 Solution

(a) Since the joint PDF \(f_{X,Y}(x,y) \) is nonzero only for \(0 \leq y \leq x \leq 1 \), we observe that \(W = Y - X \leq 0 \) since \(Y \leq X \). In addition, the most negative value of \(W \) occurs when \(Y = 0 \) and \(X = 1 \) and \(W = -1 \). Hence the range of \(W \) is \(S_W = \{w|-1 \leq w \leq 0\} \).

(b) For \(w < -1 \), \(F_W(w) = 0 \). For \(w > 0 \), \(F_W(w) = 1 \). For \(-1 \leq w \leq 0 \), the CDF of \(W \) is

\[
F_W (w) = \int_{-w}^{1} \int_{0}^{x+w} 6y dy dx
\]

\[
= \int_{-w}^{1} 3(x + w)^2 dx
\]

\[
= (x + w)^3 \bigg|_{-w}^{1} = (1 + w)^3
\]
Therefore, the complete CDF of \(W \) is
\[
F_W(w) = \begin{cases}
0 & w < -1 \\
(1 + w)^3 & -1 \leq w \leq 0 \\
1 & w > 0
\end{cases} \tag{5}
\]

By taking the derivative of \(f_W(w) \) with respect to \(w \), we obtain the PDF
\[
f_W(w) = \begin{cases}
3(w + 1)^2 & -1 \leq w \leq 0 \\
0 & \text{otherwise}
\end{cases} \tag{6}
\]

Problem 4.6.8 Solution
Random variables \(X \) and \(Y \) have joint PDF
\[
f_{X,Y}(x, y) = \begin{cases}
2 & 0 \leq y \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]

(a) Since \(X \) and \(Y \) are both nonnegative, \(W = Y/X \geq 0 \). Since \(Y \leq X \), \(W = Y/X \leq 1 \). Note that \(W = 0 \) can occur if \(Y = 0 \). Thus the range of \(W \) is \(S_W = \{w|0 \leq w \leq 1\} \).

(b) For \(0 \leq w \leq 1 \), the CDF of \(W \) is
\[
F_W(w) = P[Y/X \leq w] = P[Y \leq wX] = w \tag{2}
\]
The complete expression for the CDF is
\[
F_W(w) = \begin{cases}
0 & w < 0 \\
w & 0 \leq w < 1 \\
1 & w \geq 1
\end{cases} \tag{3}
\]

By taking the derivative of the CDF, we find that the PDF of \(W \) is
\[
f_W(w) = \begin{cases}
1 & 0 \leq w < 1 \\
0 & \text{otherwise}
\end{cases} \tag{4}
\]

We see that \(W \) has a uniform PDF over \([0, 1]\). Thus \(E[W] = 1/2 \).

Problem 4.6.9 Solution
Random variables \(X \) and \(Y \) have joint PDF
\[
f_{X,Y}(x, y) = \begin{cases}
2 & 0 \leq y \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]
(a) Since \(f_{X,Y}(x,y) = 0 \) for \(y > x \), we can conclude that \(Y \leq X \) and that \(W = X/Y \geq 1 \). Since \(Y \) can be arbitrarily small but positive, \(W \) can be arbitrarily large. Hence the range of \(W \) is \(S_W = \{w|w \geq 1\} \).

(b) For \(w \geq 1 \), the CDF of \(W \) is

\[
F_W (w) = P[X/Y \leq w] = 1 - P[X/Y > w] = 1 - P[Y < X/w] = 1 - 1/w
\]

Note that we have used the fact that \(P[Y < X/w] \) equals \(1/2 \) times the area of the corresponding triangle. The complete CDF is

\[
F_W (w) = \begin{cases}
0 & w < 1 \\
1 - 1/w & w \geq 1
\end{cases}
\]

The PDF of \(W \) is found by differentiating the CDF.

\[
f_W (w) = \frac{dF_W (w)}{dw} = \begin{cases}
1/w^2 & w \geq 1 \\
0 & \text{otherwise}
\end{cases}
\]

To find the expected value \(E[W] \), we write

\[
E [W] = \int_{-\infty}^{\infty} w f_W (w) \, dw = \int_{1}^{\infty} \frac{dw}{w}.
\]

However, the integral diverges and \(E[W] \) is undefined.

Problem 4.6.10 Solution

The position of the mobile phone is equally likely to be anywhere in the area of a circle with radius 16 km. Let \(X \) and \(Y \) denote the position of the mobile. Since we are given that the cell has a radius of 4 km, we will measure \(X \) and \(Y \) in kilometers. Assuming the base station is at the origin of the \(X,Y \) plane, the joint PDF of \(X \) and \(Y \) is

\[
f_{X,Y}(x,y) = \begin{cases}
\frac{1}{16\pi} & x^2 + y^2 \leq 16 \\
0 & \text{otherwise}
\end{cases}
\]

Since the mobile’s radial distance from the base station is \(R = \sqrt{X^2 + Y^2} \), the CDF of \(R \) is

\[
F_R (r) = P[R \leq r] = P[X^2 + Y^2 \leq r^2]
\]

By changing to polar coordinates, we see that for \(0 \leq r \leq 4 \) km,

\[
F_R (r) = \int_{0}^{2\pi} \int_{0}^{r} \frac{r'}{16\pi} \, dr' \, d\theta' = r^2/16
\]

So

\[
F_R (r) = \begin{cases}
0 & r < 0 \\
r^2/16 & 0 \leq r < 4 \\
1 & r \geq 4
\end{cases}
\]

Then by taking the derivative with respect to \(r \) we arrive at the PDF

\[
f_R (r) = \begin{cases}
r/8 & 0 \leq r \leq 4 \\
0 & \text{otherwise}
\end{cases}
\]

147
Problem 4.6.11 Solution

Following the hint, we observe that either \(Y \geq X \) or \(X \geq Y \), or, equivalently, \((Y/X) \geq 1 \) or \((X/Y) \geq 1 \). Hence, \(W \geq 1 \). To find the CDF \(F_W(w) \), we know that \(F_W(w) = 0 \) for \(w < 1 \). For \(w \geq 1 \), we solve

\[
F_W(w) = P[\max[(X/Y), (Y/X)] \leq w]
\]

\[
= P[(X/Y) \leq w, (Y/X) \leq w]
\]

\[
= P[Y \geq X/w, Y \leq wX]
\]

\[
= P[X/w \leq Y \leq wX]
\]

We note that in the middle of the above steps, nonnegativity of \(X \) and \(Y \) was essential. We can depict the given set \(\{X/w \leq Y \leq wX\} \) as the dark region on the \(X,Y \) plane. Because the PDF is uniform over the square, it is easier to use geometry to calculate the probability. In particular, each of the lighter triangles that are not part of the region of interest has area \(a^2/2w \).

\[
P[X/w \leq Y \leq wX] = 1 - \frac{a^2/2w + a^2/2w}{a^2} = 1 - \frac{1}{w}
\]

The final expression for the CDF of \(W \) is

\[
F_W(w) = \begin{cases}
0 & w < 1 \\
1 - 1/w & w \geq 1
\end{cases}
\]

By taking the derivative, we obtain the PDF

\[
f_W(w) = \begin{cases}
0 & w < 1 \\
1/w^2 & w \geq 1
\end{cases}
\]

Problem 4.7.1 Solution

In Problem 4.2.1, we found the joint PMF \(P_{X,Y}(x,y) \) as shown. Also the expected values and variances were

\[
E[X] = 3 \\
\text{Var}[X] = 10/7
\]

\[
E[Y] = 5/2 \\
\text{Var}[Y] = 3/4
\]

We use these results now to solve this problem.

(a) Random variable \(W = Y/X \) has expected value

\[
E[Y/X] = \sum_{x=1,2,4} \sum_{y=1,3} \frac{y}{x} P_{X,Y}(x,y)
\]

\[
= \frac{1}{128} + \frac{3}{128} + \frac{1}{228} + \frac{3}{228} + \frac{1}{428} + \frac{3}{428} + \frac{12}{428} = 15/14
\]
(b) The correlation of X and Y is

$$r_{X,Y} = \sum_{x=1,2,4} \sum_{y=1,3} xyP_{X,Y}(x,y)$$

$$= \frac{1 \cdot 1 \cdot 1}{28} + \frac{1 \cdot 3 \cdot 3}{28} + \frac{2 \cdot 1 \cdot 2}{28} + \frac{2 \cdot 3 \cdot 6}{28} + \frac{4 \cdot 1 \cdot 4}{28} + \frac{4 \cdot 3 \cdot 12}{28}$$

$$= 210/28 = 15/2$$

Recognizing that $P_{X,Y}(x,y) = xy/28$ yields the faster calculation

$$r_{X,Y} = E[XY] = \sum_{x=1,2,4} \sum_{y=1,3} \frac{(xy)^2}{28}$$

$$= \frac{1}{28} \sum_{x=1,2,4} x^2 \sum_{y=1,3} y^2$$

$$= \frac{1}{28}(1 + 2^2 + 4^2)(1^2 + 3^2) = \frac{210}{28} = \frac{15}{2}$$

(c) The covariance of X and Y is

$$\text{Cov}[X,Y] = E[XY] - E[X]E[Y] = \frac{15}{2} - \frac{3 \cdot 5}{2} = 0$$

(d) Since X and Y have zero covariance, the correlation coefficient is

$$\rho_{X,Y} = \frac{\text{Cov}[X,Y]}{\sqrt{\text{Var}[X] \text{Var}[Y]}} = 0.$$

(e) Since X and Y are uncorrelated, the variance of $X + Y$ is

$$\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] = \frac{61}{28}.$$

Problem 4.7.2 Solution

In Problem 4.2.1, we found the joint PMF $P_{X,Y}(x,y)$ shown here. The expected values and variances were found to be

$$E[X] = 0 \quad \text{Var}[X] = \frac{24}{7}$$

$$E[Y] = 0 \quad \text{Var}[Y] = \frac{5}{7}$$

We need these results to solve this problem.
(a) Random variable \(W = 2^{XY} \) has expected value

\[
E[2^{XY}] = \sum_{x=-2,0,2} \sum_{y=-1,0,1} 2^{xy} P_{X,Y}(x, y)
\]

\[
= 2^{-2(-1)} \frac{3}{14} + 2^{-2(0)} \frac{2}{14} + 2^{-2(1)} \frac{1}{14} + 2^{0(-1)} \frac{1}{14} + 2^{0(1)} \frac{1}{14}
\]

\[
+ 2^{2(-1)} \frac{1}{14} + 2^{2(0)} \frac{2}{14} + 2^{2(1)} \frac{3}{14}
\]

\[
= 61/28
\]

(b) The correlation of \(X \) and \(Y \) is

\[
r_{X,Y} = \sum_{x=-2,0,2} \sum_{y=-1,0,1} xy P_{X,Y}(x, y)
\]

\[
= \frac{-2(-1)(3)}{14} + \frac{-2(0)(2)}{14} + \frac{-2(1)(1)}{14} + \frac{2(-1)(1)}{14} + \frac{2(0)(2)}{14} + \frac{2(1)(3)}{14}
\]

\[
= 4/7
\]

(c) The covariance of \(X \) and \(Y \) is

\[
\]

(d) The correlation coefficient is

\[
\rho_{X,Y} = \frac{Cov[X, Y]}{\sqrt{Var[X] Var[Y]}} = \frac{2}{\sqrt{30}}
\]

(e) By Theorem 4.16,

\[
Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]
\]

\[
= \frac{24}{7} + \frac{5}{7} + \frac{4}{7} = \frac{37}{7}
\]

Problem 4.7.3 Solution

In the solution to Quiz 4.3, the joint PMF and the marginal PMFs are

<table>
<thead>
<tr>
<th>(P_{H,B}(h,b))</th>
<th>(b = 0)</th>
<th>(b = 2)</th>
<th>(b = 4)</th>
<th>(P_H(h))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h = -1)</td>
<td>0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>(h = 0)</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>(h = 1)</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>(P_B(b))</td>
<td>0.2</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

From the joint PMF, the correlation coefficient is

\[
r_{H,B} = E[HB] = \sum_{h=-1}^{1} \sum_{b=0,2,4} hb P_{H,B}(h,b)
\]

\[
= -1(2)(0.4) + 1(2)(0.1) + -1(4)(0.2) + 1(4)(0)
\]

\[
= -1.4
\]
since only terms in which both h and b are nonzero make a contribution. Using the marginal PMFs, the expected values of X and Y are

$$\begin{align*}
E[H] &= \sum_{h=-1}^{1} hP_H(h) = -1(0.6) + 0(0.2) + 1(0.2) = -0.2 \\
E[B] &= \sum_{b=0,2,4} bP_B(b) = 0(0.2) + 2(0.5) + 4(0.3) = 2.2
\end{align*}$$

The covariance is

$$\text{Cov}[H,B] = E[HB] - E[H]E[B] = -1.4 - (-0.2)(2.2) = -0.96$$

Problem 4.7.4 Solution

From the joint PMF, $P_X(x)Y$, found in Example 4.13, we can find the marginal PMF for X or Y by summing over the columns or rows of the joint PMF.

$$P_Y(y) = \begin{cases}
25/48 & y = 1 \\
13/48 & y = 2 \\
7/48 & y = 3 \\
3/48 & y = 4 \\
0 & \text{otherwise}
\end{cases}$$

$$P_X(x) = \begin{cases}
1/4 & x = 1, 2, 3, 4 \\
0 & \text{otherwise}
\end{cases}$$

(a) The expected values are

$$E[Y] = \sum_{y=1}^{4} yP_Y(y) = 1 \cdot \frac{25}{48} + 2 \cdot \frac{13}{48} + 3 \cdot \frac{7}{48} + 4 \cdot \frac{3}{48} = 7/4$$

$$E[X] = \sum_{x=1}^{4} xP_X(x) = \frac{1}{4} (1 + 2 + 3 + 4) = 5/2$$

(b) To find the variances, we first find the second moments.

$$E[Y^2] = \sum_{y=1}^{4} y^2P_Y(y) = 1^2 \cdot \frac{25}{48} + 2^2 \cdot \frac{13}{48} + 3^2 \cdot \frac{7}{48} + 4^2 \cdot \frac{3}{48} = 47/12$$

$$E[X^2] = \sum_{x=1}^{4} x^2P_X(x) = \frac{1}{4} (1^2 + 2^2 + 3^2 + 4^2) = 15/2$$

Now the variances are

$$\text{Var}[Y] = E[Y^2] - (E[Y])^2 = 47/12 - (7/4)^2 = 41/48$$

$$\text{Var}[X] = E[X^2] - (E[X])^2 = 15/2 - (5/2)^2 = 5/4$$
(c) To find the correlation, we evaluate the product XY over all values of X and Y. Specifically,

$$r_{X,Y} = E[XY] = \sum_{x=1}^{4} \sum_{y=1}^{4} xyP_{X,Y}(x,y)$$

$$= \frac{1}{4} + \frac{2}{8} + \frac{3}{12} + \frac{4}{16} + \frac{4}{8} + \frac{6}{12} + \frac{8}{16} + \frac{9}{12} + \frac{12}{16} + \frac{16}{16}$$

$$= 5 \quad (9)$$

(d) The covariance of X and Y is

$$\text{Cov}[X,Y] = E[XY] - E[X]E[Y] = 5 - \left(\frac{7}{4}\right)\left(\frac{10}{4}\right) = 10/16 \quad (11)$$

(e) The correlation coefficient is

$$\rho_{X,Y} = \frac{\text{Cov}[W,V]}{\sqrt{\text{Var}[W]\text{Var}[V]}} = \frac{10/16}{\sqrt{(41/48)(5/4)}} \approx 0.605 \quad (12)$$

Problem 4.7.5 Solution

For integers $0 \leq x \leq 5$, the marginal PMF of X is

$$P_X(x) = \sum_{y=0}^{x} P_{X,Y}(x,y) = \sum_{y=0}^{x} (1/21) = \frac{x+1}{21} \quad (1)$$

Similarly, for integers $0 \leq y \leq 5$, the marginal PMF of Y is

$$P_Y(y) = \sum_{x=y}^{5} P_{X,Y}(x,y) = \sum_{x=y}^{5} (1/21) = \frac{6-y}{21} \quad (2)$$

The complete expressions for the marginal PMFs are

$$P_X(x) = \begin{cases}
\frac{(x+1)/21}{x=0,\ldots,5} \\
0 \quad \text{otherwise}
\end{cases} \quad (3)$$

$$P_Y(y) = \begin{cases}
\frac{(6-y)/21}{y=0,\ldots,5} \\
0 \quad \text{otherwise}
\end{cases} \quad (4)$$

The expected values are

$$E[X] = \sum_{x=0}^{5} \frac{x+1}{21} = \frac{70}{21} = \frac{10}{3} \quad E[Y] = \sum_{y=0}^{5} \frac{6-y}{21} = \frac{35}{21} = \frac{5}{3} \quad (5)$$

To find the covariance, we first find the correlation

$$E[XY] = \sum_{x=0}^{5} \sum_{y=0}^{x} \frac{xy}{21} = \frac{1}{21} \sum_{x=1}^{5} \sum_{y=1}^{x} y = \frac{1}{42} \sum_{x=1}^{5} x^2(x+1) = \frac{280}{42} = \frac{20}{3} \quad (6)$$

The covariance of X and Y is

$$\text{Cov}[X,Y] = E[XY] - E[X]E[Y] = \frac{20}{3} - \frac{50}{9} = \frac{10}{9} \quad (7)$$

152
Problem 4.7.6 Solution

To solve this problem, we identify the values of $W = \min(X, Y)$ and $V = \max(X, Y)$ for each possible pair x, y. Here we observe that $W = Y$ and $V = X$. This is a result of the underlying experiment in that given $X = x$, each $Y \in \{1, 2, \ldots, x\}$ is equally likely. Hence $Y \leq X$. This implies $\min(X, Y) = Y$ and $\max(X, Y) = X$.

Using the results from Problem 4.7.4, we have the following answers.

(a) The expected values are

$$E[W] = E[Y] = \frac{7}{4} \quad E[V] = E[X] = \frac{5}{2}$$

(b) The variances are

$$\text{Var}[W] = \text{Var}[Y] = \frac{41}{48} \quad \text{Var}[V] = \text{Var}[X] = \frac{5}{4}$$

(c) The correlation is

$$r_{W,V} = E[XY] = r_{X,Y} = 5$$

(d) The covariance of W and V is

$$\text{Cov}[W, V] = \text{Cov}[X, Y] = \frac{10}{16}$$

(e) The correlation coefficient is

$$\rho_{W,V} = \rho_{X,Y} = \frac{\frac{10}{16}}{\sqrt{\frac{41}{48}} \sqrt{\frac{5}{4}}} \approx 0.605$$

Problem 4.7.7 Solution

First, we observe that Y has mean $\mu_Y = a\mu_X + b$ and variance $\text{Var}[Y] = a^2 \text{Var}[X]$. The covariance of X and Y is

$$\text{Cov}[X, Y] = E[(X - \mu_X)(aX + b - a\mu_X - b)]$$

$$= aE[(X - \mu_X)^2]$$

$$= a \text{Var}[X]$$

The correlation coefficient is

$$\rho_{X,Y} = \frac{\text{Cov}[X, Y]}{\sqrt{\text{Var}[X]\text{Var}[Y]}} = \frac{a \text{Var}[X]}{\sqrt{a^2 \text{Var}[X] a^2 \text{Var}[X]}} = \frac{a}{|a|}$$

When $a > 0$, $\rho_{X,Y} = 1$. When $a < 0$, $\rho_{X,Y} = 1$.

153
Problem 4.7.8 Solution

The joint PDF of X and Y is

$$f_{X,Y}(x, y) = \begin{cases} (x + y)/3 & 0 \leq x \leq 1, 0 \leq y \leq 2 \\ 0 & \text{otherwise} \end{cases}$$ \hfill (1)

Before calculating moments, we first find the marginal PDFs of X and Y. For $0 \leq x \leq 1$,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy = \int_{0}^{1} \frac{x + y}{3} \, dy = \frac{xy}{3} + \frac{y^2}{6} \bigg|_{y=0}^{y=2} = \frac{2x + 2}{3}$$ \hfill (2)

For $0 \leq y \leq 2$,

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx = \int_{0}^{1} \left(\frac{x}{3} + \frac{y}{3} \right) \, dx = \frac{x^2}{6} + \frac{xy}{3} \bigg|_{x=0}^{x=1} = \frac{2y + 1}{6}$$ \hfill (3)

Complete expressions for the marginal PDFs are

$$f_X(x) = \begin{cases} \frac{2x + 2}{3} & 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases} \quad f_Y(y) = \begin{cases} \frac{2y + 1}{6} & 0 \leq y \leq 2 \\ 0 & \text{otherwise} \end{cases}$$ \hfill (4)

(a) The expected value of X is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx = \int_{0}^{1} x \frac{2x + 2}{3} \, dx = \frac{2x^3}{9} + \frac{x^2}{3} \bigg|_{x=0}^{x=1} = \frac{5}{9}$$ \hfill (5)

The second moment of X is

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) \, dx = \int_{0}^{1} x^2 \frac{2x + 2}{3} \, dx = \frac{x^4}{6} + \frac{2x^3}{9} \bigg|_{x=0}^{x=1} = \frac{7}{18}$$ \hfill (6)

The variance of X is $\text{Var}[X] = E[X^2] - (E[X])^2 = 7/18 - (5/9)^2 = 13/162$.

(b) The expected value of Y is

$$E[Y] = \int_{-\infty}^{\infty} y f_Y(y) \, dy = \int_{0}^{2} y \frac{2y + 1}{6} \, dy = \frac{y^2}{12} + \frac{y^3}{9} \bigg|_{y=0}^{y=2} = \frac{11}{9}$$ \hfill (7)

The second moment of Y is

$$E[Y^2] = \int_{-\infty}^{\infty} y^2 f_Y(y) \, dy = \int_{0}^{2} y^2 \frac{2y + 1}{6} \, dy = \frac{y^3}{18} + \frac{y^4}{12} \bigg|_{y=0}^{y=2} = \frac{16}{9}$$ \hfill (8)

The variance of Y is $\text{Var}[Y] = E[Y^2] - (E[Y])^2 = 23/81$.

(c) The correlation of X and Y is

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X,Y}(x, y) \, dx \, dy$$ \hfill (9)

$$= \int_{0}^{1} \int_{0}^{2} xy \left(\frac{x + y}{3} \right) \, dy \, dx$$ \hfill (10)

$$= \int_{0}^{1} \left(\frac{x^2 y^2}{6} + \frac{xy^3}{9} \bigg|_{y=0}^{y=2} \right) \, dx$$ \hfill (11)

$$= \int_{0}^{1} \left(\frac{2x^2}{3} + \frac{8x}{9} \right) \, dx = \frac{2x^3}{9} + \frac{4x^2}{9} \bigg|_{x=0}^{x=1} = \frac{2}{3}$$ \hfill (12)

|154|
(d) The expected value of X and Y is

$$E[X + Y] = E[X] + E[Y] = \frac{5}{9} + \frac{11}{9} = \frac{16}{9} \quad (13)$$

(e) By Theorem 4.15,

$$\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] + 2 \text{Cov}[X, Y] = \frac{13}{162} + \frac{23}{81} - \frac{2}{81} = \frac{55}{162} \quad (14)$$

Problem 4.7.9 Solution

(a) The first moment of X is

$$E[X] = \int_0^1 \int_0^1 4x^2y \, dy \, dx = \int_0^1 2x^2 \, dx = \frac{2}{3} \quad (1)$$

The second moment of X is

$$E[X^2] = \int_0^1 \int_0^1 4x^3y \, dy \, dx = \int_0^1 2x^3 \, dx = \frac{1}{2} \quad (2)$$

The variance of X is $\text{Var}[X] = E[X^2] - (E[X])^2 = 1/2 - (2/3)^2 = 1/18$.

(b) The mean of Y is

$$E[Y] = \int_0^1 \int_0^1 4xy \, dy \, dx = \int_0^1 \frac{4x}{3} \, dx = \frac{2}{3} \quad (3)$$

The second moment of Y is

$$E[Y^2] = \int_0^1 \int_0^1 4xy^3 \, dy \, dx = \int_0^1 x \, dx = \frac{1}{2} \quad (4)$$

The variance of Y is $\text{Var}[Y] = E[Y^2] - (E[Y])^2 = 1/2 - (2/3)^2 = 1/18$.

(c) To find the covariance, we first find the correlation

$$E[XY] = \int_0^1 \int_0^1 4x^2y^2 \, dy \, dx = \int_0^1 \frac{4x^2}{3} \, dx = \frac{4}{9} \quad (5)$$

The covariance is thus

$$\text{Cov}[X, Y] = E[XY] - E[X]E[Y] = \frac{4}{9} - \left(\frac{2}{3} \right)^2 = 0 \quad (6)$$

(e) By Theorem 4.15, the variance of $X + Y$ is

$$\text{Var}[X] + \text{Var}[Y] + 2 \text{Cov}[X, Y] = 1/18 + 1/18 + 0 = 1/9 \quad (7)$$
Problem 4.7.10 Solution
The joint PDF of X and Y and the region of nonzero probability are

$$f_{X,Y}(x, y) = \begin{cases}
\frac{5x^2}{2} & -1 \leq x \leq 1, 0 \leq y \leq x^2 \\
0 & \text{otherwise}
\end{cases} \quad (1)$$

(a) The first moment of X is

$$E[X] = \int_{-1}^{1} \int_{0}^{x^2} x \cdot \frac{5x^2}{2} \, dy \, dx = \int_{-1}^{1} \frac{5x^5}{2} \, dx = \frac{5x^6}{12} \bigg|_{-1}^{1} = 0 \quad (2)$$

Since $E[X] = 0$, the variance of X and the second moment are both

$$\text{Var}[X] = E[X^2] = \int_{-1}^{1} \int_{0}^{x^2} x^2 \cdot \frac{5x^2}{2} \, dy \, dx = \frac{5x^7}{14} \bigg|_{-1}^{1} = \frac{10}{14} \quad (3)$$

(b) The first and second moments of Y are

$$E[Y] = \int_{-1}^{1} \int_{0}^{x^2} y \cdot \frac{5x^2}{2} \, dy \, dx = \frac{5}{14} \quad (4)$$

$$E[Y^2] = \int_{-1}^{1} \int_{0}^{x^2} y^2 \cdot \frac{5x^2}{2} \, dy \, dx = \frac{5}{26} \quad (5)$$

Therefore, $\text{Var}[Y] = 5/26 - (5/14)^2 = 0.0576$.

(c) Since $E[X] = 0$, $\text{Cov}[X,Y] = E[XY] - E[X]E[Y] = E[XY]$. Thus,

$$\text{Cov}[X,Y] = E[XY] = \int_{1}^{1} \int_{0}^{x^2} xy \cdot \frac{5x^2}{2} \, dy \, dx = \int_{-1}^{1} \frac{5x^7}{4} \, dx = 0 \quad (6)$$

(d) The expected value of the sum $X + Y$ is

$$E[X + Y] = E[X] + E[Y] = \frac{5}{14} \quad (7)$$

(e) By Theorem 4.15, the variance of $X + Y$ is

$$\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] + 2 \text{Cov}[X,Y] = 5/7 + 0.0576 = 0.7719 \quad (8)$$

Problem 4.7.11 Solution
Random variables X and Y have joint PDF

$$f_{X,Y}(x, y) = \begin{cases}
2 & 0 \leq y \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases} \quad (1)$$
Before finding moments, it is helpful to first find the marginal PDFs. For \(0 \leq x \leq 1\),

\[
f_X (x) = \int_{-\infty}^{\infty} f_{X,Y} (x,y) \, dy = \int_{0}^{x} 2 \, dy = 2x
\]

(2)

Note that \(f_X(x) = 0\) for \(x < 0\) or \(x > 1\). For \(0 \leq y \leq 1\),

\[
f_Y (y) = \int_{-\infty}^{\infty} f_{X,Y} (x,y) \, dx = \int_{y}^{1} 2 \, dx = 2(1-y)
\]

(3)

Also, for \(y < 0\) or \(y > 1\), \(f_Y(y) = 0\). Complete expressions for the marginal PDFs are

\[
f_X (x) = \begin{cases}
2x & 0 \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases} \quad f_Y (y) = \begin{cases}
2(1-y) & 0 \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

(4)

(a) The first two moments of \(X\) are

\[
E [X] = \int_{-\infty}^{\infty} x f_X (x) \, dx = \int_{0}^{1} 2x^2 \, dx = 2/3
\]

(5)

\[
E [X^2] = \int_{-\infty}^{\infty} x^2 f_X (x) \, dx = \int_{0}^{1} 2x^3 \, dx = 1/2
\]

(6)

The variance of \(X\) is \(\text{Var}[X] = E[X^2] - (E[X])^2 = 1/2 - 4/9 = 1/18\).

(b) The expected value and second moment of \(Y\) are

\[
E [Y] = \int_{-\infty}^{\infty} y f_Y (y) \, dy = \int_{0}^{1} 2y(1-y) \, dy = y^2 - \frac{2y^3}{3} \bigg|_{0}^{1} = 1/3
\]

(7)

\[
E [Y^2] = \int_{-\infty}^{\infty} y^2 f_Y (y) \, dy = \int_{0}^{1} 2y^2(1-y) \, dy = \frac{2y^3}{3} - \frac{y^4}{2} \bigg|_{0}^{1} = 1/6
\]

(8)

The variance of \(Y\) is \(\text{Var}[Y] = E[Y^2] - (E[Y])^2 = 1/6 - 1/9 = 1/18\).

(c) Before finding the covariance, we find the correlation

\[
E [XY] = \int_{0}^{1} \int_{0}^{x} 2xy \, dy \, dx = \int_{0}^{1} x^3 \, dx = 1/4
\]

(9)

The covariance is

\[
\]

(10)

(d) \(E[X + Y] = E[X] + E[Y] = 2/3 + 1/3 = 1\)

(e) By Theorem 4.15,

\[
\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] + 2 \text{Cov} [X,Y] = 1/6.
\]

(11)
Problem 4.7.12 Solution

Random variables X and Y have joint PDF

$$f_{X,Y}(x, y) = \begin{cases}
1/2 & -1 \leq x \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases} \quad (1)$$

The region of possible pairs (x, y) is shown with the joint PDF. The rest of this problem is just calculus.

$$E[XY] = \int_{-1}^{1} \int_{x}^{1} \frac{xy}{2} \, dy \, dx = \frac{1}{4} \int_{-1}^{1} x(1-x^2) \, dx = \frac{x^2}{8} - \frac{x^4}{16} \bigg|_{-1}^{1} = 0 \quad (2)$$

$$E[e^{X+Y}] = \int_{-1}^{1} \int_{x}^{1} \frac{1}{2} e^x e^y \, dy \, dx$$

$$= \frac{1}{2} \int_{-1}^{1} e^x(e^1 - e^x) \, dx$$

$$= \frac{1}{2} e^{1+x} - \frac{1}{4} e^{2x} \bigg|_{-1}^{1} = e^2 + e^2 - \frac{1}{2} \quad (3)$$

Problem 4.7.13 Solution

For this problem, calculating the marginal PMF of K is not easy. However, the marginal PMF of N is easy to find. For $n = 1, 2, \ldots,$

$$P_N(n) = \sum_{k=1}^{n} \frac{(1-p)^{n-1}p}{n} = (1-p)^{n-1}p \quad (1)$$

That is, N has a geometric PMF. From Appendix A, we note that

$$E[N] = \frac{1}{p} \quad \text{Var}[N] = \frac{1-p}{p^2} \quad (2)$$

We can use these facts to find the second moment of N.

$$E[N^2] = \text{Var}[N] + (E[N])^2 = \frac{2-p}{p^2} \quad (3)$$

Now we can calculate the moments of K.

$$E[K] = \sum_{n=1}^{\infty} \sum_{k=1}^{n} k \frac{(1-p)^{n-1}p}{n} = \sum_{n=1}^{\infty} \frac{(1-p)^{n-1}p}{n} \sum_{k=1}^{n} k \quad (4)$$

Since $\sum_{k=1}^{n} k = n(n+1)/2$,

$$E[K] = \sum_{n=1}^{\infty} \frac{n+1}{2} (1-p)^{n-1}p = E\left[\frac{N+1}{2}\right] = \frac{1}{2p} + \frac{1}{2} \quad (5)$$

We now can calculate the sum of the moments.

$$E[N + K] = E[N] + E[K] = \frac{3}{2p} + \frac{1}{2} \quad (6)$$
The second moment of K is

$$\begin{align*}
E[K^2] &= \sum_{n=1}^{\infty} \sum_{k=1}^{n} k^2 \frac{(1-p)^{n-1}p}{n} \\
&= \sum_{n=1}^{\infty} \frac{(1-p)^{n-1}p}{n} \sum_{k=1}^{n} k^2
\end{align*}$$

(7)

Using the identity $\sum_{k=1}^{n} k^2 = n(n+1)(2n+1)/6$, we obtain

$$E[K^2] = \sum_{n=1}^{\infty} \frac{(n+1)(2n+1)}{6} (1-p)^{n-1}p = E\left[\frac{(N+1)(2N+1)}{6}\right]$$

(8)

Applying the values of $E[N]$ and $E[N^2]$ found above, we find that

$$E[K^2] = \frac{E[N^2]}{3} + \frac{E[N]}{2} + \frac{1}{6} = \frac{2}{3p^2} + \frac{1}{6p} + \frac{1}{6}$$

(9)

Thus, we can calculate the variance of K.

$$\text{Var}[K] = E[K^2] - (E[K])^2 = \frac{5}{12p^2} - \frac{1}{3p} + \frac{5}{12}$$

(10)

To find the correlation of N and K,

$$E[NK] = \sum_{n=1}^{\infty} \sum_{k=1}^{n} nk \frac{(1-p)^{n-1}p}{n} = \sum_{n=1}^{\infty} (1-p)^{n-1}p \sum_{k=1}^{n} k$$

(11)

Since $\sum_{k=1}^{n} k = n(n+1)/2$,

$$E[NK] = \sum_{n=1}^{\infty} \frac{n(n+1)}{2} (1-p)^{n-1}p = E\left[\frac{N(N+1)}{2}\right] = \frac{1}{p^2}$$

(12)

Finally, the covariance is

$$\text{Cov}[N, K] = E[NK] - E[N] E[K] = \frac{1}{2p^2} - \frac{1}{2p}$$

(13)

Problem 4.8.1 Solution

The event A occurs iff $X > 5$ and $Y > 5$ and has probability

$$P[A] = P[X > 5, Y > 5] = \sum_{x=6}^{10} \sum_{y=6}^{10} 0.01 = 0.25$$

(1)

From Theorem 4.19,

$$P_{X,Y|A}(x,y) = \begin{cases}
\frac{P_{X,Y}(x,y)}{P[A]} & (x,y) \in A \\
0 & \text{otherwise}
\end{cases}$$

$$= \begin{cases}
0.04 & x = 6, \ldots, 10; y = 6, \ldots, 20 \\
0 & \text{otherwise}
\end{cases}$$

(2)
Problem 4.8.2 Solution
The event B occurs iff $X \leq 5$ and $Y \leq 5$ and has probability

$$P [B] = P [X \leq 5, Y \leq 5] = \sum_{x=1}^{5} \sum_{y=1}^{5} 0.01 = 0.25 \tag{1}$$

From Theorem 4.19,

$$P_{X,Y|B} (x, y) = \begin{cases} \frac{P_{X,Y}(x,y)}{P[B]} & (x,y) \in A \\ 0 & \text{otherwise} \end{cases} \tag{2}$$

$$= \begin{cases} 0.04 & x = 1, \ldots, 5; y = 1, \ldots, 5 \\ 0 & \text{otherwise} \end{cases} \tag{3}$$

Problem 4.8.3 Solution
Given the event $A = \{X + Y \leq 1\}$, we wish to find $f_{X,Y|A} (x, y)$. First we find

$$P [A] = \int_{0}^{1} \int_{0}^{1-x} 6e^{-2x-3y} \, dy \, dx = 1 - 3e^{-2} + 2e^{-3} \tag{1}$$

So then

$$f_{X,Y|A} (x, y) = \begin{cases} \frac{6e^{-2x-3y}}{1-3e^{-2}+2e^{-3}} & x + y \leq 1, x \geq 0, y \geq 0 \\ 0 & \text{otherwise} \end{cases} \tag{2}$$

Problem 4.8.4 Solution
First we observe that for $n = 1, 2, \ldots$, the marginal PMF of N satisfies

$$P_N (n) = \sum_{k=1}^{n} P_{N,K} (n,k) = (1-p)^{n-1}p \sum_{k=1}^{n} \frac{1}{n} = (1-p)^{n-1}p \tag{1}$$

Thus, the event B has probability

$$P [B] = \sum_{n=10}^{\infty} P_N (n) = (1-p)^{9}p[1 + (1-p) + (1-p)^2 + \cdots] = (1-p)^{9} \tag{2}$$

From Theorem 4.19,

$$P_{N,K|B} (n,k) = \begin{cases} \frac{P_{N,K}(n,k)}{P[B]} & n,k \in B \\ 0 & \text{otherwise} \end{cases} \tag{3}$$

$$= \begin{cases} (1-p)^{n-10}p/n & n = 10, 11, \ldots; k = 1, \ldots, n \\ 0 & \text{otherwise} \end{cases} \tag{4}$$

The conditional PMF $P_{N|B}(n|b)$ could be found directly from $P_N(n)$ using Theorem 2.17. However, we can also find it just by summing the conditional joint PMF.

$$P_{N|B} (n) = \sum_{k=1}^{n} P_{N,K|B} (n,k) = \begin{cases} (1-p)^{n-10}p & n = 10, 11, \ldots \\ 0 & \text{otherwise} \end{cases} \tag{5}$$
From the conditional PMF $P_{N|B}(n)$, we can calculate directly the conditional moments of N given B. Instead, however, we observe that given B, $N' = N - 9$ has a geometric PMF with mean $1/p$. That is, for $n = 1, 2, \ldots$,

$$P_{N'|B}(n) = P[N = n + 9|B] = P_{N|B}(n + 9) = (1 - p)^{n-1}p$$

(6)

Hence, given B, $N = N' + 9$ and we can calculate the conditional expectations

(7)

$$\text{Var}[N|B] = \text{Var}[N' + 9|B] = \text{Var}[N'|B] = (1 - p)/p^2$$

(8)

Note that further along in the problem we will need $E[N^2|B]$ which we now calculate.

$$E[N^2|B] = \text{Var}[N|B] + (E[N|B])^2$$

$$= \frac{2}{p^2} + \frac{17}{p} + 81$$

(9)

For the conditional moments of K, we work directly with the conditional PMF $P_{N,K|B}(n,k)$.

$$E[K|B] = \sum_{n=10}^{\infty} \sum_{k=1}^{n} k \frac{(1 - p)^{n-10}p}{n} = \sum_{n=10}^{\infty} \frac{(1 - p)^{n-10}p}{n} \sum_{k=1}^{n} k$$

(11)

Since $\sum_{k=1}^{n} k = n(n+1)/2$,

$$E[K|B] = \sum_{n=10}^{\infty} \frac{n+1}{2} \frac{(1 - p)^{n-1}p}{n} = \frac{1}{2} E[N + 1|B] = \frac{1}{2p} + 5$$

(12)

We now can calculate the conditional expectation of the sum.

$$E[N + K|B] = E[N|B] + E[K|B] = 1/p + 9 + 1/(2p) + 5 = \frac{3}{2p} + 14$$

(13)

The conditional second moment of K is

$$E[K^2|B] = \sum_{n=10}^{\infty} \sum_{k=1}^{n} k^2 \frac{(1 - p)^{n-10}p}{n} = \sum_{n=10}^{\infty} \frac{(1 - p)^{n-10}p}{n} \sum_{k=1}^{n} k^2$$

(14)

Using the identity $\sum_{k=1}^{n} k^2 = n(n+1)(2n+1)/6$, we obtain

$$E[K^2|B] = \sum_{n=10}^{\infty} \frac{(n+1)(2n+1)}{6} \frac{(1 - p)^{n-10}p}{n} = \frac{1}{6} E[(N + 1)(2N + 1)|B]$$

(15)

Applying the values of $E[N|B]$ and $E[N^2|B]$ found above, we find that

$$E[K^2|B] = \frac{E[N^2|B]}{3} + \frac{E[N|B]}{2} + \frac{1}{6} = \frac{2}{3p^2} + \frac{37}{6p} + 31 \frac{2}{3}$$

(16)

Thus, we can calculate the conditional variance of K.

$$\text{Var}[K|B] = E[K^2|B] - (E[K|B])^2 = \frac{5}{12p^2} - \frac{7}{6p} + 6 \frac{2}{3}$$

(17)
To find the conditional correlation of N and K,
\[E[NK|B] = \sum_{n=10}^{\infty} \sum_{k=1}^{n} nk \frac{(1-p)^{n-1}p}{n} = \sum_{n=10}^{\infty} (1-p)^{n-1}p \sum_{k=1}^{n} k \]
(18)

Since $\sum_{k=1}^{n} k = n(n+1)/2$,
\[E[NK|B] = \sum_{n=10}^{\infty} \frac{n(n+1)}{2} (1-p)^{n-1}p = \frac{1}{2} E[N(N+1)|B] = \frac{1}{p^2} + \frac{9}{p} + 45 \]
(19)

Problem 4.8.5 Solution

The joint PDF of X and Y is
\[f_{X,Y}(x, y) = \begin{cases}
(x+y)/3 & 0 \leq x \leq 1, \ 0 \leq y \leq 2 \\
0 & \text{otherwise}
\end{cases} \]
(1)

(a) The probability that $Y \leq 1$ is
\[P[A] = P[Y \leq 1] = \int_{0}^{1} \int_{0}^{1} f_{X,Y}(x, y) \, dx \, dy \]
(2)
\[= \int_{0}^{1} \left(\int_{0}^{1} \frac{x+y}{3} \, dy \right) \, dx \]
(3)
\[= \int_{0}^{1} \left(\frac{xy}{3} + \frac{y^2}{6} \bigg|_{y=0}^{y=1} \right) \, dx \]
(4)
\[= \int_{0}^{1} \frac{2x+1}{6} \, dx = \frac{x^2}{6} + \frac{x}{6} \bigg|_{0}^{1} = \frac{1}{3} \]
(5)

(b) By Definition 4.10, the conditional joint PDF of X and Y given A is
\[f_{X,Y|A}(x, y) = \begin{cases}
\frac{f_{X,Y}(x, y)}{P[A]} & (x, y) \in A \\
0 & \text{otherwise}
\end{cases} = \begin{cases}
x+y & 0 \leq x \leq 1, \ 0 \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases} \]
(6)

From $f_{X,Y|A}(x, y)$, we find the conditional marginal PDF $f_{X|A}(x)$. For $0 \leq x \leq 1$,
\[f_{X|A}(x) = \int_{-\infty}^{\infty} f_{X,Y|A}(x, y) \, dy = \int_{0}^{1} (x+y) \, dy = xy + \frac{y^2}{2} \bigg|_{y=0}^{y=1} = x + \frac{1}{2} \]
(7)

The complete expression is
\[f_{X|A}(x) = \begin{cases}
x + 1/2 & 0 \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases} \]
(8)

For $0 \leq y \leq 1$, the conditional marginal PDF of Y is
\[f_{Y|A}(y) = \int_{-\infty}^{\infty} f_{X,Y|A}(x, y) \, dx = \int_{0}^{1} (x+y) \, dx = \frac{x^2}{2} + xy \bigg|_{x=0}^{x=1} = y + 1/2 \]
(9)

The complete expression is
\[f_{Y|A}(y) = \begin{cases}
y + 1/2 & 0 \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases} \]
(10)
Problem 4.8.6 Solution

Random variables X and Y have joint PDF

$$f_{X,Y}(x,y) = \begin{cases} \frac{4x+2y}{3} & 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(a) The probability of event $A = \{Y \leq 1/2\}$ is

$$P[A] = \int \int_{y \leq 1/2} f_{X,Y}(x,y) \, dy \, dx = \int_0^1 \int_{0}^{1/2} \frac{4x+2y}{3} \, dy \, dx.$$

With some calculus,

$$P[A] = \int_0^1 \frac{4xy+y^2}{3} \bigg|_{y=0}^{y=1/2} \, dx = \int_0^1 \frac{2x+1/4}{3} \, dx = \frac{x^2}{3} + \frac{x}{12} \bigg|_0^1 = \frac{5}{12}.$$

(b) The conditional joint PDF of X and Y given A is

$$f_{X,Y|A}(x,y) = \begin{cases} \frac{f_{X,Y}(x,y)}{P[A]} & (x,y) \in A \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} 8(2x+y)/5 & 0 \leq x \leq 1, 0 \leq y \leq 1/2 \\ 0 & \text{otherwise} \end{cases}$$

For $0 \leq x \leq 1$, the PDF of X given A is

$$f_{X|A}(x) = \int_{-\infty}^{\infty} f_{X,Y|A}(x,y) \, dy = \frac{8}{5} \int_0^{1/2} (2x+y) \, dy$$

$$= \frac{8}{5} \left(2xy + \frac{y^2}{2} \right) \bigg|_{y=0}^{y=1/2} = \frac{8x+1}{5}.$$

The complete expression is

$$f_{X|A}(x) = \begin{cases} (8x+1)/5 & 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

For $0 \leq y \leq 1/2$, the conditional marginal PDF of Y given A is

$$f_{Y|A}(y) = \int_{-\infty}^{\infty} f_{X,Y|A}(x,y) \, dx = \frac{8}{5} \int_0^1 (2x+y) \, dx$$

$$= \frac{8x^2 + 8xy}{5} \bigg|_{x=0}^{x=1} = \frac{8y+8}{5}.$$

The complete expression is

$$f_{Y|A}(y) = \begin{cases} (8y+8)/5 & 0 \leq y \leq 1/2 \\ 0 & \text{otherwise} \end{cases}$$
Problem 4.8.7 Solution

(a) The event \(A = \{ Y \leq 1/4 \} \) has probability

\[
P[A] = 2 \int_0^{1/2} \int_0^{x^2/2} dy \, dx + 2 \int_{1/2}^1 \int_0^{1/4} \frac{5x^2}{2} \, dy \, dx
\]

\[
= \int_0^{1/2} 5x^4 \, dx + \int_{1/2}^1 \frac{5x^2}{4} \, dx
\]

\[
= x^5 \bigg|_0^{1/2} + 5x^3/12 \bigg|_{1/2}^{1/2}
\]

\[
= 19/48
\]

This implies

\[
f_{X,Y|A}(x,y) = \begin{cases} f_{X,Y}(x,y)/P[A] & (x,y) \in A \\ 0 & \text{otherwise} \end{cases}
\]

\[
= \begin{cases} 120x^2/19 & -1 \leq x \leq 1, 0 \leq y \leq x^2, y \leq 1/4 \\ 0 & \text{otherwise} \end{cases}
\]

(b) \(f_Y|A(y) = \int_{-\infty}^{\infty} f_{X,Y|A}(x,y) \, dx = 2 \int_{\sqrt{y}}^{1} \frac{120x^2}{19} \, dx = \begin{cases} 80/19 (1 - y^{3/2}) & 0 \leq y \leq 1/4 \\ 0 & \text{otherwise} \end{cases} \)

(c) The conditional expectation of \(Y \) given \(A \) is

\[
E[Y|A] = \int_0^{1/4} y \frac{80}{19} (1 - y^{3/2}) \, dy = \frac{80}{19} \left(\frac{y^2}{2} - \frac{2y^{7/2}}{7} \right) \bigg|_0^{1/4} = 65/532
\]

(d) To find \(f_X|A(x) \), we can write \(f_X|A(x) = \int_{-\infty}^{\infty} f_{X,Y|A}(x,y) \, dy \). However, when we substitute \(f_{X,Y|A}(x,y) \), the limits will depend on the value of \(x \). When \(|x| \leq 1/2 \),

\[
f_X|A(x) = \int_0^{x^2/2} \frac{120x^2}{19} \, dy = \frac{120x^4}{19}
\]

When \(-1 \leq x \leq -1/2 \) or \(1/2 \leq x \leq 1 \),

\[
f_X|A(x) = \int_0^{1/4} \frac{120x^2}{19} \, dy = \frac{30x^2}{19}
\]

The complete expression for the conditional PDF of \(X \) given \(A \) is

\[
f_X|A(x) = \begin{cases} 30x^2/19 & -1 \leq x \leq -1/2 \\ 120x^4/19 & -1/2 \leq x \leq 1/2 \\ 30x^2/19 & 1/2 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}
\]
(c) The conditional mean of X given A is

$$E[X|A] = \int_{-1}^{-1/2} \frac{30x^3}{19} \, dx + \int_{-1/2}^{1/2} \frac{120x^5}{19} \, dx + \int_{1/2}^{1} \frac{30x^3}{19} \, dx = 0 \quad (12)$$

Problem 4.9.1 Solution

The main part of this problem is just interpreting the problem statement. No calculations are necessary. Since a trip is equally likely to last 2, 3 or 4 days,

$$P_D(d) = \begin{cases}
\frac{1}{3} & d = 2, 3, 4 \\
0 & \text{otherwise}
\end{cases} \quad (1)$$

Given a trip lasts d days, the weight change is equally likely to be any value between $-d$ and d pounds. Thus,

$$P_{W|D}(w|d) = \begin{cases}
\frac{1}{2d+1} & w = -d, -d+1, \ldots, d \\
0 & \text{otherwise}
\end{cases} \quad (2)$$

The joint PMF is simply

$$P_{D,W}(d, w) = P_{W|D}(w|d) \cdot P_D(d) \quad (3)$$

$$= \begin{cases}
\frac{1}{6d+3} & d = 2, 3, 4; w = -d, \ldots, d \\
0 & \text{otherwise}
\end{cases} \quad (4)$$

Problem 4.9.2 Solution

We can make a table of the possible outcomes and the corresponding values of W and Y

<table>
<thead>
<tr>
<th>outcome</th>
<th>$P[\cdot]$</th>
<th>W</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>hh</td>
<td>p^2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ht</td>
<td>$p(1-p)$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>th</td>
<td>$p(1-p)$</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>tt</td>
<td>$(1-p)^2$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

In the following table, we write the joint PMF $P_{W,Y}(w, y)$ along with the marginal PMFs $P_Y(y)$ and $P_W(w)$.

<table>
<thead>
<tr>
<th>$P_{W,Y}(w, y)$</th>
<th>$w = -1$</th>
<th>$w = 0$</th>
<th>$w = 1$</th>
<th>$P_Y(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = 0$</td>
<td>0</td>
<td>$(1-p)^2$</td>
<td>0</td>
<td>$(1-p)^2$</td>
</tr>
<tr>
<td>$y = 1$</td>
<td>$p(1-p)$</td>
<td>0</td>
<td>$p(1-p)$</td>
<td>$2p(1-p)$</td>
</tr>
<tr>
<td>$y = 2$</td>
<td>0</td>
<td>p^2</td>
<td>0</td>
<td>p^2</td>
</tr>
</tbody>
</table>

Using the definition $P_{W|Y}(w|y) = P_{W,Y}(w, y)/P_Y(y)$, we can find the conditional PMFs of W given Y.

$$P_{W|Y}(w|0) = \begin{cases}
1 & w = 0 \\
0 & \text{otherwise}
\end{cases} \quad (3)$$

$$P_{W|Y}(w|1) = \begin{cases}
1/2 & w = -1, 1 \\
0 & \text{otherwise}
\end{cases} \quad (4)$$

$$P_{W|Y}(w|2) = \begin{cases}
1 & w = 0 \\
0 & \text{otherwise}
\end{cases} \quad (4)$$
Similarly, the conditional PMFs of Y given W are

$$P_{Y|W}(y|1) = \begin{cases} 1 & y = 1 \\ 0 & \text{otherwise} \end{cases} \quad P_{Y|W}(y|0) = \begin{cases} \frac{(1-p)^2}{1-2p+2p^2} & y = 0 \\ \frac{1}{1-2p+2p^2} & y = 2 \\ 0 & \text{otherwise} \end{cases}$$

(5)

$$P_{Y|W}(y|1) = \begin{cases} 1 & y = 1 \\ 0 & \text{otherwise} \end{cases} \quad$$

(6)

Problem 4.9.3 Solution

$$f_{X,Y}(x,y) = \begin{cases} (x+y) & 0 \leq x, y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(1)

(a) The conditional PDF $f_{X|Y}(x|y)$ is defined for all y such that $0 \leq y \leq 1$. For $0 \leq y \leq 1$,

$$f_{X|Y}(x) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{(x+y)}{\int_0^1 (x+y) dy} = \begin{cases} \frac{(x+y)}{x+1/2} & 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(2)

(b) The conditional PDF $f_{Y|X}(y|x)$ is defined for all values of x in the interval $[0, 1]$. For $0 \leq x \leq 1$,

$$f_{Y|X}(y) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{(x+y)}{\int_0^1 (x+y) dx} = \begin{cases} \frac{(x+y)}{y+1/2} & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(3)

Problem 4.9.4 Solution

Random variables X and Y have joint PDF

For $0 \leq y \leq 1$,

$$f_{X,Y}(x,y) = \begin{cases} 2 & 0 \leq y \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(1)

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx = \int_y^1 2 \, dx = 2(1-y)$$

(2)

Also, for $y < 0$ or $y > 1$, $f_Y(y) = 0$. The complete expression for the marginal PDF is

$$f_Y(y) = \begin{cases} 2(1-y) & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(3)

By Theorem 4.24, the conditional PDF of X given Y is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \begin{cases} \frac{1}{1-y} & y \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(4)
That is, since \(Y \leq X \leq 1 \), \(X \) is uniform over \([y, 1]\) when \(Y = y \). The conditional expectation of \(X \) given \(Y = y \) can be calculated as

\[
E [X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) \, dx
\]

\[
= \int_{y}^{1} \frac{x}{1-y} \, dx = \left. \frac{x^2}{2(1-y)} \right|_{y}^{1} = \frac{1+y}{2}
\]

In fact, since we know that the conditional PDF of \(X \) is uniform over \([y, 1]\) when \(Y = y \), it wasn’t really necessary to perform the calculation.

Problem 4.9.5 Solution

Random variables \(X \) and \(Y \) have joint PDF

\[
f_{X,Y}(x, y) = \begin{cases}
2 & 0 \leq y \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

For \(0 \leq x \leq 1 \), the marginal PDF for \(X \) satisfies

\[
f_{X}(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \int_{0}^{x} 2 \, dy = 2x
\]

Note that \(f_{X}(x) = 0 \) for \(x < 0 \) or \(x > 1 \). Hence the complete expression for the marginal PDF of \(X \) is

\[
f_{X}(x) = \begin{cases}
2x & 0 \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

The conditional PDF of \(Y \) given \(X = x \) is

\[
f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)} = \begin{cases}
\frac{1}{x} & 0 \leq y \leq x \\
0 & \text{otherwise}
\end{cases}
\]

Given \(X = x \), \(Y \) has a uniform PDF over \([0, x]\) and thus has conditional expected value \(E[Y|X = x] = x/2 \). Another way to obtain this result is to calculate \(\int_{-\infty}^{\infty} y f_{Y|X}(y|x) \, dy \).

Problem 4.9.6 Solution

We are told in the problem statement that if we know \(r \), the number of feet a student sits from the blackboard, then we also know that that student’s grade is a Gaussian random variable with mean 80 – \(r \) and standard deviation \(r \). This is exactly

\[
f_{X|R}(x|r) = \frac{1}{\sqrt{2\pi r^2}} e^{-(x-[80-r])^2/2r^2}
\]

Problem 4.9.7 Solution
(a) First we observe that A takes on the values $S_A = \{-1, 1\}$ while B takes on values from $S_B = \{0, 1\}$. To construct a table describing $P_{A,B}(a,b)$ we build a table for all possible values of pairs (A, B). The general form of the entries is

$$
\begin{array}{c|cc}
A & b = 0 & b = 1 \\
\hline
a = -1 & P_{B|A}(0|a) P_A(\neg a) & P_{B|A}(1|a) P_A(\neg a) \\
\hline
a = 1 & P_{B|A}(0|a) P_A(a) & P_{B|A}(1|a) P_A(a)
\end{array}
$$

Now we fill in the entries using the conditional PMFs $P_{B|A}(b|a)$ and the marginal PMF $P_A(a)$. This yields

$$
\begin{array}{c|cc}
A & b = 0 & b = 1 \\
\hline
a = -1 & (1/3)(1/3) & (2/3)(1/3) \\
\hline
a = 1 & (1/2)(2/3) & (1/2)(2/3)
\end{array}
\quad \text{which simplifies to}
\begin{array}{c|cc}
A & b = 0 & b = 1 \\
\hline
a = -1 & 1/9 & 2/9 \\
\hline
a = 1 & 1/3 & 1/3
\end{array}
$$

(b) Since $P_A(1) = P_{A,B}(1,0) + P_{A,B}(1,1) = 2/3$,

$$
P_{B|A}(b|1) = \frac{P_{A,B}(1,b)}{P_A(1)} = \begin{cases} 1/2 & b = 0, 1, \\ 0 & \text{otherwise}. \end{cases}
$$

If $A = 1$, the conditional expectation of B is

$$
E [B|A = 1] = \sum_{b=0}^{1} b P_{B|A}(b|1) = P_{B|A}(1|1) = 1/2.
$$

(c) Before finding the conditional PMF $P_{A|B}(a|1)$, we first sum the columns of the joint PMF table to find

$$
P_B(b) = \begin{cases} 4/9 & b = 0 \\ 5/9 & b = 1 \end{cases}
$$

The conditional PMF of A given $B = 1$ is

$$
P_{A|B}(a|1) = \frac{P_{A,B}(a,1)}{P_B(1)} = \begin{cases} 2/5 & a = -1 \\ 3/5 & a = 1 \end{cases}
$$

(d) Now that we have the conditional PMF $P_{A|B}(a|1)$, calculating conditional expectations is easy.

$$
E[A|B = 1] = \sum_{a=-1,1} a P_{A|B}(a|1) = -1(2/5) + (3/5) = 1/5
$$

$$
E[A^2|B = 1] = \sum_{a=-1,1} a^2 P_{A|B}(a|1) = 2/5 + 3/5 = 1
$$

The conditional variance is then

$$
\text{Var}[A|B = 1] = E[A^2|B = 1] - (E[A|B = 1])^2 = 1 - (1/5)^2 = 24/25
$$
(c) To calculate the covariance, we need

\[E[A] = \sum_{a=-1,1} aP_A(a) = -1(1/3) + 1(2/3) = 1/3 \quad (10) \]

\[E[B] = \sum_{b=0}^1 bP_B(b) = 0(4/9) + 1(5/9) = 5/9 \quad (11) \]

\[E[AB] = \sum_{a=-1,1} \sum_{b=0}^1 abP_{A,B}(a,b) \]
\[= -1(0)(1/9) + -1(1)(2/9) + 1(0)(1/3) + 1(1)(1/3) = 1/9 \quad (12) \]

The covariance is just

Problem 4.9.8 Solution

First we need to find the conditional expectations

\[E[B|A = -1] = \sum_{b=0}^1 bP_{B|A}(b| -1) = 0(1/3) + 1(2/3) = 2/3 \quad (1) \]

\[E[B|A = 1] = \sum_{b=0}^1 bP_{B|A}(b|1) = 0(1/2) + 1(1/2) = 1/2 \quad (2) \]

Keep in mind that \(E[B|A] \) is a random variable that is a function of \(A \). that is we can write

\[E[B|A] = g(A) = \begin{cases}
 2/3 & A = -1 \\
 1/2 & A = 1
\end{cases} \quad (3) \]

We see that the range of \(U \) is \(S_U = \{1/2, 2/3\} \). In particular,

\[P_U(1/2) = P_A(1) = 2/3 \quad P_U(2/3) = P_A(-1) = 1/3 \quad (4) \]

The complete PMF of \(U \) is

\[P_U(u) = \begin{cases}
 2/3 & u = 1/2 \\
 1/3 & u = 2/3
\end{cases} \quad (5) \]

Note that

\[E[E[B|A]] = E[U] = \sum_u uP_U(u) = (1/2)(2/3) + (2/3)(1/3) = 5/9 \quad (6) \]

You can check that \(E[U] = E[B] \).

Problem 4.9.9 Solution

Random variables \(N \) and \(K \) have the joint PMF

\[P_{N,K}(n,k) = \begin{cases}
 100e^{-100} & k = 0, 1, \ldots, n; \\
 (n+1)! & n = 0, 1, \ldots \\
 0 & \text{otherwise}
\end{cases} \quad (1) \]
We can find the marginal PMF for \(N \) by summing over all possible \(K \). For \(n \geq 0 \),

\[
P_N (n) = \sum_{k=0}^{n} \frac{100^ne^{-100}}{(n+1)!} = \frac{100^ne^{-100}}{n!}
\] (2)

We see that \(N \) has a Poisson PMF with expected value 100. For \(n \geq 0 \), the conditional PMF of \(K \) given \(N = n \) is

\[
P_{K|N} (k|n) = \frac{P_{N,K} (n,k)}{P_N (n)} = \begin{cases} \frac{1}{(n+1)} & k = 0, 1, \ldots, n \\ 0 & \text{otherwise} \end{cases}
\] (3)

That is, given \(N = n \), \(K \) has a discrete uniform PMF over \(\{0, 1, \ldots, n\} \). Thus,

\[
E [K|N = n] = \sum_{k=0}^{n} k/(n+1) = n/2
\] (4)

We can conclude that \(E[K|N] = N/2 \). Thus, by Theorem 4.25,

\[
\] (5)

Problem 4.9.10 Solution

This problem is fairly easy when we use conditional PMF’s. In particular, given that \(N = n \) pizzas were sold before noon, each of those pizzas has mushrooms with probability \(1/3 \). The conditional PMF of \(M \) given \(N \) is the binomial distribution

\[
P_{M|N} (m|n) = \begin{cases} \binom{n}{m} (1/3)^m (2/3)^{n-m} & m = 0, 1, \ldots, n \\ 0 & \text{otherwise} \end{cases}
\] (1)

The other fact we know is that for each of the 100 pizzas sold, the pizza is sold before noon with probability \(1/2 \). Hence, \(N \) has the binomial PMF

\[
P_N (n) = \begin{cases} \binom{100}{n} (1/2)^n (1/2)^{100-n} & n = 0, 1, \ldots, 100 \\ 0 & \text{otherwise} \end{cases}
\] (2)

The joint PMF of \(N \) and \(M \) is for integers \(m, n \),

\[
P_{M,N} (m, n) = P_{M|N} (m|n) P_N (n)
\]

\[
= \begin{cases} \binom{n}{m} \binom{100}{n} (1/3)^m (2/3)^{n-m} (1/2)^{100} & 0 \leq m \leq n \leq 100 \\ 0 & \text{otherwise} \end{cases}
\] (3)

Problem 4.9.11 Solution

Random variables \(X \) and \(Y \) have joint PDF

\[
f_{X,Y} (x, y) = \begin{cases} 1/2 & -1 \leq x \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}
\] (1)
(a) For \(-1 \leq y \leq 1\), the marginal PDF of \(Y\) is
\[
f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx = \frac{1}{2} \int_{-1}^{y} dx = (y + 1)/2
\]
(2)

The complete expression for the marginal PDF of \(Y\) is
\[
f_Y(y) = \begin{cases}
(y + 1)/2 & -1 \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]
(3)

(b) The conditional PDF of \(X\) given \(Y\) is
\[
f_{X|Y}(x|y) = \frac{f_{X,Y}(x, y)}{f_Y(y)} = \begin{cases}
\frac{1}{1+y} & -1 \leq x \leq y \\
0 & \text{otherwise}
\end{cases}
\]
(4)

(c) Given \(Y = y\), the conditional PDF of \(X\) is uniform over \([-1, y]\). Hence the conditional expected value is \(E[X|Y = y] = (y - 1)/2\).

Problem 4.9.12 Solution
We are given that the joint PDF of \(X\) and \(Y\) is
\[
f_{X,Y}(x, y) = \begin{cases}
1/\pi r^2 & 0 \leq x^2 + y^2 \leq r^2 \\
0 & \text{otherwise}
\end{cases}
\]
(1)

(a) The marginal PDF of \(X\) is
\[
f_X(x) = 2 \int_0^{\sqrt{r^2 - x^2}} \frac{1}{\pi r^2} \, dy = \begin{cases}
\frac{2\sqrt{r^2 - x^2}}{\pi r^2} & -r \leq x \leq r \\
0 & \text{otherwise}
\end{cases}
\]
(2)

The conditional PDF of \(Y\) given \(X\) is
\[
f_{Y|X}(y|x) = \frac{f_{X,Y}(x, y)}{f_X(x)} = \begin{cases}
1/(2\sqrt{r^2 - x^2}) & y^2 \leq r^2 - x^2 \\
0 & \text{otherwise}
\end{cases}
\]
(3)

(b) Given \(X = x\), we observe that over the interval \([-\sqrt{r^2 - x^2}, \sqrt{r^2 - x^2}]\), \(Y\) has a uniform PDF. Since the conditional PDF \(f_{Y|X}(y|x)\) is symmetric about \(y = 0\),
\[
E[Y|X = x] = 0
\]
(4)

Problem 4.9.13 Solution
The key to solving this problem is to find the joint PMF of \(M\) and \(N\). Note that \(N \geq M\). For \(n > m\), the joint event \(\{M = m, N = n\}\) has probability
\[
P[M = m, N = n] = P[dd\ldots dv\ dd\ldots dv] = (1-p)^{m-1}p(1-p)^{n-m-1}p
\]
(1)

\[
P[M = m, N = n] = (1-p)^{n-2}p^2
\]
(2)
A complete expression for the joint PMF of M and N is

$$P_{M,N}(m,n) = \begin{cases} (1-p)\sum_{k=m+1}^{n} (1-p)^{k-2} p^2 & \text{if } m = 1,2,\ldots,n-1; \; n = m+1, m+2, \ldots \text{ otherwise} \\ 0 & \text{otherwize} \end{cases}$$

(4)

The marginal PMF of N satisfies

$$P_N(n) = \sum_{m=1}^{n-1} (1-p)^{n-2} p^2 = (n-1)(1-p)^{n-2} p^2, \quad n = 2,3,\ldots$$

(5)

Similarly, for $m = 1,2,\ldots$, the marginal PMF of M satisfies

$$P_M(m) = \sum_{n=m+1}^{\infty} (1-p)^{n-2} p^2 = p^2[(1-p)^{m-1} + (1-p)^{m} + \cdots] = (1-p)^{m-1}$$

(7)

The complete expressions for the marginal PMF’s are

$$P_M(m) = \begin{cases} (1-p)^{m-1}p & m = 1,2,\ldots \\ 0 & \text{otherwize} \end{cases}$$

(9)

$$P_N(n) = \begin{cases} (n-1)(1-p)^{n-2} p^2 & n = 2,3,\ldots \\ 0 & \text{otherwize} \end{cases}$$

(10)

Not surprisingly, if we view each voice call as a successful Bernoulli trial, M has a geometric PMF since it is the number of trials up to and including the first success. Also, N has a Pascal PMF since it is the number of trials required to see 2 successes. The conditional PMF’s are now easy to find.

$$P_{N|M}(n|m) = \frac{P_{M,N}(m,n)}{P_M(m)} = \begin{cases} (1-p)^{n-m-1}p & n = m+1, m+2, \ldots \\ 0 & \text{otherwize} \end{cases}$$

(11)

The interpretation of the conditional PMF of N given M is that given $M = m$, $N = m + N'$ where N' has a geometric PMF with mean $1/p$. The conditional PMF of M given N is

$$P_{M|N}(m|n) = \frac{P_{M,N}(m,n)}{P_N(n)} = \begin{cases} 1/(n-1) & m = 1,\ldots,n-1 \\ 0 & \text{otherwize} \end{cases}$$

(12)

Given that call $N = n$ was the second voice call, the first voice call is equally likely to occur in any of the previous $n-1$ calls.

Problem 4.9.14 Solution

(a) The number of buses, N, must be greater than zero. Also, the number of minutes that pass cannot be less than the number of buses. Thus, $P[N = n, T = t] > 0$ for integers n, t satisfying $1 \leq n \leq t$.

172
(b) First, we find the joint PMF of N and T by carefully considering the possible sample paths. In particular, $P_{N,T}(n,t) = P[ABC] = P[A]P[B]P[C]$ where the events A, B and C are

\begin{align*}
A &= \{n - 1 \text{ buses arrive in the first } t - 1 \text{ minutes}\} \\
B &= \{\text{none of the first } n - 1 \text{ buses are boarded}\} \\
C &= \{\text{at time } t \text{ a bus arrives and is boarded}\}
\end{align*}

These events are independent since each trial to board a bus is independent of when the buses arrive. These events have probabilities

\begin{align*}
P[A] &= \binom{t-1}{n-1} p^{n-1} (1 - p)^{t-1-(n-1)} \\
P[B] &= (1 - q)^{n-1} \\
P[C] &= pq
\end{align*}

Consequently, the joint PMF of N and T is

\begin{equation}
P_{N,T}(n,t) = \begin{cases}
\binom{t-1}{n-1} p^{n-1} (1 - p)^{t-1-(n-1)} (1 - q)^{n-1} pq & n \geq 1, t \geq n \\
0 & \text{otherwise}
\end{cases}
\end{equation}

(c) It is possible to find the marginal PMF’s by summing the joint PMF. However, it is much easier to obtain the marginal PMFs by consideration of the experiment. Specifically, when a bus arrives, it is boarded with probability q. Moreover, the experiment ends when a bus is boarded. By viewing whether each arriving bus is boarded as an independent trial, N is the number of trials until the first success. Thus, N has the geometric PMF

\begin{equation}
P_N(n) = \begin{cases}
(1 - q)^{n-1} q & n = 1, 2, \ldots \\
0 & \text{otherwise}
\end{cases}
\end{equation}

To find the PMF of T, suppose we regard each minute as an independent trial in which a success occurs if a bus arrives and that bus is boarded. In this case, the success probability is pq and T is the number of minutes up to and including the first success. The PMF of T is also geometric.

\begin{equation}
P_T(t) = \begin{cases}
(1 - pq)^{t-1} pq & t = 1, 2, \ldots \\
0 & \text{otherwise}
\end{cases}
\end{equation}

(d) Once we have the marginal PMFs, the conditional PMFs are easy to find.

\begin{equation}
P_{N|T}(n|t) = \frac{P_{N,T}(n,t)}{P_T(t)} = \begin{cases}
\binom{t-1}{n-1} p^{n-1} (1 - p)^{t-1-(n-1)} & n = 1, 2, \ldots, t \\
0 & \text{otherwise}
\end{cases}
\end{equation}

That is, given you depart at time $T = t$, the number of buses that arrive during minutes $1, \ldots, t-1$ has a binomial PMF since in each minute a bus arrives with probability p. Similarly, the conditional PMF of T given N is

\begin{equation}
P_{T|N}(t|n) = \frac{P_{N,T}(n,t)}{P_N(n)} = \begin{cases}
\binom{t-1}{n-1} p^{n-1} (1 - p)^{t-n} & t = n, n + 1, \ldots \\
0 & \text{otherwise}
\end{cases}
\end{equation}

This result can be explained. Given that you board bus $N = n$, the time T when you leave is the time for n buses to arrive. If we view each bus arrival as a success of an independent trial, the time for n buses to arrive has the above Pascal PMF.
Problem 4.9.15 Solution
If you construct a tree describing what type of call (if any) that arrived in any 1 millisecond period, it will be apparent that a fax call arrives with probability \(\alpha = pqr \) or no fax arrives with probability \(1 - \alpha \). That is, whether a fax message arrives each millisecond is a Bernoulli trial with success probability \(\alpha \). Thus, the time required for the first success has the geometric PMF

\[
P_T(t) = \begin{cases}
(1 - \alpha)^{t-1} \alpha & t = 1, 2, \ldots \\
0 & \text{otherwise}
\end{cases}
\]

Note that \(N \) is the number of trials required to observe 100 successes. Moreover, the number of trials needed to observe 100 successes is \(N = T + N' \) where \(N' \) is the number of trials needed to observe successes 2 through 100. Since \(N' \) is just the number of trials needed to observe 99 successes, it has the Pascal \((k = 99, p)\) PMF

\[
P_{N'}(n) = \binom{n - 1}{98} \alpha^{99}(1 - \alpha)^{n-99}.
\]

Since the trials needed to generate successes 2 though 100 are independent of the trials that yield the first success, \(N' \) and \(T \) are independent. Hence

\[
P_{N|T}(n|t) = P_{N'|T}(n-t|t) = P_{N'}(n-t).
\]

Applying the PMF of \(N' \) found above, we have

\[
P_{N|T}(n|t) = \binom{n-t-1}{98} \alpha^{99}(1 - \alpha)^{n-t-99}.
\]

Finally the joint PMF of \(N \) and \(T \) is

\[
P_{N,T}(n,t) = P_{N|T}(n|t) P_T(t) = \begin{cases}
\binom{n-t-1}{98} \alpha^{100}(1 - \alpha)^{n-100} & t = 1, 2, \ldots; n = 99 + t, 100 + t, \ldots \\
0 & \text{otherwise}
\end{cases}
\]

This solution can also be found a consideration of the sample sequence of Bernoulli trials in which we either observe or do not observe a fax message.

To find the conditional PMF \(P_{T|N}(t|n) \), we first must recognize that \(N \) is simply the number of trials needed to observe 100 successes and thus has the Pascal PMF

\[
P_N(n) = \binom{n - 1}{99} \alpha^{100}(1 - \alpha)^{n-100}
\]

Hence for any integer \(n \geq 100 \), the conditional PMF is

\[
P_{T|N}(t|n) = \frac{P_{N,T}(n,t)}{P_N(n)} = \begin{cases}
\binom{n-t-1}{98} \alpha^{100}(1 - \alpha)^{n-100} & t = 1, 2, \ldots, n - 99 \\
0 & \text{otherwise}
\end{cases}
\]

Problem 4.10.1 Solution
Flip a fair coin 100 times and let \(X \) be the number of heads in the first 75 flips and \(Y \) be the number of heads in the last 25 flips. We know that \(X \) and \(Y \) are independent and can find their PMFs easily.

\[
P_X(x) = \binom{75}{x}(1/2)^{75} \quad \quad P_Y(y) = \binom{25}{y}(1/2)^{25}
\]
The joint PMF of X and N can be expressed as the product of the marginal PMFs because we know that X and Y are independent.

$$P_{X,Y}(x,y) = \left(\frac{75}{x} \right) \left(\frac{25}{y} \right) \left(\frac{1}{2} \right)^{100} \quad (2)$$

Problem 4.10.2 Solution

Using the following probability model

$$P_X(k) = P_Y(k) = \begin{cases}
3/4 & k = 0 \\
1/4 & k = 20 \\
0 & \text{otherwise}
\end{cases} \quad (1)$$

We can calculate the requested moments.

$$E[X] = 3/4 \cdot 0 + 1/4 \cdot 20 = 5 \quad (2)$$

$$\text{Var}[X] = 3/4 \cdot (0 - 5)^2 + 1/4 \cdot (20 - 5)^2 = 75 \quad (3)$$

$$E[X + Y] = E[X] + E[Y] = 2E[X] = 10 \quad (4)$$

Since X and Y are independent, Theorem 4.27 yields

$$\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] = 2 \text{Var}[X] = 150 \quad (5)$$

Since X and Y are independent, $P_{X,Y}(x,y) = P_X(x)P_Y(y)$ and

$$E[XY^{2XY}] = \sum_{x=0,20} \sum_{y=0,20} XY^{2XY}P_{X,Y}(x,y) = (20)(20)2^{20(20)}P_X(20)P_Y(20) \quad (6)$$

$$= 2.75 \times 10^{12} \quad (7)$$

Problem 4.10.3 Solution

(a) Normally, checking independence requires the marginal PMFs. However, in this problem, the zeroes in the table of the joint PMF $P_{X,Y}(x,y)$ allows us to verify very quickly that X and Y are dependent. In particular, $P_X(-1) = 1/4$ and $P_Y(1) = 14/48$ but

$$P_{X,Y}(-1,1) = 0 \neq P_X(-1)P_Y(1) \quad (1)$$

(b) To fill in the tree diagram, we need the marginal PMF $P_X(x)$ and the conditional PMFs $P_{Y|X}(y|x)$. By summing the rows on the table for the joint PMF, we obtain

<table>
<thead>
<tr>
<th>$P_{X,Y}(x,y)$</th>
<th>$y = -1$</th>
<th>$y = 0$</th>
<th>$y = 1$</th>
<th>$P_X(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 0$</td>
<td>3/16</td>
<td>1/16</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>$x = 1$</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/2</td>
</tr>
<tr>
<td>$x = 1$</td>
<td>0</td>
<td>1/8</td>
<td>1/8</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Now we use the conditional PMF $P_{Y|X}(y|x) = P_{X,Y}(x,y)/P_X(x)$ to write

$$P_{Y|X}(y|1) = \begin{cases}
3/4 & y = -1 \\
1/4 & y = 0 \\
0 & \text{otherwise}
\end{cases} \quad (2)$$

$$P_{Y|X}(y|0) = \begin{cases}
1/3 & y = -1,0,1 \\
0 & \text{otherwise}
\end{cases} \quad (3)$$

$$P_{Y|X}(y|1) = \begin{cases}
1/2 & y = 0,1 \\
0 & \text{otherwise}
\end{cases} \quad (4)$$

175
Now we can use these probabilities to label the tree. The generic solution and the specific solution with the exact values are

![Tree Diagram]

Problem 4.10.4 Solution

In the solution to Problem 4.9.10, we found that the conditional PMF of M given N is

$$ P_{M|N}(m|n) = \begin{cases} \binom{n}{m} \left(\frac{1}{3}\right)^m \left(\frac{2}{3}\right)^{n-m} & m = 0, 1, \ldots, n \\ 0 & \text{otherwise} \end{cases} \quad (1) $$

Since $P_{M|N}(m|n)$ depends on the event $N = n$, we see that M and N are dependent.

Problem 4.10.5 Solution

We can solve this problem for the general case when the probability of heads is p. For the fair coin, $p = 1/2$. Viewing each flip as a Bernoulli trial in which heads is a success, the number of flips until heads is the number of trials needed for the first success which has the geometric PMF

$$ P_{X_1}(x) = \begin{cases} (1-p)^{x-1}p & x = 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (1) $$

Similarly, no matter how large X_1 may be, the number of additional flips for the second heads is the same experiment as the number of flips needed for the first occurrence of heads. That is, $P_{X_2}(x) = P_{X_1}(x)$. Moreover, the flips needed to generate the second occurrence of heads are independent of the flips that yield the first heads. Hence, it should be apparent that X_1 and X_2 are independent and

$$ P_{X_1, X_2}(x_1, x_2) = P_{X_1}(x_1) P_{X_2}(x_2) = \begin{cases} (1-p)^{x_1+x_2-2}p^2 & x_1 = 1, 2, \ldots; x_2 = 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (2) $$

However, if this independence is not obvious, it can be derived by examination of the sample path. When $x_1 \geq 1$ and $x_2 \geq 1$, the event $\{X_1 = x_1, X_2 = x_2\}$ occurs if we observe the sample sequence

$$ tt \cdots t \ h \ tt \cdots t \ h $$

$x_1 - 1$ times $x_2 - 1$ times

The above sample sequence has probability $(1-p)^{x_1-1}p(1-p)^{x_2-1}p$ which in fact equals $P_{X_1, X_2}(x_1, x_2)$ given earlier.
Problem 4.10.6 Solution
We will solve this problem when the probability of heads is \(p \). For the fair coin, \(p = \frac{1}{2} \). The number \(X_1 \) of flips until the first heads and the number \(X_2 \) of additional flips for the second heads both have the geometric PMF

\[
P_{X_1}(x) = P_{X_2}(x) = \begin{cases} (1 - p)^{x-1}p & x = 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases}
\]

(1)

Thus, \(E[X_i] = \frac{1}{p} \) and \(\text{Var}[X_i] = \frac{(1 - p)}{p} \). By Theorem 4.14,

\[
E[Y] = E[X_1] - E[X_2] = 0
\]

(2)

Since \(X_1 \) and \(X_2 \) are independent, Theorem 4.27 says

\[
\text{Var}[Y] = \text{Var}[X_1] + \text{Var}[-X_2] = \text{Var}[X_1] + \text{Var}[X_2] = \frac{2(1 - p)}{p^2}
\]

(3)

Problem 4.10.7 Solution
\(X \) and \(Y \) are independent random variables with PDFs

\[
f_X(x) = \begin{cases} \frac{1}{3} e^{-x/3} & x \geq 0 \\ 0 & \text{otherwise} \end{cases} \quad f_Y(y) = \begin{cases} \frac{1}{2} e^{-y/2} & y \geq 0 \\ 0 & \text{otherwise} \end{cases}
\]

(1)

(a) To calculate \(P[X > Y] \), we use the joint PDF \(f_{X,Y}(x,y) = f_X(x)f_Y(y) \).

\[
P[X > Y] = \int_{x>y} f_X(x) f_Y(y) \, dx \, dy
\]

(2)

\[
= \int_{0}^{\infty} \frac{1}{2} e^{-y/2} \int_{y}^{\infty} \frac{1}{3} e^{-x/3} \, dx \, dy
\]

(3)

\[
= \int_{0}^{\infty} \frac{1}{2} e^{-y/2} e^{-y/3} \, dy
\]

(4)

\[
= \int_{0}^{\infty} \frac{1}{2} e^{-(1/2 + 1/3)y} \, dy = \frac{1/2}{1/2 + 2/3} = \frac{3}{7}
\]

(5)

(b) Since \(X \) and \(Y \) are exponential random variables with parameters \(\lambda_X = 1/3 \) and \(\lambda_Y = 1/2 \), Appendix A tells us that \(E[X] = 1/\lambda_X = 3 \) and \(E[Y] = 1/\lambda_Y = 2 \). Since \(X \) and \(Y \) are independent, the correlation is \(E[XY] = E[X]E[Y] = 6 \).

(c) Since \(X \) and \(Y \) are independent, \(\text{Cov}[X, Y] = 0 \).

Problem 4.10.8 Solution

(a) Since \(E[-X_2] = -E[X_2] \), we can use Theorem 4.13 to write

\[
E[X_1 - X_2] = E[X_1 + (-X_2)] = E[X_1] + E[-X_2]
\]

(1)

\[
= E[X_1] - E[X_2]
\]

(2)

\[
= 0
\]

(3)
(b) By Theorem 3.5(f), \(\text{Var}[-X_2] = (-1)^2 \text{Var}[X_2] = \text{Var}[X_2] \). Since \(X_1 \) and \(X_2 \) are independent, Theorem 4.27(a) says that

\[
\text{Var}[X_1 - X_2] = \text{Var}[X_1 + (-X_2)] \\
= \text{Var}[X_1] + \text{Var}[-X_2] \\
= 2 \text{Var}[X]
\]

Problem 4.10.9 Solution
Since \(X \) and \(Y \) are take on only integer values, \(W = X + Y \) is integer valued as well. Thus for an integer \(w \),

\[
P_W(w) = P[W = w] = P[X + Y = w].
\]

Suppose \(X = k \), then \(W = w \) if and only if \(Y = w - k \). To find all ways that \(X + Y = w \), we must consider each possible integer \(k \) such that \(X = k \). Thus

\[
P_W(w) = \sum_{k=-\infty}^{\infty} P[X = k, Y = w - k] = \sum_{k=-\infty}^{\infty} P_{X,Y}(k, w - k).
\]

Since \(X \) and \(Y \) are independent, \(P_{X,Y}(k, w - k) = P_X(k)P_Y(w - k) \). It follows that for any integer \(w \),

\[
P_W(w) = \sum_{k=-\infty}^{\infty} P_X(k)P_Y(w - k).
\]

Problem 4.10.10 Solution
The key to this problem is understanding that “short order” and “long order” are synonyms for \(N = 1 \) and \(N = 2 \). Similarly, “vanilla”, “chocolate”, and “strawberry” correspond to the events \(D = 20, D = 100 \) and \(D = 300 \).

(a) The following table is given in the problem statement.

<table>
<thead>
<tr>
<th>vanilla</th>
<th>choc.</th>
<th>strawberry</th>
</tr>
</thead>
<tbody>
<tr>
<td>short order</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>long order</td>
<td>0.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

This table can be translated directly into the joint PMF of \(N \) and \(D \).

\[
P_{N,D}(n, d) = \begin{array}{lll}
0.2 & 0.2 & 0.2 \\
0.1 & 0.2 & 0.1
\end{array}
\]
(b) We find the marginal PMF \(P_D(d) \) by summing the columns of the joint PMF. This yields

\[
P_D(d) = \begin{cases}
 0.3 & d = 20, \\
 0.4 & d = 100, \\
 0.3 & d = 300, \\
 0 & \text{otherwise.}
\end{cases}
\] (2)

(c) To find the conditional PMF \(P_{D|N}(d|2) \), we first need to find the probability of the conditioning event

\[
P_N(2) = P_{N,D}(2, 20) + P_{N,D}(2, 100) + P_{N,D}(2, 300) = 0.4
\] (3)

The conditional PMF of \(N D \) given \(N = 2 \) is

\[
P_{D|N}(d|2) = \frac{P_{N,D}(2, d)}{P_N(2)} = \begin{cases}
 1/4 & d = 20 \\
 1/2 & d = 100 \\
 1/4 & d = 300 \\
 0 & \text{otherwise.}
\end{cases}
\] (4)

(d) The conditional expectation of \(D \) given \(N = 2 \) is

\[
E[D|N = 2] = \sum_d dP_{D|N}(d|2) = 20(1/4) + 100(1/2) + 300(1/4) = 130
\] (5)

(e) To check independence, we could calculate the marginal PMFs of \(N \) and \(D \). In this case, however, it is simpler to observe that \(P_D(d) \neq P_{D|N}(d|2) \). Hence \(N \) and \(D \) are dependent.

(f) In terms of \(N \) and \(D \), the cost (in cents) of a fax is \(C = ND \). The expected value of \(C \) is

\[
E[C] = \sum_{n,d} ndP_{N,D}(n,d)
\] (6)

\[
= 1(20)(0.2) + 1(100)(0.2) + 1(300)(0.2) + 2(20)(0.3) + 2(100)(0.4) + 2(300)(0.3) = 356
\] (7)

Problem 4.10.11 Solution

The key to this problem is understanding that “Factory Q” and “Factory R” are synonyms for \(M = 60 \) and \(M = 180 \). Similarly, “small”, “medium”, and “large” orders correspond to the events \(B = 1 \), \(B = 2 \) and \(B = 3 \).

(a) The following table given in the problem statement

<table>
<thead>
<tr>
<th></th>
<th>Factory Q</th>
<th>Factory R</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>medium</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>large</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

can be translated into the following joint PMF for \(B \) and \(M \).

\[
P_{B,M}(b, m) | m = 60 | m = 180
\begin{array}{|c|c|c|}
\hline
b = 1 & 0.3 & 0.2 \\
\hline
b = 2 & 0.1 & 0.2 \\
\hline
b = 3 & 0.1 & 0.1 \\
\hline
\end{array}
\] (1)
(b) Before we find \(E[B] \), it will prove helpful to find the marginal PMFs \(P_B(b) \) and \(P_M(m) \). These can be found from the row and column sums of the table of the joint PMF

\[
\begin{array}{l|ll|l}
P_{B,M} (b,m) & m = 60 & m = 180 & P_B (b) \\
b = 1 & 0.3 & 0.2 & 0.5 \\
b = 2 & 0.1 & 0.2 & 0.3 \\
b = 3 & 0.1 & 0.1 & 0.2 \\
\hline
P_M (m) & 0.5 & 0.5 & \\
\end{array}
\]

(2)

The expected number of boxes is

\[
E [B] = \sum_b bP_B (b) = 1(0.5) + 2(0.3) + 3(0.2) = 1.7
\]

(3)

(c) From the marginal PMF of \(B \), we know that \(P_B(2) = 0.3 \). The conditional PMF of \(M \) given \(B = 2 \) is

\[
P_{M|B} (m|2) = \frac{P_{B,M} (2, m)}{P_B (2)} = \begin{cases}
1/3 & m = 60 \\
2/3 & m = 180 \\
0 & \text{otherwise}
\end{cases}
\]

(4)

(d) The conditional expectation of \(M \) given \(B = 2 \) is

\[
E [M|B = 2] = \sum_m mP_{M|B} (m|2) = 60(1/3) + 180(2/3) = 140
\]

(5)

(e) From the marginal PMFs we calculated in the table of part (b), we can conclude that \(B \) and \(M \) are not independent. since \(P_{B,M} (1, 60) \neq P_B (1)P_M (m)60. \)

(f) In terms of \(M \) and \(B \), the cost (in cents) of sending a shipment is \(C = BM \). The expected value of \(C \) is

\[
E [C] = \sum_{b,m} bmP_{B,M} (b,m)
\]

\[
= 1(60)(0.3) + 2(60)(0.1) + 3(60)(0.1)
\]

\[
+ 1(180)(0.2) + 2(180)(0.2) + 3(180)(0.1) = 210
\]

(6) (7) (8)

Problem 4.10.12 Solution

Random variables \(X_1 \) and \(X_2 \) are iid with PDF

\[
f_X (x) = \begin{cases}
x/2 & 0 \leq x \leq 2, \\
0 & \text{otherwise.}
\end{cases}
\]

(1)

(a) Since \(X_1 \) and \(X_2 \) are identically distributed they will share the same CDF \(F_X (x) \).

\[
F_X (x) = \int_0^x f_X (x') \, dx' = \begin{cases}
0 & x \leq 0 \\
x^2/4 & 0 \leq x \leq 2 \\
1 & x \geq 2
\end{cases}
\]

(2)
(b) Since X_1 and X_2 are independent, we can say that

$$P[X_1 \leq 1, X_2 \leq 1] = P[X_1 \leq 1] P[X_2 \leq 1] = F_{X_1}(1) F_{X_2}(1) = [F_X(1)]^2 = \frac{1}{16}$$

(3)

(c) For $W = \max(X_1, X_2)$,

$$F_W(1) = P[\max(X_1, X_2) \leq 1] = P[X_1 \leq 1, X_2 \leq 1]$$

Since X_1 and X_2 are independent,

$$F_W(1) = P[X_1 \leq 1] P[X_2 \leq 1] = [F_X(1)]^2 = 1/16$$

(5)

(d)

$$F_W(w) = P[\max(X_1, X_2) \leq w] = P[X_1 \leq w, X_2 \leq w]$$

Since X_1 and X_2 are independent,

$$F_W(w) = P[X_1 \leq w] P[X_2 \leq w] = [F_X(w)]^2 = \begin{cases} 0 & w \leq 0 \\ \frac{w^4}{16} & 0 \leq w \leq 2 \\ 1 & w \geq 2 \end{cases}$$

(7)

Problem 4.10.13 Solution

X and Y are independent random variables with PDFs

$$f_X(x) = \begin{cases} 2x & 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases} \quad f_Y(y) = \begin{cases} 3y^2 & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(1)

For the event $A = \{X > Y\}$, this problem asks us to calculate the conditional expectations $E[X|A]$ and $E[Y|A]$. We will do this using the conditional joint PDF $f_{X,Y|A}(x,y)$. Since X and Y are independent, it is tempting to argue that the event $X > Y$ does not alter the probability model for X and Y. Unfortunately, this is not the case. When we learn that $X > Y$, it increases the probability that X is large and Y is small. We will see this when we compare the conditional expectations $E[X|A]$ and $E[Y|A]$ to $E[X]$ and $E[Y]$.

(a) We can calculate the unconditional expectations, $E[X]$ and $E[Y]$, using the marginal PDFs $f_X(x)$ and $f_Y(y)$.

$$E[X] = \int_{-\infty}^{\infty} f_X(x) \, dx = \int_{0}^{1} 2x^2 \, dx = 2/3$$

(2)

$$E[Y] = \int_{-\infty}^{\infty} f_Y(y) \, dy = \int_{0}^{1} 3y^3 \, dy = 3/4$$

(3)

(b) First, we need to calculate the conditional joint PDF $f_{X,Y|A}(x,y)$. The first step is to write down the joint PDF of X and Y:

$$f_{X,Y}(x,y) = f_X(x) f_Y(y) = \begin{cases} 6xy^2 & 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(4)
The event A has probability

$$P[A] = \int_{x>y} f_{X,Y}(x,y) \, dy \, dx$$ \hspace{1cm} (5)

$$= \int_0^1 \int_0^x 6xy^2 \, dy \, dx$$ \hspace{1cm} (6)

$$= \int_0^1 2x^4 \, dx = 2/5$$ \hspace{1cm} (7)

The conditional joint PDF of X and Y given A is

$$f_{X,Y|A}(x,y) = \begin{cases} \frac{f_{X,Y}(x,y)}{P[A]} & (x,y) \in A \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (8)

$$= \begin{cases} 15xy^2 & 0 \leq y \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (9)

The triangular region of nonzero probability is a signal that given A, X and Y are no longer independent. The conditional expected value of X given A is

$$E[X|A] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf_{X,Y|A}(x,y) x, y \, dy \, dx$$ \hspace{1cm} (10)

$$= 15 \int_0^1 x^2 \int_0^x y^2 \, dy \, dx$$ \hspace{1cm} (11)

$$= 5 \int_0^1 x^5 \, dx = 5/6.$$ \hspace{1cm} (12)

The conditional expected value of Y given A is

$$E[Y|A] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf_{X,Y|A}(x,y) \, dy \, dx$$ \hspace{1cm} (13)

$$= 15 \int_0^1 x \int_0^x y^3 \, dy \, dx$$ \hspace{1cm} (14)

$$= \frac{15}{4} \int_0^1 x^5 \, dx = 5/8.$$ \hspace{1cm} (15)

We see that $E[X|A] > E[X]$ while $E[Y|A] < E[Y]$. That is, learning $X > Y$ gives us a clue that X may be larger than usual while Y may be smaller than usual.

Problem 4.10.14 Solution

This problem is quite straightforward. From Theorem 4.4, we can find the joint PDF of X and Y is

$$f_{X,Y}(x,y) = \frac{\partial^2 \big(F_X(x)F_Y(y)\big)}{\partial x \partial y} = \frac{\partial \big[f_X(x)F_Y(y)\big]}{\partial y} = f_X(x)f_Y(y)$$ \hspace{1cm} (1)

Hence, $F_{X,Y}(x,y) = F_X(x)F_Y(y)$ implies that X and Y are independent.

If X and Y are independent, then

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$ \hspace{1cm} (2)
By Definition 4.3,

\[
F_{X,Y}(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u, v) \, dv \, du
\]

(3)

\[
= \left(\int_{-\infty}^{x} f_X(u) \, du \right) \left(\int_{-\infty}^{y} f_Y(v) \, dv \right)
\]

(4)

\[
= F_X(x) F_Y(y)
\]

(5)

Problem 4.10.15 Solution

Random variables \(X \) and \(Y \) have joint PDF

\[
f_{X,Y}(x, y) = \begin{cases} \lambda^2 e^{-\lambda y} & 0 \leq x \leq y \\ 0 & \text{otherwise} \end{cases}
\]

(1)

For \(W = Y - X \) we can find \(f_W(w) \) by integrating over the region indicated in the figure below to get \(F_W(w) \) then taking the derivative with respect to \(w \). Since \(Y \geq X \), \(W = Y - X \) is nonnegative. Hence \(F_W(w) = 0 \) for \(w < 0 \). For \(w \geq 0 \),

\[
F_W(w) = 1 - P[W > w] = 1 - P[Y > X + w]
\]

(2)

\[
= 1 - \int_{0}^{\infty} \int_{x+w}^{\infty} \lambda^2 e^{-\lambda y} \, dy \, dx
\]

(3)

\[
= 1 - e^{-\lambda w}
\]

(4)

The complete expressions for the joint CDF and corresponding joint PDF are

\[
F_W(w) = \begin{cases} 0 & w < 0 \\ 1 - e^{-\lambda w} & w \geq 0 \end{cases}
\]

\[
f_W(w) = \begin{cases} 0 & w < 0 \\ \lambda e^{-\lambda w} & w \geq 0 \end{cases}
\]

(5)

Problem 4.10.16 Solution

(a) To find if \(W \) and \(X \) are independent, we must be able to factor the joint density function \(f_{X,W}(x, w) \) into the product \(f_X(x) f_W(w) \) of marginal density functions. To verify this, we must find the joint PDF of \(X \) and \(W \). First we find the joint CDF.

\[
F_{X,W}(x, w) = P[X \leq x, W \leq w] = P[X \leq x, Y - X \leq w] = P[X \leq x, Y \leq X + w]
\]

(1)

Since \(Y \geq X \), the CDF of \(W \) satisfies \(F_{X,W}(x, w) = P[X \leq x, X \leq Y \leq X + w] \). Thus, for \(x \geq 0 \) and \(w \geq 0 \),

\[
F_{X,W}(x, w) = \int_{0}^{x} \int_{x'}^{x+w} \lambda^2 e^{-\lambda y} \, dy \, dx'
\]

(3)

\[
= \int_{0}^{x} \left(-\lambda e^{-\lambda y} \right)_{x'}^{x+w} \, dx'
\]

(4)

\[
= \int_{0}^{x} \left(-\lambda e^{-\lambda(x+w)} + \lambda e^{-\lambda x'} \right) \, dx'
\]

(5)

\[
= e^{-\lambda(x+w)} - e^{-\lambda x'} \bigg|_{0}^{x}
\]

(6)

\[
= (1 - e^{-\lambda x})(1 - e^{-\lambda w})
\]

(7)
We see that $F_{X,W}(x,w) = F_X(x)F_W(w)$. Moreover, by applying Theorem 4.4,

$$f_{X,W}(x,w) = \frac{\partial^2 F_{X,W}(x,w)}{\partial x \partial w} = \lambda e^{-\lambda x} \lambda e^{-\lambda w} = f_X(x) f_W(w).$$

Since we have our desired factorization, W and X are independent.

(b) Following the same procedure, we find the joint CDF of Y and W.

$$F_{W,Y}(w,y) = P[W \leq w, Y \leq y] = P[Y - X \leq w, Y \leq y] = P[Y \leq X + w, Y \leq y].$$

The region of integration corresponding to the event \{Y \leq x + w, Y \leq y\} depends on whether $y < w$ or $y \geq w$. Keep in mind that although $W = Y - X \leq Y$, the dummy arguments y and w of $f_{W,Y}(w,y)$ need not obey the same constraints. In any case, we must consider each case separately.

For $y > w$, the integration is

$$F_{W,Y}(w,y) = \int_0^{y-w} \int_u^{y+w} \lambda^2 e^{-\lambda u} \, dv \, du + \int_{y-w}^{y} \int_u^{y} \lambda^2 e^{-\lambda u} \, dv \, du$$

$$= \lambda \int_0^{y-w} \left[e^{-\lambda u} - e^{-\lambda(u+w)} \right] \, du + \lambda \int_{y-w}^{y} \left[e^{-\lambda u} - e^{-\lambda y} \right] \, du$$

It follows that

$$F_{W,Y}(w,y) = \left[-e^{-\lambda u} + e^{-\lambda(u+w)} \right]_0^{y-w} + \left[-e^{-\lambda u} - u\lambda e^{-\lambda y} \right]_0^y$$

$$= 1 - e^{-\lambda w} - \lambda we^{-\lambda y}.$$

For $y \leq w$,

$$F_{W,Y}(w,y) = \int_0^y \int_u^{y} \lambda^2 e^{-\lambda u} \, dv \, du$$

$$= \int_0^y \left[-\lambda e^{-\lambda u} + \lambda e^{-\lambda u} \right] \, du$$

$$= -\lambda ye^{-\lambda y} - e^{-\lambda u} \bigg|_0^y$$

$$= 1 - (1 + \lambda y)e^{-\lambda y}.$$

The complete expression for the joint CDF is

$$F_{W,Y}(w,y) = \begin{cases} 1 - e^{-\lambda w} - \lambda we^{-\lambda y} & 0 \leq w \leq y \\ 1 - (1 + \lambda y)e^{-\lambda y} & 0 \leq y \leq w \\ 0 & \text{otherwise} \end{cases}$$

Applying Theorem 4.4 yields

$$f_{W,Y}(w,y) = \frac{\partial^2 F_{W,Y}(w,y)}{\partial w \partial y} = \begin{cases} 2\lambda^2 e^{-\lambda y} & 0 \leq w \leq y \\ 0 & \text{otherwise} \end{cases}$$

The joint PDF $f_{W,Y}(w,y)$ doesn’t factor and thus W and Y are dependent.
Problem 4.10.17 Solution
We need to define the events $A = \{U \leq u\}$ and $B = \{V \leq v\}$. In this case,

Note that $U = \min(X, Y) > u$ if and only if $X > u$ and $Y > u$. In the same way, since $V = \max(X, Y)$, $V \leq v$ if and only if $X \leq v$ and $Y \leq v$. Thus

$$P[U > u, V \leq v] = P[X > u, Y > u, X \leq v, Y \leq v]$$

$$= P[u < X \leq v, u < Y \leq v] \quad (2)$$

Thus, the joint CDF of U and V satisfies

$$F_{U,V}(u, v) = P[V \leq v] - P[U > u, V \leq v] \quad (4)$$

Since X and Y are independent random variables,

$$F_{U,V}(u, v) = P[X \leq v] P[Y \leq v] - P[u < X \leq v] P[u < Y \leq v]$$

$$= F_X(v) F_Y(v) - (F_X(v) - F_X(u))(F_Y(v) - F_Y(u)) \quad (6)$$

$$= F_X(v) F_Y(v) + F_X(u) F_Y(v) - F_X(u) F_Y(u) \quad (7)$$

The joint PDF is

$$f_{U,V}(u, v) = \frac{\partial^2 F_{U,V}(u, v)}{\partial u \partial v} \quad (9)$$

$$= \frac{\partial}{\partial u} \left[f_X(v) F_Y(u) + F_X(u) f_Y(v) \right] \quad (10)$$

$$= f_X(u) f_Y(v) + f_X(v) f_Y(v) \quad (11)$$

Problem 4.11.1 Solution

$$f_{X,Y}(x, y) = ce^{-(x^2/8)-(y^2/18)} \quad (1)$$

The omission of any limits for the PDF indicates that it is defined over all x and y. We know that $f_{X,Y}(x, y)$ is in the form of the bivariate Gaussian distribution so we look to Definition 4.17 and attempt to find values for σ_Y, σ_X, $E[X]$, $E[Y]$ and ρ. First, we know that the constant is

$$c = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \quad (2)$$

Because the exponent of $f_{X,Y}(x, y)$ doesn’t contain any cross terms we know that ρ must be zero, and we are left to solve the following for $E[X]$, $E[Y]$, σ_X, and σ_Y:

$$\left(\frac{x - E[X]}{\sigma_X} \right)^2 = \frac{x^2}{8} \quad \left(\frac{y - E[Y]}{\sigma_Y} \right)^2 = \frac{y^2}{18} \quad (3)$$

From which we can conclude that

$$E[X] = E[Y] = 0 \quad (4)$$

$$\sigma_X = \sqrt{8} \quad (5)$$

$$\sigma_Y = \sqrt{18} \quad (6)$$

Putting all the pieces together, we find that $c = \frac{1}{24\pi}$. Since $\rho = 0$, we also find that X and Y are independent.
Problem 4.11.2 Solution

For the joint PDF

\[f_{X,Y}(x, y) = ce^{-(2x^2 - 4xy + 4y^2)}, \]

we proceed as in Problem 4.11.1 to find values for \(\sigma_Y, \sigma_X, E[X], E[Y] \) and \(\rho \).

(a) First, we try to solve the following equations

\[
\left(\frac{x - E[X]}{\sigma_X} \right)^2 = 4(1 - \rho^2)x^2 \tag{2}
\]

\[
\left(\frac{y - E[Y]}{\sigma_Y} \right)^2 = 8(1 - \rho^2)y^2 \tag{3}
\]

\[
\frac{2\rho}{\sigma_X \sigma_Y} = 8(1 - \rho^2) \tag{4}
\]

The first two equations yield \(E[X] = E[Y] = 0 \)

(b) To find the correlation coefficient \(\rho \), we observe that

\[
\sigma_X = 1/\sqrt{4(1 - \rho^2)} \quad \sigma_Y = 1/\sqrt{8(1 - \rho^2)} \tag{5}
\]

Using \(\sigma_X \) and \(\sigma_Y \) in the third equation yields \(\rho = 1/\sqrt{2} \).

(c) Since \(\rho = 1/\sqrt{2} \), now we can solve for \(\sigma_X \) and \(\sigma_Y \).

\[
\sigma_X = 1/\sqrt{2} \quad \sigma_Y = 1/2 \tag{6}
\]

(d) From here we can solve for \(c \).

\[
c = \frac{1}{2\pi \sigma_X \sigma_Y \sqrt{1 - \rho^2}} = \frac{2}{\pi} \tag{7}
\]

(e) \(X \) and \(Y \) are dependent because \(\rho \neq 0 \).

Problem 4.11.3 Solution

From the problem statement, we learn that

\[
\mu_X = \mu_Y = 0 \quad \sigma_X^2 = \sigma_Y^2 = 1 \tag{1}
\]

From Theorem 4.30, the conditional expectation of \(Y \) given \(X \) is

\[
E[Y|X] = \hat{\mu}_Y(X) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(X - \mu_X) = \rho X \tag{2}
\]

In the problem statement, we learn that \(E[Y|X] = X/2 \). Hence \(\rho = 1/2 \). From Definition 4.17, the joint PDF is

\[
f_{X,Y}(x, y) = \frac{1}{\sqrt{3\pi^2}} e^{-2(x^2 - xy + y^2)/3} \tag{3}
\]
Problem 4.11.4 Solution
The event B is the set of outcomes satisfying $X^2 + Y^2 \leq 2^2$. Of course, the calculation of $P[B]$ depends on the probability model for X and Y.

(a) In this instance, X and Y have the same PDF

$$f_X(x) = f_Y(x) = \begin{cases} 0.01 & -50 \leq x \leq 50 \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

Since X and Y are independent, their joint PDF is

$$f_{X,Y}(x, y) = f_X(x) f_Y(y) = \begin{cases} 10^{-4} & -50 \leq x \leq 50, -50 \leq y \leq 50 \\ 0 & \text{otherwise} \end{cases} \quad (2)$$

Because X and Y have a uniform PDF over the bullseye area, $P[B]$ is just the value of the joint PDF over the area times the area of the bullseye.

$$P[B] = P\left[X^2 + Y^2 \leq 2^2\right] = 10^{-4} \cdot \pi 2^2 = 4 \pi \cdot 10^{-4} \approx 0.0013 \quad (3)$$

(b) In this case, the joint PDF of X and Y is inversely proportional to the area of the target.

$$f_{X,Y}(x, y) = \begin{cases} \frac{1}{\pi 50^2} & x^2 + y^2 \leq 50^2 \\ 0 & \text{otherwise} \end{cases} \quad (4)$$

The probability of a bullseye is

$$P[B] = P\left[X^2 + Y^2 \leq 2^2\right] = \frac{\pi 2^2}{\pi 50^2} = \left(\frac{1}{25}\right)^2 \approx 0.0016. \quad (5)$$

(c) In this instance, X and Y have the identical Gaussian $(0, \sigma)$ PDF with $\sigma^2 = 100$; i.e.,

$$f_X(x) = f_Y(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-x^2/2\sigma^2} \quad (6)$$

Since X and Y are independent, their joint PDF is

$$f_{X,Y}(x, y) = f_X(x) f_Y(y) = \frac{1}{2\pi \sigma^2} e^{-(x^2+y^2)/2\sigma^2} \quad (7)$$

To find $P[B]$, we write

$$P[B] = P\left[X^2 + Y^2 \leq 2^2\right] = \int\int_{x^2+y^2 \leq 2^2} f_{X,Y}(x, y) \, dx \, dy \quad (8)$$

$$= \frac{1}{2\pi \sigma^2} \int\int_{x^2+y^2 \leq 2^2} e^{-(x^2+y^2)/2\sigma^2} \, dx \, dy \quad (9)$$

This integral is easy using polar coordinates. With the substitutions $x^2 + y^2 = r^2$, and $dx \, dy = r \, dr \, d\theta$,

$$P[B] = \frac{1}{2\pi \sigma^2} \int_0^{2\pi} \int_0^{2} e^{-r^2/2\sigma^2} r \, dr \, d\theta \quad (10)$$

$$= \frac{1}{\sigma^2} \int_0^{2} r e^{-r^2/2\sigma^2} \, dr \quad (11)$$

$$= -e^{-r^2/2\sigma^2}\bigg|_0^2 = 1 - e^{-4/200} \approx 0.0198. \quad (12)$$
Problem 4.11.5 Solution

(a) The person’s temperature is high with probability
\[p = P[T > 38] = P[T - 37 > 38 - 37] = 1 - \Phi(1) = 0.159. \] (1)

Given that the temperature is high, then \(W \) is measured. Since \(\rho = 0 \), \(W \) and \(T \) are independent and
\[q = P[W > 10] = P \left[\frac{W - 7}{2} > \frac{10 - 7}{2} \right] = 1 - \Phi(1.5) = 0.067. \] (2)

The tree for this experiment is
\[\begin{array}{c}
T > 38 \\
\downarrow \\
\begin{array}{c}
p \\
1-p
\end{array}
\end{array} \quad \begin{array}{c}
T \leq 38 \\
\downarrow \\
\begin{array}{c}
q \\
1-q
\end{array}
\end{array} \quad W > 10
\]

The probability the person is ill is
\[P[I] = P[T > 38, W > 10] = P[T > 38] P[W > 10] = pq = 0.0107. \] (3)

(b) The general form of the bivariate Gaussian PDF is
\[f_{W,T}(w,t) = \exp \left[-\frac{\left(\frac{w-\mu_1}{\sigma_1} \right)^2 - 2\rho \frac{(w-\mu_1)(t-\mu_2)}{\sigma_1 \sigma_2} + \left(\frac{t-\mu_2}{\sigma_2} \right)^2}{2(1-\rho^2)} \right] \frac{2\pi \sigma_1 \sigma_2 \sqrt{1-\rho^2}}{2} \] (4)

With \(\mu_1 = E[W] = 7 \), \(\sigma_1 = \sigma_W = 2 \), \(\mu_2 = E[T] = 37 \) and \(\sigma_2 = \sigma_T = 1 \) and \(\rho = 1/\sqrt{2} \), we have
\[f_{W,T}(w,t) = \frac{1}{2\pi \sqrt{2}} \exp \left[-\frac{(w-7)^2}{4} - \frac{\sqrt{2}(w-7)(t-37)}{2} + \frac{(t-37)^2}{2} \right] \] (5)

To find the conditional probability \(P[I|T=t] \), we need to find the conditional PDF of \(W \) given \(T = t \). The direct way is simply to use algebra to find
\[f_{W|T}(w|t) = \frac{f_{W,T}(w,t)}{f_T(t)} \] (6)

The required algebra is essentially the same as that needed to prove Theorem 4.29. Its easier just to apply Theorem 4.29 which says that given \(T = t \), the conditional distribution of \(W \) is Gaussian with
\[E[W|T=t] = E[W] + \rho \frac{\sigma_W}{\sigma_T} (t - E[T]) \] (7)
\[\text{Var}[W|T=t] = \sigma_W^2 (1 - \rho^2) \] (8)
Plugging in the various parameters gives

\[E[W|T = t] = 7 + \sqrt{2}(t - 37) \quad \text{and} \quad \text{Var}[W|T = t] = 2 \quad (9) \]

Using this conditional mean and variance, we obtain the conditional Gaussian PDF

\[f_{W|T}(w|t) = \frac{1}{\sqrt{4\pi}} e^{-\left(\frac{(w - (7 + \sqrt{2}(t - 37))}{2}\right)^2}. \quad (10) \]

Given \(T = t \), the conditional probability the person is declared ill is

\[P[I|T = t] = P[W > 10|T = t] \]

\[= P\left[\frac{W - (7 + \sqrt{2}(t - 37))}{\sqrt{2}} > \frac{10 - (7 + \sqrt{2}(t - 37))}{\sqrt{2}} \right] \]

\[= P\left[Z > \frac{3 - \sqrt{2}(t - 37)}{\sqrt{2}} \right] = Q\left(\frac{3\sqrt{2}}{2} - (t - 37) \right). \quad (13) \]

Problem 4.11.6 Solution

The given joint PDF is

\[f_{X,Y}(x, y) = de^{-(a^2x^2 + bxy + c^2y^2)} \quad (1) \]

In order to be an example of the bivariate Gaussian PDF given in Definition 4.17, we must have

\[a^2 = \frac{1}{2\sigma_X^2(1 - \rho^2)} \quad c^2 = \frac{1}{2\sigma_Y^2(1 - \rho^2)} \]

\[b = -\frac{\rho}{\sigma_X\sigma_Y(1 - \rho^2)} \quad d = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1 - \rho^2}} \]

We can solve for \(\sigma_X \) and \(\sigma_Y \), yielding

\[\sigma_X = \frac{1}{a\sqrt{2(1 - \rho^2)}} \quad \sigma_Y = \frac{1}{c\sqrt{2(1 - \rho^2)}} \quad (2) \]

Plugging these values into the equation for \(b \), it follows that \(b = -2ac\rho \), or, equivalently, \(\rho = -b/2ac \). This implies

\[d^2 = \frac{1}{4\pi^2\sigma_X^2\sigma_Y^2(1 - \rho^2)} = (1 - \rho^2)a^2c^2 = a^2c^2 - b^2/4 \quad (3) \]

Since \(|\rho| \leq 1 \), we see that \(|b| \leq 2ac \). Further, for any choice of \(a \), \(b \) and \(c \) that meets this constraint, choosing \(d = \sqrt{a^2c^2 - b^2/4} \) yields a valid PDF.

Problem 4.11.7 Solution

From Equation (4.146), we can write the bivariate Gaussian PDF as

\[f_{X,Y}(x, y) = \frac{1}{\sigma_X\sqrt{2\pi}} e^{-\left(\frac{x - \mu_X}{2\sigma_X^2}\right)^2} \frac{1}{\sigma_Y\sqrt{2\pi}} e^{-\left(\frac{y - \mu_Y(x)}{2\sigma_Y^2}\right)^2} \quad (1) \]

where \(\tilde{\mu}_Y(x) = \mu_Y + \rho\frac{\sigma_Y}{\sigma_X}(x - \mu_X) \) and \(\tilde{\sigma}_Y = \sigma_Y\sqrt{1 - \rho^2} \). However, the definitions of \(\tilde{\mu}_Y(x) \) and \(\tilde{\sigma}_Y \) are not particularly important for this exercise. When we integrate the joint PDF over all \(x \)
and \(y \), we obtain

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx \, dy = \int_{-\infty}^{\infty} \frac{1}{\sigma_X \sqrt{2\pi}} e^{-(x-\mu_X)^2/2\sigma_X^2} \int_{-\infty}^{\infty} \frac{1}{\sigma_Y \sqrt{2\pi}} e^{-(y-\mu_Y(x))^2/2\sigma_Y^2} \, dy \, dx \tag{2}
\]

\[
= \int_{-\infty}^{\infty} \frac{1}{\sigma_X \sqrt{2\pi}} e^{-(x-\mu_X)^2/2\sigma_X^2} \, dx
\]

The marked integral equals 1 because for each value of \(x \), it is the integral of a Gaussian PDF of one variable over all possible values. In fact, it is the integral of the conditional PDF \(f_{Y|X}(y|x) \) over all possible \(y \). To complete the proof, we see that

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx \, dy = \int_{-\infty}^{\infty} \frac{1}{\sigma_X \sqrt{2\pi}} e^{-(x-\mu_X)^2/2\sigma_X^2} \, dx = 1
\]

since the remaining integral is the integral of the marginal Gaussian PDF \(f_X(x) \) over all possible \(x \).

Problem 4.11.8 Solution

In this problem, \(X_1 \) and \(X_2 \) are jointly Gaussian random variables with \(E[X_i] = \mu_i, \, \text{Var}[X_i] = \sigma_i^2 \), and correlation coefficient \(\rho_{12} = \rho \). The goal is to show that \(Y = X_1 X_2 \) has variance

\[
\text{Var}[Y] = (1 + \rho^2)\sigma_1^2\sigma_2^2 + \mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2 + 2\rho\mu_1\mu_2\sigma_1\sigma_2.
\]

Since \(\text{Var}[Y] = E[Y^2] - (E[Y])^2 \), we will find the moments of \(Y \). The first moment is

\[
E[Y] = E[X_1 X_2] = \text{Cov}[X_1, X_2] + E[X_1] E[X_2] = \rho\sigma_1\sigma_2 + \mu_1\mu_2.
\]

For the second moment of \(Y \), we follow the problem hint and use the iterated expectation

\[
E[Y^2] = E[X_1^2 X_2^2] = E[E[X_1^2 X_2^2|X_2]] = E[X_2^2 E[X_1^2|X_2]].
\]

Given \(X_2 = x_2 \), we observe from Theorem 4.30 that \(X_1 \) is Gaussian with

\[
E[X_1|X_2 = x_2] = \mu_1 + \rho \frac{\sigma_1}{\sigma_2} (x_2 - \mu_2), \quad \text{Var}[X_1|X_2 = x_2] = \sigma_1^2(1 - \rho^2). \tag{4}
\]

Thus, the conditional second moment of \(X_1 \) is

\[
E[X_1^2|X_2] = (E[X_1|X_2])^2 + \text{Var}[X_1|X_2]
\]

\[
= \left(\mu_1 + \rho \frac{\sigma_1}{\sigma_2} (X_2 - \mu_2) \right)^2 + \sigma_1^2(1 - \rho^2) \tag{5}
\]

\[
= \mu_1^2 + \sigma_1^2 (1 - \rho^2) + 2\rho\mu_1 \frac{\sigma_1}{\sigma_2} (X_2 - \mu_2) + \rho^2 \frac{\sigma_1^2}{\sigma_2^2} (X_2 - \mu_2)^2. \tag{6}
\]

It follows that

\[
E[X_1^2 X_2^2] = E[X_2^2 E[X_1^2|X_2]]
\]

\[
= E[\mu_1^2 + \sigma_1^2 (1 - \rho^2) X_2^2 + 2\rho\mu_1 \frac{\sigma_1}{\sigma_2} (X_2 - \mu_2) X_2^2 + \rho^2 \frac{\sigma_1^2}{\sigma_2^2} (X_2 - \mu_2)^2 X_2^2]. \tag{8}
\]
Since $E[X_2^2] = \sigma_2^2 + \mu_2^2$,

$$E \left[X_1^2 X_2^2 \right] = (\mu_1^2 + \sigma_1^2 (1 - \rho^2)) (\sigma_2^2 + \mu_2^2)$$

$$+ 2 \rho \mu_1 \frac{\sigma_1}{\sigma_2} E \left[(X_2 - \mu_2) X_2^2 \right] + \rho^2 \frac{\sigma_1^2}{\sigma_2^2} E \left[(X_2 - \mu_2)^2 X_2^2 \right].$$

(10)

We observe that

$$E \left[(X_2 - \mu_2) X_2^2 \right] = E \left[(X_2 - \mu_2)(X_2 - \mu_2 + \mu_2)^2 \right]$$

$$= E \left[(X_2 - \mu_2) \left((X_2 - \mu_2)^2 + 2 \mu_2 (X_2 - \mu_2) + \mu_2^2 \right) \right]$$

$$= E \left[(X_2 - \mu_2)^3 \right] + 2 \mu_2 E \left[(X_2 - \mu_2)^2 \right] + \mu_2 E \left[(X_2 - \mu_2) \right]$$

(11)

(12)

(13)

We recall that $E[X_2 - \mu_2] = 0$ and that $E[(X_2 - \mu_2)^2] = \sigma_2^2$. We now look ahead to Problem 6.3.4 to learn that

$$E \left[(X_2 - \mu_2)^3 \right] = 0, \quad E \left[(X_2 - \mu_2)^4 \right] = 3 \sigma_4^2.$$

(14)

This implies

$$E \left[(X_2 - \mu_2) X_2^2 \right] = 2 \mu_2 \sigma_2^2.$$

(15)

Following this same approach, we write

$$E \left[(X_2 - \mu_2)^2 X_2^2 \right] = E \left[(X_2 - \mu_2)^2 (X_2 - \mu_2 + \mu_2)^2 \right]$$

$$= E \left[(X_2 - \mu_2)^2 \left((X_2 - \mu_2)^2 + 2 \mu_2 (X_2 - \mu_2) + \mu_2^2 \right) \right]$$

$$= E \left[(X_2 - \mu_2)^4 \right] + 2 \mu_2 E \left[(X_2 - \mu_2)^3 \right] + \mu_2^2 E \left[(X_2 - \mu_2)^2 \right].$$

(16)

(17)

(18)

(19)

It follows that

$$E \left[(X_2 - \mu_2) X_2^2 \right] = 3 \sigma_4^2 + \mu_2^2 \sigma_2^2.$$

(20)

Combining the above results, we can conclude that

$$E \left[X_1^2 X_2^2 \right] = (\mu_1^2 + \sigma_1^2 (1 - \rho^2)) (\sigma_2^2 + \mu_2^2) + 2 \rho \mu_1 \frac{\sigma_1}{\sigma_2} (2 \mu_2 \sigma_2^2) + \rho^2 \frac{\sigma_1^2}{\sigma_2^2} (3 \sigma_4^2 + \mu_2^2 \sigma_2^2)$$

$$= (1 + 2 \rho^2) \sigma_1^2 \sigma_2^2 + \mu_2^2 \sigma_1^2 + \mu_1^2 \sigma_2^2 + \mu_1^2 \mu_2^2 + 4 \rho \mu_1 \mu_2 \sigma_1 \sigma_2.$$

(21)

Finally, combining Equations (2) and (22) yields

$$\text{Var}[Y] = E \left[X_1^2 X_2^2 \right] - (E \left[X_1 X_2 \right])^2$$

$$= (1 + \rho^2) \sigma_1^2 \sigma_2^2 + \mu_1^2 \sigma_2^2 + \mu_1^2 \sigma_1^2 + 2 \rho \mu_1 \mu_2 \sigma_1 \sigma_2.$$

(23)

(24)

Problem 4.12.1 Solution

The script `imagepmf` in Example 4.27 generates the grid variables S_X, S_Y, and P_{XY}. Recall that for each entry in the grid, S_X, S_Y and P_{XY} are the corresponding values of x, y and $P_{X,Y}(x,y)$. Displaying them as adjacent column vectors forms the list of all possible pairs x,y and the probabilities $P_{X,Y}(x,y)$. Since any MATLAB vector or matrix x is reduced to a column vector with the command $x(:)$, the following simple commands will generate the list:
Note that the command `format rat` wasn’t necessary; it just formats the output as rational numbers, i.e., ratios of integers, which you may or may not find esthetically pleasing.

Problem 4.12.2 Solution

In this problem, we need to calculate $E[X]$, $E[Y]$, the correlation $E[XY]$, and the covariance $\text{Cov}[X,Y]$ for random variables X and Y in Example 4.27. In this case, we can use the script `imagepmf.m` in Example 4.27 to generate the grid variables SX, SY and PXY that describe the joint PMF $P_{X,Y}(x,y)$.

However, for the rest of the problem, a general solution is better than a specific solution. The general problem is that given a pair of finite random variables described by the grid variables SX, SY and PXY, we want MATLAB to calculate an expected value $E[g(X,Y)]$. This problem is solved in a few simple steps. First we write a function that calculates the expected value of any finite random variable.

```matlab
function ex=finiteexp(sx,px);
%Usage: ex=finiteexp(sx,px)
%returns the expected value $E[X]$ of finite random variable X described
%by samples sx and probabilities px
ex=sum((sx(:)).*(px(:)));
```

Note that `finiteexp` performs its calculations on the sample values sx and probabilities px using the column vectors $sx(:)$ and $px(:)$. As a result, we can use the same `finiteexp` function when the random variable is represented by grid variables. For example, we can calculate the correlation $r = E[XY]$ as

$$r=\text{finiteexp}(SX.*SY,PXY)$$

It is also convenient to define a function that returns the covariance:

```matlab
function covxy=finitecov(SX,SY,PXY);
%Usage: cxy=finitecov(SX,SY,PXY)
%returns the covariance of
%finite random variables X and Y
%given by grids SX, SY, and PXY
ex=finiteexp(SX,PXY);
ey=finiteexp(SY,PXY);
R=finiteexp(SX.*SY,PXY);
covxy=R-ex*ey;
```
The following script calculates the desired quantities:

```
%imageavg.m
%Solution for Problem 4.12.2
imagepmf; %defines SX, SY, PXY
ex=finteexp(SX,PXY)
ey=finteexp(SY,PXY)
ry=finteexp(SX.*SY,PXY)
cxy=finteexp(SX,SY,PXY)

>> imageavg
ex =
    1180
ey =
    860
ry =
  1064000
cxy =
    49200
```

The careful reader will observe that `imagepmf` is inefficiently coded in that the correlation $E[XY]$ is calculated twice, once directly and once inside of `finitecov`. For more complex problems, it would be worthwhile to avoid this duplication.

Problem 4.12.3 Solution

The script is just a MATLAB calculation of $F_{X,Y}(x, y)$ in Equation (4.29).

```
%trianglecdfplot.m
[X,Y]=meshgrid(0:0.05:1.5);
R=(0<=Y).*(Y<=X).*(X<=1).*(2*(X.*Y)-(Y.^2));
R=R+((0<=X).*(X<Y).*(X<=1).*(X.^2));
R=R+((0<=Y).*(Y<=1).*(1<X).*((2*Y)-(Y.^2)));
R=R+((X>1).*(Y>1));
mesh(X,Y,R);
xlabel('\textit{x}');
ylabel('\textit{y}');
```

For functions like $F_{X,Y}(x, y)$ that have multiple cases, we calculate the function for each case and multiply by the corresponding boolean condition so as to have a zero contribution when that case doesn’t apply. Using this technique, its important to define the boundary conditions carefully to make sure that no point is included in two different boundary conditions.

Problem 4.12.4 Solution

By following the formulation of Problem 4.2.6, the code to set up the sample grid is reasonably straightforward:

```
function [SX,SY,PXY]=circuits(n,p);
%Usage: [SX,SY,PXY]=circuits(n,p);
% (See Problem 4.12.4)
[SX,SY]=ndgrid(0:n,0:n);
PXY=0*SX;
PXY(find((SX==n) & (SY==n)))=p^n;
for y=0:(n-1),
    I=find((SY==y) & (SX>=SY) & (SX<n));
    PXY(I)=(p^y)*(1-p) * ... 
        binomialpmf(n-y-1,p,SX(I)-y);
end;
```

The only catch is that for a given value of y, we need to calculate the binomial probability of $x - y$ successes in $(n - y - 1)$ trials. We can do this using the function call

```
binomialpmf(n-y-1,p,x-y)
```
However, this function expects the argument \(n-y-1 \) to be a scalar. As a result, we must perform a separate call to `binomialpmf` for each value of \(y \).

An alternate solution is direct calculation of the PMF \(P_{X,Y}(x,y) \) in Problem 4.2.6. In this case, we calculate \(m! \) using the MATLAB function `gamma(m+1)`. Because, \(\text{gamma}(x) \) function will calculate the gamma function for each element in a vector \(x \), we can calculate the PMF without any loops:

```matlab
function [SX,SY,PXY]=circuits2(n,p);
%Usage: [SX,SY,PXY]=circuits2(n,p);
%   (See Problem 4.12.4)
[SX,SY]=ndgrid(0:n,0:n);
PXY=0*SX;
PXY(find((SX==n) & (SY==n)))=p^n;
I=find((SY<=SX) &(SX<n);
PXY(I)=(gamma(n-SY(I))./(gamma(SX(I)-SY(I)+1).*gamma(n-SX(I)))).*(p.^SX(I)).*((1-p).^(n-SX(I)));
```

Some experimentation with `cputime` will show that `circuits2(n,p)` runs much faster than `circuits(n,p)`. As is typical, the `for` loop in circuit results in time wasted running the MATLAB interpreter and in regenerating the binomial PMF in each cycle.

To finish the problem, we need to calculate the correlation coefficient

\[
\rho_{X,Y} = \frac{\text{Cov}[X,Y]}{\sigma_X \sigma_Y}.
\]

(1)

In fact, this is one of those problems where a general solution is better than a specific solution. The general problem is that given a pair of finite random variables described by the grid variables \(SX, SY \) and PMF \(P_{XY} \), we wish to calculate the correlation coefficient.

This problem is solved in a few simple steps. First we write a function that calculates the expected value of a finite random variable.

```matlab
function ex=finiteexp(sx,px);
%Usage: ex=finiteexp(sx,px)
%returns the expected value \( E[X] \)
%of finite random variable \( X \) described
%by samples \( sx \) and probabilities \( px \)
ex=sum((sx(:)).*(px(:)));  
```

Note that `finiteexp` performs its calculations on the sample values \(sx \) and probabilities \(px \) using the column vectors \(sx(:) \) and \(px(:) \). As a result, we can use the same `finiteexp` function when the random variable is represented by grid variables. We can build on `finiteexp` to calculate the variance using `finitevar`:

```matlab
function v=finitevar(sx,px);
%Usage: ex=finitevar(sx,px)
%returns the variance \( \text{Var}[X] \)
%of finite random variables \( X \) described by
%samples \( sx \) and probabilities \( px \)
ex2=finiteexp(sx.^2,px);
ex=finiteexp(sx,px);
v=ex2-(ex.^2);
```

Putting these pieces together, we can calculate the correlation coefficient.
function rho=finitecoeff(SX,SY,PXY);
%Usage: rho=finitecoeff(SX,SY,PXY)
%Calculate the correlation coefficient rho of
%finite random variables X and Y
ex=finiteexp(SX,PXY); vx=finitevar(SX,PXY);
ey=finiteexp(SY,PXY); vy=finitevar(SY,PXY);
R=finiteexp(SX.*SY,PXY);
rho=(R-ex*ey)/sqrt(vx*vy);
Calculating the correlation coefficient of X and Y, is now a two line exercise..
>> [SX,SY,PXY]=circuits2(50,0.9);
>> rho=finitecoeff(SX,SY,PXY)
rho =
 0.4451
>>
Problem 4.12.5 Solution
In the first approach X is an exponential (λ) random variable, Y is an independent exponential
(μ) random variable, and W = Y/X. we implement this approach in the function wrv1.m shown
below.

In the second approach, we use Theorem 3.22 and generate samples of a uniform (0,1) random
variable U and calculate W = F_W^{-1}(U). In this problem,
\[F_W(w) = 1 - \frac{\lambda/\mu}{\lambda/\mu + w}. \] (1)

Setting \(u = F_W(w) \) and solving for \(w \) yields
\[w = F_W^{-1}(u) = \frac{\lambda}{\mu} \left(\frac{u}{1-u} \right) \] (2)

We implement this solution in the function wrv2. Here are the two solutions:

```
function w=wrv1(lambda,mu,m)
%Usage: w=wrv1(lambda,mu,m)
%Return m samples of W=Y/X
%X is exponential (lambda)
%Y is exponential (mu)
x=exponentialrv(lambda,m);
y=exponentialrv(mu,m);
w=y./x;
function w=wrv2(lambda,mu,m)
%Usage: w=wrv1(lambda,mu,m)
%Return m samples of W=Y/X
%X is exponential (lambda)
%Y is exponential (mu)
%Uses CDF of F_W(w)
u=rand(m,1); w=(lambda/mu)*u./(1-u);
```

We would expect that wrv2 would be faster simply because it does less work. In fact, its
instructive to account for the work each program does.

- **wrv1** Each exponential random sample requires the generation of a uniform random variable,
 and the calculation of a logarithm. Thus, we generate 2m uniform random variables, calculate
 2m logarithms, and perform m floating point divisions.

- **wrv2** Generate m uniform random variables and perform m floating points divisions.

This quickie analysis indicates that wrv1 executes roughly 5m operations while wrv2 executes about
2m operations. We might guess that wrv2 would be faster by a factor of 2.5. Experimentally, we
calculated the execution time associated with generating a million samples:
We see in our simple experiments that \texttt{wrv2} is faster by a rough factor of 3. (Note that repeating such trials yielded qualitatively similar results.)
Problem Solutions – Chapter 5

Problem 5.1.1 Solution

The repair of each laptop can be viewed as an independent trial with four possible outcomes corresponding to the four types of needed repairs.

(a) Since the four types of repairs are mutually exclusive choices and since 4 laptops are returned for repair, the joint distribution of N_1, \ldots, N_4 is the multinomial PMF

$$P_{N_1,\ldots,N_4} (n_1, \ldots, n_4) = \binom{4}{n_1, n_2, n_3, n_4} P_1^{n_1} P_2^{n_2} P_3^{n_3} P_4^{n_4}$$

$$= \begin{cases} \frac{4!}{n_1! n_2! n_3! n_4!} \left(\frac{8}{15} \right)^{n_1} \left(\frac{4}{15} \right)^{n_2} \left(\frac{2}{15} \right)^{n_3} \left(\frac{1}{15} \right)^{n_4} & n_1 + \cdots + n_4 = 4; n_i \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

(b) Let L_2 denote the event that exactly two laptops need LCD repairs. Thus $P[L_2] = P_{N_1}(2)$. Since each laptop requires an LCD repair with probability $p_1 = 8/15$, the number of LCD repairs, N_1, is a binomial $(4, 8/15)$ random variable with PMF

$$P_{N_1} (n_1) = \binom{4}{n_1} (8/15)^{n_1} (7/15)^{4-n_1}$$

The probability that two laptops need LCD repairs is

$$P_{N_1} (2) = \binom{4}{2} (8/15)^2 (7/15)^2 = 0.3717$$

(c) A repair is type (2) with probability $p_2 = 4/15$. A repair is type (3) with probability $p_3 = 2/15$; otherwise a repair is type “other” with probability $p_0 = 9/15$. Define X as the number of “other” repairs needed. The joint PMF of X, N_2, N_3 is the multinomial PMF

$$P_{N_2,N_3,X} (n_2, n_3, x) = \binom{4}{n_2, n_3, x} \left(\frac{4}{15} \right)^{n_2} \left(\frac{2}{15} \right)^{n_3} \left(\frac{9}{15} \right)^x$$

However, Since $X + 4 - N_2 - N_3$, we observe that

$$P_{N_2,N_3} (n_2, n_3) = P_{N_2,N_3,X} (n_2, n_3, 4 - n_2 - n_3)$$

$$= \binom{4}{n_2, n_3, 4 - n_2 - n_3} \left(\frac{4}{15} \right)^{n_2} \left(\frac{2}{15} \right)^{n_3} \left(\frac{9}{15} \right)^{4-n_2-n_3}$$

$$= \binom{9}{15} \binom{4}{n_2, n_3, 4 - n_2 - n_3} \left(\frac{4}{9} \right)^{n_2} \left(\frac{2}{9} \right)^{n_3}$$

Similarly, since each repair is a motherboard repair with probability $p_2 = 4/15$, the number of motherboard repairs has binomial PMF

$$P_{N_2} (n_2) = \binom{4}{n_2} \left(\frac{4}{15} \right)^{n_2} \left(\frac{11}{15} \right)^{4-n_2}$$
Finally, the probability that more laptops require motherboard repairs than keyboard repairs is

\[P[N_2 > N_3] = P_{N_2,N_3}(1,0) + P_{N_2,N_3}(2,0) + P_{N_2,N_3}(2,1) + P_{N_2}(3) + P_{N_2}(4) \]

(10)

where we use the fact that if \(N_2 = 3 \) or \(N_2 = 4 \), then we must have \(N_2 > N_3 \). Inserting the various probabilities, we obtain

\[P[N_2 > N_3] = P_{N_2,N_3}(1,0) + P_{N_2,N_3}(2,0) + P_{N_2,N_3}(2,1) + P_{N_2}(3) + P_{N_2}(4) \]

(11)

Plugging in the various probabilities yields \(P[N_2 > N_3] = \frac{8}{16,875} \approx 0.5129 \).

Problem 5.1.2 Solution

Whether a computer has feature \(i \) is a Bernoulli trial with success probability \(p_i = 2^{-i} \). Given that \(n \) computers were sold, the number of computers sold with feature \(i \) has the binomial PMF

\[P_{N_i}(n_i) = \binom{n}{n_i} p_i^{n_i} (1 - p_i)^{n - n_i} \quad n_i = 0, 1, \ldots, n \]

otherwise

(1)

Since a computer has feature \(i \) with probability \(p_i \) independent of whether any other feature is on the computer, the number \(N_i \) of computers with feature \(i \) is independent of the number of computers with any other features. That is, \(N_1, \ldots, N_4 \) are mutually independent and have joint PMF

\[P_{N_1,\ldots,N_4}(n_1,\ldots,n_4) = P_{N_1}(n_1) P_{N_2}(n_2) P_{N_3}(n_3) P_{N_4}(n_4) \]

(2)

Problem 5.1.3 Solution

(a) In terms of the joint PDF, we can write joint CDF as

\[F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_{X_1,\ldots,X_n}(y_1,\ldots,y_n) \, dy_1 \cdots dy_n \]

(1)

However, simplifying the above integral depends on the values of each \(x_i \). In particular, \(f_{X_1,\ldots,X_n}(y_1,\ldots,y_n) = 1 \) if and only if \(0 \leq y_i \leq 1 \) for each \(i \). Since \(F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = 0 \) if any \(x_i < 0 \), we limit, for the moment, our attention to the case where \(x_i \geq 0 \) for all \(i \). In this case, some thought will show that we can write the limits in the following way:

\[F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \int_0^{\min(1,x_1)} \cdots \int_0^{\min(1,x_n)} \, dy_1 \cdots dy_n \]

(2)

\[= \min(1,x_1) \min(1,x_2) \cdots \min(1,x_n) \]

(3)

A complete expression for the CDF of \(X_1,\ldots,X_n \) is

\[F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \begin{cases} \prod_{i=1}^{n} \min(1,x_i) & 0 \leq x_i, \ i = 1, 2, \ldots, n \\ 0 & \text{otherwise} \end{cases} \]

(4)
(b) For \(n = 3 \),

\[
1 - P \left[\min_{i} X_i \leq \frac{3}{4} \right] = P \left[\min_{i} X_i > \frac{3}{4} \right] = P[X_1 > \frac{3}{4}, X_2 > \frac{3}{4}, X_3 > \frac{3}{4}] = \int_{3/4}^{1} \int_{3/4}^{1} \int_{3/4}^{1} dx_1 dx_2 dx_3 = (1 - \frac{3}{4})^3 = 1/64
\]

Thus \(P[\min_{i} X_i \leq \frac{3}{4}] = 63/64 \).

Problem 5.2.1 Solution

This problem is very simple. In terms of the vector \(\mathbf{X} \), the PDF is

\[
f_{\mathbf{X}}(\mathbf{x}) = \begin{cases}
1 & 0 \leq \mathbf{x} \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

However, just keep in mind that the inequalities \(0 \leq \mathbf{x} \) and \(\mathbf{x} \leq 1 \) are vector inequalities that must hold for every component \(x_i \).

Problem 5.2.2 Solution

In this problem, we find the constant \(c \) from the requirement that that the integral of the vector PDF over all possible values is 1. That is, \(\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(\mathbf{x}) \, dx_1 \cdots dx_n = 1 \). Since \(f_{\mathbf{X}}(\mathbf{x}) = c \mathbf{a}' \mathbf{x} = c \sum_{i=1}^{n} a_i x_i \), we have that

\[
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(\mathbf{x}) \, dx_1 \cdots dx_n = c \int_{0}^{1} \cdots \int_{0}^{1} \left(\sum_{i=1}^{n} a_i x_i \right) \, dx_1 \cdots dx_n = c \sum_{i=1}^{n} \left(\int_{0}^{1} a_i x_i \, dx_1 \cdots \int_{0}^{1} x_i \, dx_i \right) \cdots \left(\int_{0}^{1} dx_n \right) = c \sum_{i=1}^{n} a_i \left(\frac{x_i^2}{2} \right) = c \sum_{i=1}^{n} \frac{a_i}{2}
\]

The requirement that the PDF integrate to unity thus implies

\[
c = \frac{2}{\sum_{i=1}^{n} a_i}
\]

Problem 5.3.1 Solution

Here we solve the following problem:\(^1\)

Given \(f_{\mathbf{X}}(\mathbf{x}) \) with \(c = 2/3 \) and \(a_1 = a_2 = a_3 = 1 \) in Problem 5.2.2, find the marginal PDF \(f_{X_3}(x_3) \).

\(^1\)The wrong problem statement appears in the first printing.
Filling in the parameters in Problem 5.2.2, we obtain the vector PDF

\[f_x (x) = \begin{cases} \frac{2}{3} (x_1 + x_2 + x_3) & 0 \leq x_1, x_2, x_3 \leq 1 \\ 0 & \text{otherwise} \end{cases} \quad (1) \]

In this case, for \(0 \leq x_3 \leq 1 \), the marginal PDF of \(X_3 \) is

\[f_{X_3} (x_3) = \frac{2}{3} \int_0^1 \int_0^1 (x_1 + x_2 + x_3) \, dx_1 \, dx_2 \quad (2) \]

\[= \frac{2}{3} \int_0^1 \left(\frac{x_2^2}{2} + x_2 x_1 + x_3 x_1 \right) \bigg|_{x_1=0}^{x_1=1} \, dx_2 \quad (3) \]

\[= \frac{2}{3} \int_0^1 \left(\frac{1}{2} + x_2 + x_3 \right) \, dx_2 \quad (4) \]

\[= \frac{2}{3} \left(\frac{x_2^2}{2} + \frac{x_2}{2} + x_3 x_2 \right) \bigg|_{x_2=0}^{x_2=1} = \frac{2}{3} \left(\frac{1}{2} + \frac{1}{2} + x_3 \right) \quad (5) \]

The complete expression for the marginal PDF of \(X_3 \) is

\[f_{X_3} (x_3) = \begin{cases} \frac{2(1 + x_3)}{3} & 0 \leq x_3 \leq 1 \\ 0 & \text{otherwise.} \end{cases} \quad (6) \]

Problem 5.3.2 Solution

Since \(J_1, J_2 \) and \(J_3 \) are independent, we can write

\[P_K (k) = P_{J_1} (k_1) P_{J_2} (k_2 - k_1) P_{J_3} (k_3 - k_2) \quad (1) \]

Since \(P_{J_i}(j) > 0 \) only for integers \(j > 0 \), we have that \(P_K(k) > 0 \) only for \(0 < k_1 < k_2 < k_3 \); otherwise \(P_K(k) = 0 \). Finally, for \(0 < k_1 < k_2 < k_3 \),

\[P_K (k) = (1 - p)^{k_1-1} p (1 - p)^{k_2-k_1-1} p (1 - p)^{k_3-k_2-1} p \quad (2) \]

\[= (1 - p)^{k_3-3} p^3 \quad (3) \]

Problem 5.3.3 Solution

The joint PMF is

\[P_K (k) = P_{K_1,K_2,K_3} (k_1, k_2, k_3) = \begin{cases} p^3 (1 - p)^{k_1-3} & 1 \leq k_1 < k_2 < k_3 \\ 0 & \text{otherwise} \end{cases} \quad (1) \]

(a) We start by finding \(P_{K_1,K_2} (k_1, k_2) \). For \(1 \leq k_1 < k_2 \),

\[P_{K_1,K_2} (k_1, k_2) = \sum_{k_3=-\infty}^{\infty} P_{K_1,K_2,K_3} (k_1, k_2, k_3) \quad (2) \]

\[= \sum_{k_3=k_2+1}^{\infty} p^3 (1 - p)^{k_3-3} \quad (3) \]

\[= p^3 (1 - p)^{k_2-2} (1 + (1 - p) + (1 - p)^2 + \cdots) \quad (4) \]

\[= p^2 (1 - p)^{k_2-2} \quad (5) \]
The complete expression is

$$P_{K_1,K_2}(k_1, k_2) = \begin{cases} p^2(1-p)^{k_2-2} & 1 \leq k_1 < k_2 \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (6)$$

Next we find $P_{K_1,K_3}(k_1, k_3)$. For $k_1 \geq 1$ and $k_3 \geq k_1 + 2$, we have

$$P_{K_1,K_3}(k_1, k_3) = \sum_{k_2=-\infty}^{\infty} P_{K_1,K_2,K_3}(k_1, k_2, k_3) = \sum_{k_2=k_1+1}^{k_3-1} p^3(1-p)^{k_3-3}$$

$$= (k_3 - k_1 - 1)p^3(1-p)^{k_3-3} \hspace{1cm} (8)$$

The complete expression of the PMF of K_1 and K_3 is

$$P_{K_1,K_3}(k_1, k_3) = \begin{cases} (k_3 - k_1 - 1)p^3(1-p)^{k_3-3} & 1 \leq k_1, k_1 + 2 \leq k_3, \\ 0 & \text{otherwise}. \end{cases}$$ \hspace{1cm} (9)$$

The next marginal PMF is

$$P_{K_2,K_3}(k_2, k_3) = \sum_{k_1=-\infty}^{\infty} P_{K_1,K_2,K_3}(k_1, k_2, k_3) = \sum_{k_1=1}^{k_2-1} p^3(1-p)^{k_3-3}$$

$$= (k_2 - 1)p^3(1-p)^{k_3-3} \hspace{1cm} (11)$$

The complete expression of the PMF of K_2 and K_3 is

$$P_{K_2,K_3}(k_2, k_3) = \begin{cases} (k_2 - 1)p^3(1-p)^{k_3-3} & 1 \leq k_2 < k_3, \\ 0 & \text{otherwise}. \end{cases}$$ \hspace{1cm} (12)$$

(b) Going back to first principles, we note that K_n is the number of trials up to and including the nth success. Thus K_1 is a geometric (p) random variable, K_2 is an Pascal ($2, p$) random variable, and K_3 is an Pascal ($3, p$) random variable. We could write down the respective marginal PMFs of K_1, K_2 and K_3 just by looking up the Pascal (n, p) PMF. Nevertheless, it is instructive to derive these PMFs from the joint PMF $P_{K_1,K_2,K_3}(k_1, k_2, k_3)$.

For $k_1 \geq 1$, we can find $P_{K_1}(k_1)$ via

$$P_{K_1}(k_1) = \sum_{k_2=-\infty}^{\infty} P_{K_1,K_2}(k_1, k_2) = \sum_{k_2=k_1+1}^{\infty} p^2(1-p)^{k_2-2}$$

$$= p^2(1-p)^{k_1-1}[1+(1-p)+(1-p)^2+\cdots]$$

$$= p(1-p)^{k_1-1} \hspace{1cm} (15)$$

The complete expression for the PMF of K_1 is the usual geometric PMF

$$P_{K_1}(k_1) = \begin{cases} p(1-p)^{k_1-1} & 1, 2, \ldots, \\ 0 & \text{otherwise}. \end{cases}$$ \hspace{1cm} (16)$$

Following the same procedure, the marginal PMF of K_2 is

$$P_{K_2}(k_2) = \sum_{k_1=-\infty}^{\infty} P_{K_1,K_2}(k_1, k_2) = \sum_{k_1=1}^{k_2-1} p^2(1-p)^{k_2-2}$$

$$= (k_2 - 1)p^2(1-p)^{k_2-2} \hspace{1cm} (18)$$
Since $P_{K_2}(k_2) = 0$ for $k_2 < 2$, the complete PMF is the Pascal $(2, p)$ PMF

$$P_{K_2}(k_2) = \binom{k_2 - 1}{1} p^2 (1 - p)^{k_2 - 2} \quad (19)$$

Finally, for $k_3 \geq 3$, the PMF of K_3 is

$$P_{K_3}(k_3) = \sum_{k_2=-\infty}^{\infty} P_{K_2,K_3}(k_2,k_3) = \sum_{k_2=2}^{k_3-1} (k_2 - 1) p^3 (1 - p)^{k_3 - 3}$$

$$= [1 + 2 + \cdots + (k_3 - 2)] p^3 (1 - p)^{k_3 - 3}$$

$$= \frac{(k_3 - 2)(k_3 - 1)}{2} p^3 (1 - p)^{k_3 - 3} \quad (20)$$

Since $P_{K_3}(k_3) = 0$ for $k_3 < 3$, the complete expression for $P_{K_3}(k_3)$ is the Pascal $(3, p)$ PMF

$$P_{K_3}(k_3) = \binom{k_3 - 1}{2} p^3 (1 - p)^{k_3 - 3}. \quad (23)$$

Problem 5.3.4 Solution

For $0 \leq y_1 \leq y_4 \leq 1$, the marginal PDF of Y_1 and Y_4 satisfies

$$f_{Y_1,Y_4}(y_1, y_4) = \int \int f_{Y}(y) \, dy_2 \, dy_3$$

$$= \int_{y_1}^{y_4} \left(\int_{y_2}^{y_4} 24 \, dy_3 \right) \, dy_2$$

$$= \int_{y_1}^{y_4} 24(y_4 - y_2) \, dy_2$$

$$= -12(y_4 - y_2)^2 |_{y_2 = y_1}^{y_2 = y_4} = 12(y_4 - y_1)^2 \quad (4)$$

The complete expression for the joint PDF of Y_1 and Y_4 is

$$f_{Y_1,Y_4}(y_1, y_4) = \begin{cases}
12(y_4 - y_1)^2 & 0 \leq y_1 \leq y_4 \leq 1 \\
0 & \text{otherwise}
\end{cases} \quad (5)$$

For $0 \leq y_1 \leq y_2 \leq 1$, the marginal PDF of Y_1 and Y_2 is

$$f_{Y_1,Y_2}(y_1, y_2) = \int \int f_{Y}(y) \, dy_3 \, dy_4$$

$$= \int_{y_2}^{1} \left(\int_{y_3}^{1} 24 \, dy_4 \right) \, dy_3$$

$$= \int_{y_2}^{1} 24(1 - y_3) \, dy_3 = 12(1 - y_2)^2 \quad (8)$$

The complete expression for the joint PDF of Y_1 and Y_2 is

$$f_{Y_1,Y_2}(y_1, y_2) = \begin{cases}
12(1 - y_2)^2 & 0 \leq y_1 \leq y_2 \leq 1 \\
0 & \text{otherwise}
\end{cases} \quad (9)$$
For \(0 \leq y_1 \leq 1\), the marginal PDF of \(Y_1\) can be found from
\[
f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f_{Y_1,Y_2}(y_1,y_2) \, dy_2 = \int_{y_1}^{1} 12(1-y_2)^2 \, dy_2 = 4(1-y_1)^3
\] (10)
The complete expression of the PDF of \(Y_1\) is
\[
f_{Y_1}(y_1) = \begin{cases}
4(1-y_1)^3 & 0 \leq y_1 \leq 1 \\
0 & \text{otherwise}
\end{cases}
\] (11)
Note that the integral \(f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f_{Y_1,Y_4}(y_1,y_4) \, dy_4\) would have yielded the same result. This is a good way to check our derivations of \(f_{Y_1,Y_4}(y_1,y_4)\) and \(f_{Y_1,Y_2}(y_1,y_2)\).

Problem 5.3.5 Solution

The value of each byte is an independent experiment with 255 possible outcomes. Each byte takes on the value \(b_i\) with probability \(p_i = p = 1/255\). The joint PMF of \(N_0,\ldots,N_{255}\) is the multinomial PMF

\[
P_{N_0,\ldots,N_{255}}(n_0,\ldots,n_{255}) = \frac{10000!}{n_0!n_1!\cdots n_{255}!} p^{n_0}p^{n_1}\cdots p^{n_{255}}
\] (1)
\[
= \frac{10000!}{n_0!n_1!\cdots n_{255}!(1/255)^{10000}}
\] (2)

To evaluate the joint PMF of \(N_0\) and \(N_1\), we define a new experiment with three categories: \(b_0\), \(b_1\) and “other.” Let \(\tilde{N}\) denote the number of bytes that are “other.” In this case, a byte is in the “other” category with probability \(\tilde{p} = 253/255\). The joint PMF of \(N_0\), \(N_1\), and \(\tilde{N}\) is

\[
P_{N_0,N_1,\tilde{N}}(n_0,n_1,\tilde{n}) = \frac{10000!}{n_0!n_1!\tilde{n}!} \left(\frac{1}{255} \right)^{n_0} \left(\frac{253}{255} \right)^{n_1} \left(\frac{253}{255} \right)^{\tilde{n}}
\] (3)

Now we note that the following events are one in the same:

\[
\{N_0 = n_0, N_1 = n_1\} = \{N_0 = n_0, N_1 = n_1, \tilde{N} = 10000 - n_0 - n_1\}
\] (4)

Hence, for non-negative integers \(n_0\) and \(n_1\) satisfying \(n_0 + n_1 \leq 10000,

\[
P_{N_0,N_1}(n_0,n_1) = P_{N_0,N_1,\tilde{N}}(n_0,n_1,10000 - n_0 - n_1)
\] (5)
\[
= \frac{10000!}{n_0!n_1!((10000 - n_0 - n_1))!} \left(\frac{1}{255} \right)^{n_0+n_1} \left(\frac{253}{255} \right)^{10000-n_0-n_1}
\] (6)

Problem 5.3.6 Solution

In Example 5.1, random variables \(N_1,\ldots,N_r\) have the multinomial distribution

\[
P_{N_1,\ldots,N_r}(n_1,\ldots,n_r) = \binom{n}{n_1,\ldots,n_r} p_1^{n_1}\cdots p_r^{n_r}
\] (1)

where \(n > r > 2\).
(a) To evaluate the joint PMF of N_1 and N_2, we define a new experiment with mutually exclusive events: s_1, s_2 and “other”. Let \hat{N} denote the number of trial outcomes that are “other”. In this case, a trial is in the “other” category with probability $\hat{p} = 1 - p_1 - p_2$. The joint PMF of N_1, N_2, and \hat{N} is

$$P_{N_1,N_2,\hat{N}}(n_1, n_2, \hat{n}) = \frac{n!}{n_1!n_2!(n-n_1-n_2)!}p_1^{n_1}p_2^{n_2}(1-p_1-p_2)^{\hat{n}} \quad n_1 + n_2 + \hat{n} = n$$

(2)

Now we note that the following events are one in the same:

$$\{N_1 = n_1, N_2 = n_2\} = \{N_1 = n_1, N_2 = n_2, \hat{N} = n - n_1 - n_2\}$$

(3)

Hence, for non-negative integers n_1 and n_2 satisfying $n_1 + n_2 \leq n$,

$$P_{N_1,N_2}(n_1,n_2) = P_{N_1,N_2,\hat{N}}(n_1,n_2,n-n_1-n_2) = \frac{n!}{n_1!n_2!(n-n_1-n_2)!}p_1^{n_1}p_2^{n_2}(1-p_1-p_2)^{n-n_1-n_2}$$

(4)

(b) We could find the PMF of T_i by summing the joint PMF $P_{N_1,\ldots,N_r}(n_1,\ldots,n_r)$. However, it is easier to start from first principles. Suppose we say a success occurs if the outcome of the trial is in the set $\{s_1,s_2,\ldots,s_i\}$ and otherwise a failure occurs. In this case, the success probability is $q_i = p_1 + \cdots + p_i$ and T_i is the number of successes in n trials. Thus, T_i has the binomial PMF

$$P_{T_i}(t) = \begin{cases} \binom{n}{t}q_i^t(1-q_i)^{n-t} & t = 0,1,\ldots,n \\ 0 & \text{otherwise} \end{cases}$$

(6)

(c) The joint PMF of T_1 and T_2 satisfies

$$P_{T_1,T_2}(t_1,t_2) = P[N_1 = t_1, N_1 + N_2 = t_2] = P[N_1 = t_1, N_2 = t_2 - t_1] = P_{N_1,N_2}(t_1,t_2 - t_1)$$

(7)

(8)

(9)

By the result of part (a),

$$P_{T_1,T_2}(t_1,t_2) = \frac{n!}{t_1!(t_2-t_1)!(n-t_2)!}p_1^{t_1}p_2^{t_2-t_1}(1-p_1-p_2)^{n-t_2} \quad 0 \leq t_1 \leq t_2 \leq n$$

(10)

Problem 5.3.7 Solution

(a) Note that Z is the number of three-page faxes. In principle, we can sum the joint PMF $P_{X,Y,Z}(x,y,z)$ over all x,y to find $P_Z(z)$. However, it is better to realize that each fax has 3 pages with probability 1/6, independent of any other fax. Thus, Z has the binomial PMF

$$P_Z(z) = \begin{cases} \binom{5}{z}(1/6)^z(5/6)^{5-z} & z = 0,1,\ldots,5 \\ 0 & \text{otherwise} \end{cases}$$

(1)

(b) From the properties of the binomial distribution given in Appendix A, we know that $E[Z] = 5(1/6)$.

204
(c) We want to find the conditional PMF of the number X of 1-page faxes and number Y of 2-page faxes given $Z = 2$ 3-page faxes. Note that given $Z = 2$, $X + Y = 3$. Hence for non-negative integers x, y satisfying $x + y = 3$,

$$P_{X,Y|Z}(x,y|2) = \frac{P_{X,Y,Z}(x,y,2)}{P_Z(2)} = \frac{\binom{3}{x} \frac{1}{2}^x \frac{1}{3}^y \frac{1}{6}^{3-x-y}}{(3!)^2 (5/6)^3}$$

(2)

With some algebra, the complete expression of the conditional PMF is

$$P_{X,Y|Z}(x,y|2) = \begin{cases} \frac{3!}{x!y!(5-x-y)!} \left(\frac{1}{3} \right)^x \left(\frac{1}{2} \right)^y \left(\frac{1}{6} \right)^{5-x-y} & 0 \leq x + y \leq 5, x \geq 0, y \geq 0; x, y \text{ integer} \\ 0 & \text{otherwise} \end{cases}$$

(3)

In the above expression, we note that if $Z = 2$, then $Y = 3 - X$ and

$$P_{X|Z}(x|2) = P_{X,Y|Z}(x,3-x|2) = \begin{cases} \binom{3}{x} \frac{2}{5}^x \left(\frac{3}{5} \right)^{3-x} & x = 0, 1, 2, 3 \\ 0 & \text{otherwise} \end{cases}$$

(4)

That is, given $Z = 2$, there are 3 faxes left, each of which independently could be a 1-page fax. The conditional PMF of the number of 1-page faxes is binomial where $2/5$ is the conditional probability that a fax has 1 page given that it either has 1 page or 2 pages. Moreover given $X = x$ and $Z = 2$ we must have $Y = 3 - x$.

(d) Given $Z = 2$, the conditional PMF of X is binomial for 3 trials and success probability $2/5$. The conditional expectation of X given $Z = 2$ is $E[X|Z = 2] = 3(2/5) = 6/5$.

(e) There are several ways to solve this problem. The most straightforward approach is to realize that for integers $0 \leq x \leq 5$ and $0 \leq y \leq 5$, the event $\{X = x, Y = y\}$ occurs iff $\{X = x, Y = y, Z = 5 - (x+y)\}$. For the rest of this problem, we assume x and y are non-negative integers so that

$$P_{X,Y}(x,y) = P_{X,Y,Z}(x,y,5-(x+y))$$

(5)

$$= \begin{cases} \frac{5!}{x!y!(5-x-y)!} \left(\frac{1}{3} \right)^x \left(\frac{1}{2} \right)^y \left(\frac{1}{6} \right)^{5-x-y} & 0 \leq x + y \leq 5, x \geq 0, y \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

(6)

The above expression may seem unwieldy and it isn’t even clear that it will sum to 1. To simplify the expression, we observe that

$$P_{X,Y}(x,y) = P_{X,Y,Z}(x,y,5-x-y) = P_{X,Y|Z}(x,y|5-x-y) P_Z(5-x-y)$$

(7)

Using $P_Z(z)$ found in part (c), we can calculate $P_{X,Y|Z}(x,y|5-x-y)$ for $0 \leq x + y \leq 5$, integer valued.

$$P_{X,Y|Z}(x,y|5-x+y) = \frac{P_{X,Y,Z}(x,y,5-x-y)}{P_Z(5-x-y)}$$

(8)

$$= \left(\frac{x+y}{x} \right) \left(\frac{1/3}{1/2 + 1/3} \right)^x \left(\frac{1/2}{1/2 + 1/3} \right)^y$$

(9)

$$= \left(\frac{x+y}{x} \right) \left(\frac{2}{5} \right)^x \left(\frac{3}{5} \right)^{(x+y)-x}$$

(10)

In the above expression, it is wise to think of $x + y$ as some fixed value. In that case, we see that given $x + y$ is a fixed value, X and Y have a joint PMF given by a binomial distribution.
in x. This should not be surprising since it is just a generalization of the case when $Z = 2$. That is, given that there were a fixed number of faxes that had either one or two pages, each of those faxes is a one page fax with probability $(1/3)/(1/2 + 1/3)$ and so the number of one page faxes should have a binomial distribution. Moreover, given the number X of one page faxes, the number Y of two page faxes is completely specified.

Finally, by rewriting $P_{X,Y}(x,y)$ given above, the complete expression for the joint PMF of X and Y is

$$P_{X,Y}(x,y) = \begin{cases} \binom{5}{5-x-y} \left(\frac{1}{6}\right)^{5-x-y} \left(\frac{5}{6}\right)^{x+y} \left(\frac{3}{5}\right)^y & x, y \geq 0 \\ 0 & \text{otherwise} \end{cases}$$ \tag{11}

\textbf{Problem 5.3.8 Solution}

In Problem 5.3.2, we found that the joint PMF of $K = [K_1 \ K_2 \ K_3]'$ is

$$P_K(k) = \begin{cases} p^3(1-p)^{k_1-3} & k_1 < k_2 < k_3 \\ 0 & \text{otherwise} \end{cases}$$ \tag{1}

In this problem, we generalize the result to n messages.

(a) For $k_1 < k_2 < \cdots < k_n$, the joint event

$$\{K_1 = k_1, K_2 = k_2, \cdots, K_n = k_n\}$$ \tag{2}

occurs if and only if all of the following events occur

- A_1 $k_1 - 1$ failures, followed by a successful transmission
- A_2 $(k_2 - 1) - k_1$ failures followed by a successful transmission
- A_3 $(k_3 - 1) - k_2$ failures followed by a successful transmission
- \vdots
- A_n $(k_n - 1) - k_{n-1}$ failures followed by a successful transmission

Note that the events A_1, A_2, \ldots, A_n are independent and

$$P[A_j] = (1-p)^{k_j-1}p.$$ \tag{3}

Thus

$$P_{K_1,\ldots,K_n}(k_1, \ldots, k_n) = P[A_1]P[A_2] \cdots P[A_n]$$ \tag{4}

$$= p^n(1-p)^{(k_1-1)+(k_2-k_1-1)+(k_3-k_2-1)+\cdots+(k_n-k_{n-1}-1)}$$ \tag{5}

$$= p^n(1-p)^{k_n-n}$$ \tag{6}

To clarify subsequent results, it is better to rename K as $K_n = [K_1 \ K_2 \ \cdots \ K_n]'$. We see that

$$P_{K_n}(k_n) = \begin{cases} p^n(1-p)^{k_n-n} & 1 \leq k_1 < k_2 < \cdots < k_n, \\ 0 & \text{otherwise.} \end{cases}$$ \tag{7}
(b) For \(j < n \),
\[
P_{K_1, K_2, \ldots, K_j} (k_1, k_2, \ldots, k_j) = P_{K_j} (k_j).
\] (8)

Since \(K_j \) is just \(K_n \) with \(n = j \), we have
\[
P_{K_j} (k_j) = \begin{cases}
p^j (1 - p)^{k_j - j} & 1 \leq k_1 < k_2 < \cdots < k_j, \\
0 & \text{otherwise.}
\end{cases}
\] (9)

(c) Rather than try to deduce \(P_{K_i} (k_i) \) from the joint PMF \(P_{K_n} (k_n) \), it is simpler to return to first principles. In particular, \(K_i \) is the number of trials up to and including the \(i \)th success and has the Pascal \((i, p)\) PMF
\[
P_{K_i} (k_i) = \binom{k_i - 1}{i - 1} p^i (1 - p)^{k_i - i}.
\] (10)

Problem 5.4.1 Solution

For \(i \neq j \), \(X_i \) and \(X_j \) are independent and \(E[X_i X_j] = E[X_i] E[X_j] = 0 \) since \(E[X_i] = 0 \). Thus the \(i, j \)th entry in the covariance matrix \(C_X \) is
\[
C_X(i, j) = E[X_i X_j] = \begin{cases}
\sigma_i^2 & i = j, \\
0 & \text{otherwise.}
\end{cases}
\] (1)

Thus for random vector \(X = [X_1 \ X_2 \ \cdots \ X_n]' \), all the off-diagonal entries in the covariance matrix are zero and the covariance matrix is
\[
C_X = \begin{bmatrix}
\sigma_1^2 & 0 & \cdots & 0 \\
0 & \sigma_2^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_n^2
\end{bmatrix}.
\] (2)

Problem 5.4.2 Solution

The random variables \(N_1, N_2, N_3 \) and \(N_4 \) are dependent. To see this we observe that \(P_{N_4} (4) = p_4^4 \).

However,
\[
P_{N_1, N_2, N_3, N_4} (4, 4, 4, 4) = 0 \neq p_1^4 p_2^4 p_3^4 p_4^4 = P_{N_1} (4) P_{N_2} (4) P_{N_3} (4) P_{N_4} (4).
\] (1)

Problem 5.4.3 Solution

We will use the PDF
\[
f_X (x) = \begin{cases}
1 & 0 \leq x_i \leq 1, \ i = 1, 2, 3, 4 \\
0 & \text{otherwise.}
\end{cases}
\] (1)

to find the marginal PDFs \(f_{X_i} (x_i) \). In particular, for \(0 \leq x_1 \leq 1 \),
\[
f_{X_1} (x_1) = \int_0^1 \int_0^1 \int_0^1 f_X (x) \ dx_2 \ dx_3 \ dx_4
\] (2)
\[
= \left(\int_0^1 dx_2 \right) \left(\int_0^1 dx_3 \right) \left(\int_0^1 dx_4 \right) = 1.
\] (3)
Thus,

\[f_{X_1}(x_1) = \begin{cases} 1 & 0 \leq x \leq 1, \\ 0 & \text{otherwise}. \end{cases} \]

(4)

Following similar steps, one can show that

\[f_{X_1}(x) = f_{X_2}(x) = f_{X_3}(x) = f_{X_4}(x) = \begin{cases} 1 & 0 \leq x \leq 1, \\ 0 & \text{otherwise}. \end{cases} \]

(5)

Thus,

\[f_X(x) = f_{X_1}(x)f_{X_2}(x)f_{X_3}(x)f_{X_4}(x). \]

(6)

We conclude that \(X_1, X_2, X_3 \) and \(X_4 \) are independent.

Problem 5.4.4 Solution

We will use the PDF

\[f_X(x) = \begin{cases} 6e^{-(x_1+2x_2+3x_3)} & x_1 \geq 0, x_2 \geq 0, x_3 \geq 0 \\ 0 & \text{otherwise} \end{cases} \]

(1)

to find the marginal PDFs \(f_{X_i}(x_i) \). In particular, for \(x_1 \geq 0 \),

\[f_{X_1}(x_1) = \int_0^\infty \int_0^\infty f_X(x) \, dx_2 \, dx_3 = 6e^{-x_1} \left(\int_0^\infty e^{-2x_2} \, dx_2 \right) \left(\int_0^\infty e^{-3x_3} \, dx_3 \right) \]

\[= 6e^{-x_1} \left(-\frac{1}{2} e^{-2x_2} \right|_0^\infty \right) \left(-\frac{1}{3} e^{-3x_3} \right|_0^\infty \right) = e^{-x_1}. \]

(4)

Thus,

\[f_{X_1}(x_1) = \begin{cases} e^{-x_1} & x_1 \geq 0, \\ 0 & \text{otherwise}. \end{cases} \]

(5)

Following similar steps, one can show that

\[f_{X_2}(x_2) = \int_0^\infty \int_0^\infty f_X(x) \, dx_1 \, dx_3 = \begin{cases} 2^{-2x_2} & x_2 \geq 0, \\ 0 & \text{otherwise}. \end{cases} \]

(6)

\[f_{X_3}(x_3) = \int_0^\infty \int_0^\infty f_X(x) \, dx_1 \, dx_2 = \begin{cases} 3^{-3x_3} & x_3 \geq 0, \\ 0 & \text{otherwise}. \end{cases} \]

(7)

Thus,

\[f_X(x) = f_{X_1}(x_1)f_{X_2}(x_2)f_{X_3}(x_3). \]

(8)

We conclude that \(X_1, X_2, \) and \(X_3 \) are independent.

Problem 5.4.5 Solution

This problem can be solved without any real math. Some thought should convince you that for any \(x_i > 0, f_{X_i}(x_i) > 0 \). Thus, \(f_{X_1}(10) > 0, f_{X_2}(9) > 0, \) and \(f_{X_3}(8) > 0 \). Thus \(f_{X_1}(10)f_{X_2}(9)f_{X_3}(8) > 0 \). However, from the definition of the joint PDF

\[f_{X_1, X_2, X_3}(10, 9, 8) = 0 \neq f_{X_1}(10)f_{X_2}(9)f_{X_3}(8). \]

(1)

It follows that \(X_1, X_2, \) and \(X_3 \) are dependent. Readers who find this quick answer unsatisfying are invited to confirm this conclusions by solving Problem 5.4.6 for the exact expressions for the marginal PDFs \(f_{X_1}(x_1), f_{X_2}(x_2), \) and \(f_{X_3}(x_3) \).
Problem 5.4.6 Solution
We find the marginal PDFs using Theorem 5.5. First we note that for \(x < 0, f_{X_i}(x) = 0 \). For \(x_1 \geq 0, \)
\[
f_{X_1}(x_1) = \int_{x_1}^{\infty} \left(\int_{x_2}^{\infty} e^{-x_3} \, dx_3 \right) \, dx_2 = \int_{x_1}^{\infty} e^{-x_2} \, dx_2 = e^{-x_1}
\]
Similarly, for \(x_2 \geq 0, X_2 \) has marginal PDF
\[
f_{X_2}(x_2) = \int_{0}^{x_2} \left(\int_{x_1}^{\infty} e^{-x_3} \, dx_3 \right) \, dx_1 = \int_{0}^{x_2} e^{-x_2} \, dx_1 = x_2 e^{-x_2}
\]
Lastly,
\[
f_{X_3}(x_3) = \int_{0}^{x_3} \left(\int_{x_1}^{\infty} e^{-x_3} \, dx_2 \right) \, dx_1 = \int_{0}^{x_3} (x_3 - x_1) e^{-x_3} \, dx_1 = \frac{1}{2}(x_3 - x_1)^2 e^{-x_3}
\]
The complete expressions for the three marginal PDFs are
\[
f_{X_1}(x_1) = \begin{cases} e^{-x_1} & \text{if } x_1 \geq 0 \\ 0 & \text{otherwise} \end{cases}
\]
\[
f_{X_2}(x_2) = \begin{cases} x_2 e^{-x_2} & \text{if } x_2 \geq 0 \\ 0 & \text{otherwise} \end{cases}
\]
\[
f_{X_3}(x_3) = \begin{cases} (1/2)x_3^2 e^{-x_3} & \text{if } x_3 \geq 0 \\ 0 & \text{otherwise} \end{cases}
\]
In fact, each \(X_i \) is an Erlang \((n, \lambda) = (i, 1)\) random variable.

Problem 5.4.7 Solution
Since \(U_1, \ldots, U_n \) are iid uniform \((0, 1)\) random variables,
\[
f_{U_1,\ldots,U_n}(u_1, \ldots, u_n) = \begin{cases} 1/T^n & \text{if } 0 \leq u_i \leq 1; i = 1, 2, \ldots, n \\ 0 & \text{otherwise} \end{cases}
\]
Since \(U_1, \ldots, U_n \) are continuous, \(P[U_i = U_j] = 0 \) for all \(i \neq j \). For the same reason, \(P[X_i = X_j] = 0 \) for \(i \neq j \). Thus we need only to consider the case when \(x_1 < x_2 < \cdots < x_n \).

To understand the claim, it is instructive to start with the \(n = 2 \) case. In this case, \((X_1, X_2) = (x_1, x_2) \) (with \(x_1 < x_2 \)) if either \((U_1, U_2) = (x_1, x_2)\) or \((U_1, U_2) = (x_2, x_1)\). For infinitesimal \(\Delta, \)
\[
f_{X_1,X_2}(x_1, x_2) \Delta^2 = P[x_1 < X_1 \leq x_1 + \Delta, x_2 < X_2 \leq x_2 + \Delta] = P[x_1 < U_1 \leq x_1 + \Delta, x_2 < U_2 \leq x_2 + \Delta] + P[x_2 < U_1 \leq x_2 + \Delta, x_1 < U_2 \leq x_1 + \Delta] = f_{U_1,U_2}(x_1, x_2) \Delta^2 + f_{U_1,U_2}(x_2, x_1) \Delta^2
\]
We see that for \(0 \leq x_1 < x_2 \leq 1 \) that
\[
f_{X_1,X_2}(x_1, x_2) = 2/T^n.
\]
For the general case of n uniform random variables, we define $\pi = [\pi(1) \ldots \pi(n)]'$ as a permutation vector of the integers $1, 2, \ldots, n$ and Π as the set of $n!$ possible permutation vectors. In this case, the event $\{X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n\}$ occurs if

$$U_1 = x_{\pi(1)}, U_2 = x_{\pi(2)}, \ldots, U_n = x_{\pi(n)}$$

(6)

for any permutation $\pi \in \Pi$. Thus, for $0 \leq x_1 < x_2 < \cdots < x_n \leq 1$,

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) \Delta^n = \sum_{\pi \in \Pi} f_{U_1,\ldots,U_n}(x_{\pi(1)},\ldots,x_{\pi(n)}) \Delta^n.$$

(7)

Since there are $n!$ permutations and $f_{U_1,\ldots,U_n}(x_{\pi(1)},\ldots,x_{\pi(n)}) = 1/T^n$ for each permutation π, we can conclude that

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = n!/T^n.$$

(8)

Since the order statistics are necessarily ordered, $f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = 0$ unless $x_1 < \cdots < x_n$.

Problem 5.5.1 Solution

For discrete random vectors, it is true in general that

$$P_{X}(y) = P[Y = y] = P[AX + b = y] = P[AX = y - b].$$

(1)

For an arbitrary matrix A, the system of equations $Ax = y - b$ may have no solutions (if the columns of A do not span the vector space), multiple solutions (if the columns of A are linearly dependent), or, when A is invertible, exactly one solution. In the invertible case,

$$P_{X}(y) = P[AX = y - b] = P[X = A^{-1}(y - b)] = P_{X}(A^{-1}(y - b)).$$

(2)

As an aside, we note that when $Ax = y - b$ has multiple solutions, we would need to do some bookkeeping to add up the probabilities $P_{X}(x)$ for all vectors x satisfying $Ax = y - b$. This can get disagreeably complicated.

Problem 5.5.2 Solution

The random variable J_n is the number of times that message n is transmitted. Since each transmission is a success with probability p, independent of any other transmission, the number of transmissions of message n is independent of the number of transmissions of message m. That is, for $m \neq n$, J_m and J_n are independent random variables. Moreover, because each message is transmitted over and over until it is transmitted successfully, each J_m is a geometric (p) random variable with PMF

$$P_{J_m}(j) = \begin{cases} (1-p)^{j-1}p & j = 1, 2, \ldots \ 0 & \text{otherwise.} \end{cases}$$

(1)

Thus the PMF of $J = [J_1 \ J_2 \ J_3]'$ is

$$P_J(j) = P_{J_1}(j_1) P_{J_2}(j_2) P_{J_3}(j_3) = \begin{cases} p^3(1-p)^{j_1+j_2+j_3-3} & j_i = 1, 2, \ldots; \ i = 1, 2, 3 \\ 0 & \text{otherwise.} \end{cases}$$

(2)
Problem 5.5.3 Solution

The response time X_i of the ith truck has PDF $f_{X_i}(x_i)$ and CDF $F_{X_i}(x_i)$ given by

$$f_{X_i}(x_i) = \begin{cases} \frac{1}{2}e^{-x/2} & x \geq 0, \\ 0 & \text{otherwise}, \end{cases} \quad F_{X_i}(x_i) = F_X(x_i) = \begin{cases} 1 - e^{-x/2} & x \geq 0, \\ 0 & \text{otherwise}. \end{cases} \quad (1)$$

Let $R = \max(X_1, X_2, \ldots, X_6)$ denote the maximum response time. From Theorem 5.7, R has PDF

$$F_R(r) = (F_X(r))^6. \quad (2)$$

(a) The probability that all six responses arrive within five seconds is

$$P[R \leq 5] = F_R(5) = (F_X(5))^6 = (1 - e^{-5/2})^6 = 0.5982. \quad (3)$$

(b) This question is worded in a somewhat confusing way. The “expected response time” refers to $E[X_i]$, the response time of an individual truck, rather than $E[R]$. If the expected response time of a truck is τ, then each X_i has CDF

$$F_{X_i}(x) = F_X(x) = \begin{cases} 1 - e^{-x/\tau} & x \geq 0, \\ 0 & \text{otherwise}. \end{cases} \quad (4)$$

The goal of this problem is to find the maximum permissible value of τ. When each truck has expected response time τ, the CDF of R is

$$F_R(r) = (F_X(x)r)^6 = \begin{cases} (1 - e^{-r/\tau})^6 & r \geq 0, \\ 0 & \text{otherwise}. \end{cases} \quad (5)$$

We need to find τ such that

$$P[R \leq 3] = (1 - e^{-3/\tau})^6 = 0.9. \quad (6)$$

This implies

$$\tau = \frac{-3}{\ln(1 - (0.9)^{1/6})} = 0.7406 \text{ s.} \quad (7)$$

Problem 5.5.4 Solution

Let X_i denote the finishing time of boat i. Since finishing times of all boats are iid Gaussian random variables with expected value 35 minutes and standard deviation 5 minutes, we know that each X_i has CDF

$$F_{X_i}(x) = P[X_i \leq x] = P\left[\frac{X_i - 35}{5} \leq \frac{x - 35}{5}\right] = \Phi\left(\frac{x - 35}{5}\right) \quad (1)$$

(a) The time of the winning boat is

$$W = \min(X_1, X_2, \ldots, X_{10}) \quad (2)$$

To find the probability that $W \leq 25$, we will find the CDF $F_W(w)$ since this will also be useful for part (c).

$$F_W(w) = P[\min(X_1, X_2, \ldots, X_{10}) \leq w] \quad (3)$$

$$= 1 - P[\min(X_1, X_2, \ldots, X_{10}) > w] \quad (4)$$

$$= 1 - P[X_1 > w, X_2 > w, \ldots, X_{10} > w] \quad (5)$$
Since the X_i are iid,

$$F_W(w) = 1 - \prod_{i=1}^{10} P[X_i > w] = 1 - (1 - F_{X_i}(w))^{10}$$

$$= 1 - \left(1 - \Phi\left(\frac{w - 35}{5}\right)\right)^{10}$$

(6)

Thus,

$$P[W \leq 25] = F_W(25) = 1 - (1 - \Phi(-2))^{10}$$

$$= 1 - \Phi(3)^{10} = 0.2056.$$

(7)

(b) The finishing time of the last boat is $L = \max(X_1, \ldots, X_{10})$. The probability that the last boat finishes in more than 50 minutes is

$$P[L > 50] = 1 - P[L \leq 50]$$

$$= 1 - P[X_1 \leq 50, X_2 \leq 50, \ldots, X_{10} \leq 50]$$

(10)

Once again, since the X_i are iid Gaussian (35, 5) random variables,

$$P[L > 50] = 1 - \prod_{i=1}^{10} P[X_i \leq 50] = 1 - (F_{X_i}(50))^{10}$$

$$= 1 - (\Phi([50 - 35]/5))^{10}$$

$$= 1 - (\Phi(3))^{10} = 0.0134.$$

(11)

(c) A boat will finish in negative time if and only if the winning boat finishes in negative time, which has probability

$$F_W(0) = 1 - (1 - \Phi(-35/5))^{10} = 1 - (1 - \Phi(-7))^{10} = 1 - \Phi(7)^{10}.$$

Unfortunately, the tables in the text have neither $\Phi(7)$ nor $Q(7)$. However, those with access to MATLAB, or a programmable calculator, can find out that $Q(7) = 1 - \Phi(7) = 1.28 \times 10^{-12}$. This implies that a boat finishes in negative time with probability

$$F_W(0) = 1 - (1 - 1.28 \times 10^{-12})^{10} = 1.28 \times 10^{-11}.$$

(15)

Problem 5.5.5 Solution

Since 50 cents of each dollar ticket is added to the jackpot,

$$J_{i-1} = J_i + \frac{N_i}{2}$$

(1)

Given $J_i = j$, N_i has a Poisson distribution with mean j. It follows that $E[N_i | J_i = j] = j$ and that $\text{Var}[N_i | J_i = j] = j$. This implies

$$E \left[N_i^2 | J_i = j\right] = \text{Var}[N_i | J_i = j] + (E[N_i | J_i = j])^2 = j + j^2$$

(2)
In terms of the conditional expectations given \(J_i \), these facts can be written as
\[
E[N_i|J_i] = J_i \quad E[N_i^2|J_i] = J_i + J_i^2
\] (3)
This permits us to evaluate the moments of \(J_{i−1} \) in terms of the moments of \(J_i \). Specifically,
\[
E[J_{i−1}|J_i] = E[J_i|J_i] + \frac{1}{2} E[N_i|J_i] = J_i + J_i^2 = \frac{3J_i}{2}
\] (4)
This implies
\[
E[J_{i−1}] = \frac{3}{2} E[J_i]
\] (5)
We can use this the calculate \(E[J_i] \) for all \(i \). Since the jackpot starts at 1 million dollars, \(J_6 = 10^6 \) and \(E[J_6] = 10^6 \). This implies
\[
E[J_i] = (3/2)^{6−i}10^6
\] (6)
Now we will find the second moment \(E[J_i^2] \). Since \(J_i^2 = J_i^2 + N_iJ_i + N_i^2/4 \), we have
\[
E[J_{i−1}^2|J_i] = E[J_i^2|J_i] + E[N_i|J_i] + E[N_i^2|J_i] /4
\] (7)
\[
= J_i^2 + J_iE[N_i|J_i] + (J_i + J_i^2) /4
\] (8)
\[
= (3/2)^2 J_i^2 + J_i/4
\] (9)
By taking the expectation over \(J_i \) we have
\[
E[J_{i−1}^2] = (3/2)^2 E[J_i^2] + E[J_i] /4
\] (10)
This recursion allows us to calculate \(E[J_i^2] \) for \(i = 6, 5, \ldots, 0 \). Since \(J_6 = 10^6 \), \(E[J_6^2] = 10^{12} \). From the recursion, we obtain
\[
E[J_5^2] = (3/2)^2 E[J_6^2] + E[J_6] /4 = (3/2)^2 10^{12} + \frac{1}{4} 10^6
\] (11)
\[
E[J_4^2] = (3/2)^2 E[J_5^2] + E[J_5] /4 = (3/2)^4 10^{12} + \frac{1}{4} \left[(3/2)^2 + (3/2)\right] 10^6
\] (12)
\[
E[J_3^2] = (3/2)^2 E[J_4^2] + E[J_4] /4 = (3/2)^6 10^{12} + \frac{1}{4} \left[(3/2)^4 + (3/2)^3 + (3/2)^2\right] 10^6
\] (13)
The same recursion will also allow us to show that
\[
E[J_2^2] = (3/2)^8 10^{12} + \frac{1}{4} \left[(3/2)^6 + (3/2)^5 + (3/2)^4 + (3/2)^3\right] 10^6
\] (14)
\[
E[J_1^2] = (3/2)^{10} 10^{12} + \frac{1}{4} \left[(3/2)^8 + (3/2)^7 + (3/2)^6 + (3/2)^5\right] 10^6
\] (15)
\[
E[J_0^2] = (3/2)^{12} 10^{12} + \frac{1}{4} \left[(3/2)^{10} + (3/2)^9 + \cdots + (3/2)^5\right] 10^6
\] (16)
Finally, day 0 is the same as any other day in that \(J = J_0 + N_0/2 \) where \(N_0 \) is a Poisson random variable with mean \(J_0 \). By the same argument that we used to develop recursions for \(E[J_i] \) and \(E[J_i^2] \), we can show
\[
E[J] = (3/2) E[J_0] = (3/2)^7 10^6 \approx 17 \times 10^6
\] (17)
and
\[
E[J^2] = (3/2)^2 E[J_0^2] + E[J_0] /4
\] (18)
\[
= (3/2)^{14} 10^{12} + \frac{1}{4} \left[(3/2)^{12} + (3/2)^{11} + \cdots + (3/2)^6\right] 10^6
\] (19)
\[
= (3/2)^{14} 10^{12} + \frac{10^6}{2} (3/2)^6(3/2)^7 - 1
\] (20)
Finally, the variance of J is

$$\text{Var}[J] = E[J^2] - (E[J])^2 = \frac{10^6}{2}(3/2)^6[(3/2)^7 - 1]$$

(21)

Since the variance is hard to interpret, we note that the standard deviation of J is $\sigma_J \approx 9572$.

Although the expected jackpot grows rapidly, the standard deviation of the jackpot is fairly small.

Problem 5.5.6 Solution

Let A denote the event $X_n = \max(X_1, \ldots, X_n)$. We can find $P[A]$ by conditioning on the value of X_n.

$$P[A] = P[X_1 \leq X_n, X_2 \leq X_n, \ldots, X_n \leq X_n]$$

(1)

$$= \int_{-\infty}^{\infty} P[X_1 < X_n, X_2 < X_n, \ldots, X_{n-1} < X_n | X_n = x] f_{X_n}(x) \, dx$$

(2)

$$= \int_{-\infty}^{\infty} P[X_1 < x, X_2 < x, \ldots, X_{n-1} < x | X_n = x] f_X(x) \, dx$$

(3)

Since X_1, \ldots, X_{n-1} are independent of X_n,

$$P[A] = \int_{-\infty}^{\infty} P[X_1 < x, X_2 < x, \ldots, X_{n-1} < x] f_X(x) \, dx.$$

(4)

Since X_1, \ldots, X_{n-1} are iid,

$$P[A] = \int_{-\infty}^{\infty} P[X_1 \leq x] P[X_2 \leq x] \cdots P[X_{n-1} \leq x] f_X(x) \, dx$$

(5)

$$= \int_{-\infty}^{\infty} [F_X(x)]^{n-1} f_X(x) \, dx = \frac{1}{n} [F_X(x)]^n \bigg|_{-\infty}^{\infty} = \frac{1}{n} (1 - 0)$$

(6)

Not surprisingly, since the X_i are identical, symmetry would suggest that X_n is as likely as any of the other X_i to be the largest. Hence $P[A] = 1/n$ should not be surprising.

Problem 5.6.1 Solution

(a) The covariance matrix of $X = [X_1 \quad X_2]'$ is

$$C_X = \begin{bmatrix} \text{Var}[X_1] & \text{Cov}[X_1, X_2] \\ \text{Cov}[X_1, X_2] & \text{Var}[X_2] \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 3 & 9 \end{bmatrix}.$$

(1)

(b) From the problem statement,

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix} X = AX.$$

(2)

By Theorem 5.13, Y has covariance matrix

$$C_Y = AC_XA' = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 3 & 9 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 28 & -66 \\ -66 & 252 \end{bmatrix}.$$

(3)
Problem 5.6.2 Solution
The mean value of a sum of random variables is always the sum of their individual means.

\[E[Y] = \sum_{i=1}^{n} E[X_i] = 0 \]

(1)

The variance of any sum of random variables can be expressed in terms of the individual variances and co-variances. Since the \(E[Y] \) is zero, \(\text{Var}[Y] = E[Y^2] \). Thus,

\[\text{Var}[Y] = E \left[\left(\sum_{i=1}^{n} X_i \right)^2 \right] = E \left[\sum_{i=1}^{n} \sum_{j=1}^{n} X_i X_j \right] = \sum_{i=1}^{n} E[X_i^2] + \sum_{i=1}^{n} \sum_{j \neq i} E[X_i X_j] \]

(2)

Since \(E[X_i] = 0 \), \(E[X_i^2] = \text{Var}[X_i] = 1 \) and for \(i \neq j \),

\[E[X_i X_j] = \text{Cov}[X_i, X_j] = \rho \]

(3)

Thus, \(\text{Var}[Y] = n + n(n - 1)\rho \).

Problem 5.6.3 Solution
Since \(X \) and \(Y \) are independent and \(E[Y_j] = 0 \) for all components \(Y_j \), we observe that \(E[X_i Y_j] = E[X_i]E[Y_j] = 0 \). This implies that the cross-covariance matrix is

\[E[XY'] = E[X]E[Y'] = 0. \]

(1)

Problem 5.6.4 Solution
Inspection of the vector PDF \(f_X(x) \) will show that \(X_1, X_2, X_3 \), and \(X_4 \) are iid uniform \((0, 1)\) random variables. That is,

\[f_X(x) = f_{X_1}(x_1) f_{X_2}(x_2) f_{X_3}(x_3) f_{X_4}(x_4) \]

(1)

where each \(X_i \) has the uniform \((0, 1)\) PDF

\[f_{X_i}(x) = \begin{cases} 1 & 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases} \]

(2)

It follows that for each \(i \), \(E[X_i] = 1/2 \), \(E[X_i^2] = 1/3 \) and \(\text{Var}[X_i] = 1/12 \). In addition, \(X_i \) and \(X_j \) have correlation

\[E[X_i X_j] = E[X_i] E[X_j] = 1/4. \]

(3)

and covariance \(\text{Cov}[X_i, X_j] = 0 \) for \(i \neq j \) since independent random variables always have zero covariance.

(a) The expected value vector is

\[E[X] = [E[X_1] \quad E[X_2] \quad E[X_3] \quad E[X_4]]' = [1/2 \quad 1/2 \quad 1/2 \quad 1/2]' \]

(4)
(b) The correlation matrix is

\[
R_X = E[XX'] = \begin{bmatrix}
E[X_1^2] & E[X_1X_2] & E[X_1X_3] & E[X_1X_4] \\
E[X_2X_1] & E[X_2^2] & E[X_2X_3] & E[X_2X_4] \\
E[X_3X_1] & E[X_3X_2] & E[X_3^2] & E[X_3X_4] \\
E[X_4X_1] & E[X_4X_2] & E[X_4X_3] & E[X_4^2]
\end{bmatrix}
\]

(5)

\[
= \begin{bmatrix}
1/3 & 1/4 & 1/4 & 1/4 \\
1/4 & 1/3 & 1/4 & 1/4 \\
1/4 & 1/4 & 1/3 & 1/4 \\
1/4 & 1/4 & 1/4 & 1/3
\end{bmatrix}
\]

(6)

(c) The covariance matrix for \(X\) is the diagonal matrix

\[
C_X = \begin{bmatrix}
\text{Var}[X_1] & \text{Cov}[X_1, X_2] & \text{Cov}[X_1, X_3] & \text{Cov}[X_1, X_4] \\
\text{Cov}[X_2, X_1] & \text{Var}[X_2] & \text{Cov}[X_2, X_3] & \text{Cov}[X_2, X_4] \\
\text{Cov}[X_3, X_1] & \text{Cov}[X_3, X_2] & \text{Var}[X_3] & \text{Cov}[X_3, X_4] \\
\text{Cov}[X_4, X_1] & \text{Cov}[X_4, X_2] & \text{Cov}[X_4, X_3] & \text{Var}[X_4]
\end{bmatrix}
\]

(7)

\[
= \begin{bmatrix}
1/12 & 0 & 0 & 0 \\
0 & 1/12 & 0 & 0 \\
0 & 0 & 1/12 & 0 \\
0 & 0 & 0 & 1/12
\end{bmatrix}
\]

(8)

Note that it’s easy to verify that \(C_X = R_X - \mu_X\mu'_X\).

Problem 5.6.5 Solution

The random variable \(J_m\) is the number of times that message \(m\) is transmitted. Since each transmission is a success with probability \(p\), independent of any other transmission, \(J_1, J_2\) and \(J_3\) are iid geometric \((p)\) random variables with

\[
E[J_m] = \frac{1}{p}, \quad \text{Var}[J_m] = \frac{1-p}{p^2}.
\]

(1)

Thus the vector \(J = [J_1 \ J_2 \ J_3]'\) has expected value

\[
E[J] = [E[J_1] \ E[J_2] \ E[J_3]'] = [1/p \ 1/p \ 1/p]'.
\]

(2)

For \(m \neq n\), the correlation matrix \(R_J\) has \(m, n\)th entry

\[
R_J(m, n) = E[J_m J_n] = E[J_m] J_n = 1/p^2
\]

(3)

For \(m = n\),

\[
R_J(m, m) = E[J_m^2] = \text{Var}[J_m] + (E[J_m^2])^2 = \frac{1-p}{p^2} + \frac{1}{p^2} = \frac{2-p}{p^2}.
\]

(4)

Thus

\[
R_J = \frac{1}{p^2} \begin{bmatrix}
2-p & 1 & 1 \\
1 & 2-p & 1 \\
1 & 1 & 2-p
\end{bmatrix}.
\]

(5)

Because \(J_m\) and \(J_n\) are independent, off-diagonal terms in the covariance matrix are

\[
C_J(m, n) = \text{Cov}[J_m, J_n] = 0
\]

(6)
Since $C_J(m, m) = \text{Var}[J_m]$, we have that

$$C_J = \frac{1 - p}{p^2} \mathbf{I} = \frac{1 - p}{p^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \tag{7}$$

Problem 5.6.6 Solution

This problem is quite difficult unless one uses the observation that the vector \mathbf{K} can be expressed in terms of the vector $\mathbf{J} = [J_1 \ J_2 \ J_3]'$ where J_i is the number of transmissions of message i. Note that we can write

$$\mathbf{K} = \mathbf{A} \mathbf{J} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \mathbf{J} \tag{1}$$

We also observe that since each transmission is an independent Bernoulli trial with success probability p, the components of \mathbf{J} are iid geometric (p) random variables. Thus $E[J_i] = 1/p$ and $\text{Var}[J_i] = (1 - p)/p^2$. Thus \mathbf{J} has expected value

$$E[\mathbf{J}] = \mu_J = [E[J_1] \ E[J_2] \ E[J_3]]' = [1/p \ 1/p \ 1/p]'). \tag{2}$$

Since the components of \mathbf{J} are independent, it has the diagonal covariance matrix

$$C_J = \begin{bmatrix} \text{Var}[J_1] & 0 & 0 \\ 0 & \text{Var}[J_2] & 0 \\ 0 & 0 & \text{Var}[J_3] \end{bmatrix} = \frac{1 - p}{p^2} \mathbf{I}. \tag{3}$$

Given these properties of \mathbf{J}, finding the same properties of $\mathbf{K} = \mathbf{A} \mathbf{J}$ is simple.

(a) The expected value of \mathbf{K} is

$$E[\mathbf{K}] = \mathbf{A} \mu_J = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1/p \\ 1/p \\ 1/p \end{bmatrix} = \begin{bmatrix} 1/p \\ 2/p \\ 3/p \end{bmatrix}. \tag{4}$$

(b) From Theorem 5.13, the covariance matrix of \mathbf{K} is

$$C_K = \mathbf{A} C_J \mathbf{A}' \tag{5}$$

$$= \frac{1 - p}{p^2} \mathbf{A} \mathbf{I} \mathbf{A}' \tag{6}$$

$$= \frac{1 - p}{p^2} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \frac{1 - p}{p^2} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}. \tag{7}$$

(c) Given the expected value vector μ_K and the covariance matrix C_K, we can use Theorem 5.12
to find the correlation matrix

\[\mathbf{R}_K = \mathbf{C}_K + \mu_K \mu_K' \]

\[= \frac{1 - p}{p^2} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix} + \frac{2}{p^2} \begin{bmatrix} 1/p \\ 2/p \\ 3/p \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix} \]

\[= \frac{1 - p}{p^2} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 6 & 9 \end{bmatrix} \]

\[= \frac{1 - p}{p^2} \begin{bmatrix} 2 - p & 3 - p & 4 - p \\ 3 - p & 6 - 2p & 8 - 2p \\ 4 - p & 8 - 2p & 12 - 3p \end{bmatrix} \]

\[= \frac{1}{p^2} \begin{bmatrix} 2 - p & 3 - p & 4 - p \\ 3 - p & 6 - 2p & 8 - 2p \\ 4 - p & 8 - 2p & 12 - 3p \end{bmatrix} \]

Problem 5.6.7 Solution

The preliminary work for this problem appears in a few different places. In Example 5.5, we found the marginal PDF of \(Y_3 \) and in Example 5.6, we found the marginal PDFs of \(Y_1, Y_2, \) and \(Y_4. \) We summarize these results here:

\[f_{Y_1}(y) = f_{Y_3}(y) = \begin{cases} 2(1 - y) & 0 \leq y \leq 1, \\ 0 & \text{otherwise}, \end{cases} \]

\[(1) \]

\[f_{Y_2}(y) = f_{Y_4}(y) = \begin{cases} 2y & 0 \leq y \leq 1, \\ 0 & \text{otherwise}. \end{cases} \]

\[(2) \]

This implies

\[E[Y_1] = E[Y_3] = \int_0^1 2y(1 - y) \, dy = 1/3 \]

\[(3) \]

\[E[Y_2] = E[Y_4] = \int_0^1 2y^2 \, dy = 2/3 \]

\[(4) \]

Thus \(Y \) has expected value \(E[Y] = \begin{bmatrix} 1/3 & 2/3 & 1/3 & 2/3 \end{bmatrix} \). The second part of the problem is to find the correlation matrix \(\mathbf{R}_Y \). In fact, we need to find \(R_Y(i, j) = E[Y_i Y_j] \) for each \(i, j \) pair. We will see that these are seriously tedious calculations. For \(i = j \), the second moments are

\[E[Y_1^2] = E[Y_3^2] = \int_0^1 2y^2(1 - y) \, dy = 1/6, \]

\[(5) \]

\[E[Y_2^2] = E[Y_4^2] = \int_0^1 2y^3 \, dy = 1/2. \]

\[(6) \]

In terms of the correlation matrix,

\[R_Y(1, 1) = R_Y(3, 3) = 1/6, \quad R_Y(2, 2) = R_Y(4, 4) = 1/2. \]

\[(7) \]

To find the off diagonal terms \(R_Y(i, j) = E[Y_i Y_j] \), we need to find the marginal PDFs \(f_{Y_i,Y_j}(y_i, y_j) \). Example 5.5 showed that

\[f_{Y_1,Y_4}(y_1, y_4) = \begin{cases} 4(1 - y_1)y_4 & 0 \leq y_1 \leq 1, 0 \leq y_4 \leq 1, \\ 0 & \text{otherwise}. \end{cases} \]

\[(8) \]

\[f_{Y_2,Y_3}(y_2, y_3) = \begin{cases} 4y_2(1 - y_3) & 0 \leq y_2 \leq 1, 0 \leq y_3 \leq 1, \\ 0 & \text{otherwise}. \end{cases} \]

\[(9) \]
Inspection will show that Y_1 and Y_4 are independent since $f_{Y_1,Y_4}(y_1,y_4) = f_{Y_1}(y_1)f_{Y_4}(y_4)$. Similarly, Y_2 and Y_4 are independent since $f_{Y_2,Y_4}(y_2,y_4) = f_{Y_2}(y_2)f_{Y_4}(y_4)$. This implies

We also need to calculate $f_{Y_1,Y_2}(y_1,y_2)$, $f_{Y_3,Y_4}(y_3,y_4)$, $f_{Y_1,Y_3}(y_1,y_3)$ and $f_{Y_2,Y_4}(y_2,y_4)$. To start, for $0 \leq y_1 \leq y_2 \leq 1$,

\[
f_{Y_1,Y_2}(y_1,y_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{Y_1,Y_2,Y_3,Y_4}(y_1,y_2,y_3,y_4) \, dy_3 \, dy_4
\]
\[= \int_{0}^{1} \int_{0}^{y_2} 4 \, dy_3 \, dy_4 = \int_{0}^{1} 4y_4 \, dy_4 = 2. \] (13)

Similarly, for $0 \leq y_3 \leq y_4 \leq 1$,

\[
f_{Y_3,Y_4}(y_3,y_4) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{Y_1,Y_2,Y_3,Y_4}(y_1,y_2,y_3,y_4) \, dy_1 \, dy_2
\]
\[= \int_{0}^{1} \int_{0}^{y_2} 4 \, dy_1 \, dy_2 = \int_{0}^{1} 4y_2 \, dy_2 = 2. \] (15)

In fact, these PDFs are the same in that

\[f_{Y_1,Y_2}(x,y) = f_{Y_3,Y_4}(x,y) = \begin{cases} 2 & 0 \leq x \leq y \leq 1, \\ 0 & \text{otherwise.} \end{cases} \] (16)

This implies $R_Y(1,2) = R_Y(3,4) = E[Y_3 Y_4]$ and that

\[E[Y_3 Y_4] = \int_{0}^{1} \int_{0}^{y} 2xy \, dx \, dy = \int_{0}^{1} (yx^2|_0^y) \, dy = \int_{0}^{1} y^3 \, dy = \frac{1}{4}. \] (17)

Continuing in the same way, we see for $0 \leq y_1 \leq 1$ and $0 \leq y_3 \leq 1$ that

\[
f_{Y_1,Y_3}(y_1,y_3) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{Y_1,Y_2,Y_3,Y_4}(y_1,y_2,y_3,y_4) \, dy_2 \, dy_4
\]
\[= 4 \left(\int_{y_1}^{1} dy_2 \right) \left(\int_{y_1}^{1} dy_4 \right) \] (19)
\[= 4(1-y_1)(1-y_3). \] (20)

We observe that Y_1 and Y_3 are independent since $f_{Y_1,Y_3}(y_1,y_3) = f_{Y_1}(y_1)f_{Y_3}(y_3)$. It follows that

Finally, we need to calculate

\[
f_{Y_2,Y_4}(y_2,y_4) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{Y_1,Y_2,Y_3,Y_4}(y_1,y_2,y_3,y_4) \, dy_1 \, dy_3
\]
\[= 4 \left(\int_{0}^{y_2} dy_1 \right) \left(\int_{0}^{y_4} dy_3 \right) \] (23)
\[= 4y_2 y_4. \] (24)
We observe that Y_2 and Y_4 are independent since $f_{Y_2,Y_4}(y_2,y_4) = f_{Y_2}(y_2)f_{Y_4}(y_4)$. It follows that $R_Y(2,4) = E[Y_2Y_4] = E[Y_2]E[Y_4] = 4/9$. The above results give $R_Y(i,j)$ for $i \leq j$. Since R_Y is a symmetric matrix,

$$R_Y = \begin{bmatrix} 1/6 & 1/4 & 1/9 & 2/9 \\ 1/4 & 1/2 & 2/9 & 4/9 \\ 1/9 & 2/9 & 1/6 & 1/4 \\ 2/9 & 4/9 & 1/4 & 1/2 \end{bmatrix}. \quad (25)$$

Since $\mu_X = [1/3 \ 2/3 \ 2/3 \ 1/3]'$, the covariance matrix is

$$C_Y = R_Y - \mu_X\mu_X'. \quad (26)$$

$$\begin{bmatrix} 1/6 & 1/4 & 1/9 & 2/9 \\ 1/4 & 1/2 & 2/9 & 4/9 \\ 2/9 & 4/9 & 1/4 & 1/2 \end{bmatrix} - \begin{bmatrix} 1/3 \\ 2/3 \\ 1/3 \\ 2/3 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 & 1/3 & 2/3 \end{bmatrix} = \begin{bmatrix} 1/18 & 1/36 & 0 & 0 \\ 1/18 & 1/36 & 0 & 0 \\ 0 & 0 & 1/18 & 1/36 \\ 0 & 0 & 1/36 & 1/18 \end{bmatrix}. \quad (27)$$

The off-diagonal zero blocks are a consequence of $[Y_1 \ Y_2]'$ being independent of $[Y_3 \ Y_4]'$. Along the diagonal, the two identical sub-blocks occur because $f_{Y_1,Y_2}(x,y) = f_{Y_3,Y_4}(x,y)$. In short, the matrix structure is the result of $[Y_1 \ Y_2]'$ and $[Y_3 \ Y_4]'$ being iid random vectors.

Problem 5.6.8 Solution

The 2-dimensional random vector Y has PDF

$$f_Y(y) = \begin{cases} 2y, & y \geq 0, \frac{1}{1}y \leq 1, \\
0, & \text{otherwise}. \end{cases} \quad (1)$$

Rewritten in terms of the variables y_1 and y_2,

$$f_{Y_1,Y_2}(y_1,y_2) = \begin{cases} 2y_1 \geq 0, y_2 \geq 0, y_1 + y_2 \leq 1, \\
0, & \text{otherwise}. \end{cases} \quad (2)$$

In this problem, the PDF is simple enough that we can compute $E[Y^n]$ for arbitrary integers $n \geq 0$.

$$E[Y^n] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y_1^n f_{Y_1,Y_2}(y_1,y_2) \, dy_1 \, dy_2 = \int_{0}^{1} \int_{0}^{1-y_1} 2y_1^n \, dy_1 \, dy_2. \quad (3)$$

A little calculus yields

$$E[Y^n] = \int_{0}^{1} \left(\frac{2}{n+1} y_1^{n+1} \right) \, dy_2 = \frac{2}{n+1} \int_{0}^{1} (1-y_2)^{n+1} \, dy_2 = \frac{2}{(n+1)(n+2)}. \quad (4)$$

Symmetry of the joint PDF $f_{Y_1,Y_2}(y_1,y_2)$ implies that $E[Y^n] = E[Y^n]$. Thus, $E[Y_1] = E[Y_2] = 1/3$ and

$$E[Y] = \mu_Y = [1/3 \ 1/3]'. \quad (5)$$

In addition,

$$R_Y(1,1) = E[Y_1^2] = 1/6, \quad R_Y(2,2) = E[Y_2^2] = 1/6. \quad (6)$$
To complete the correlation matrix, we find

\[R_Y(1, 2) = E[Y_1 Y_2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y_1 y_2 f_{Y_1, Y_2}(y_1, y_2) \, dy_1 \, dy_2 = \int_0^1 \int_0^{1-y_2} 2y_1 y_2 \, dy_1 \, dy_2. \]

(7)

Following through on the calculus, we obtain

\[R_Y(1, 2) = \int_0^1 \left(y_1^2 |1-y_2|^2 \right) y_2 \, dy_2 = \int_0^1 y_2 (1-y_2)^2 \, dy_2 = \frac{1}{2} y_2^2 - \frac{2}{3} y_2^3 + \frac{4}{7} y_2^4 \bigg|_0^1 = \frac{1}{12}. \]

(8)

Thus we have found that

\[R_Y = \begin{bmatrix} E[Y_1^2] & E[Y_1 Y_2] \\ E[Y_2 Y_1] & E[Y_2^2] \end{bmatrix} = \begin{bmatrix} 1/6 & 1/12 \\ 1/12 & 1/6 \end{bmatrix}. \]

(9)

Lastly, \(Y \) has covariance matrix

\[C_Y = R_Y - \mu_Y \mu_Y' = \begin{bmatrix} 1/6 & 1/12 \\ 1/12 & 1/6 \end{bmatrix} - \begin{bmatrix} 1/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 1/3 & 1/3 \end{bmatrix} = \begin{bmatrix} 1/9 & -1/36 \\ -1/36 & 1/9 \end{bmatrix}. \]

(10)

(11)

Problem 5.6.9 Solution

Given an arbitrary random vector \(X \), we can define \(Y = X - \mu_X \) so that

\[C_X = E[(X - \mu_X)(X - \mu_X)'] = E[YY'] = R_Y. \]

(1)

It follows that the covariance matrix \(C_X \) is positive semi-definite if and only if the correlation matrix \(R_Y \) is positive semi-definite. Thus, it is sufficient to show that every correlation matrix, whether it is denoted \(R_Y \) or \(R_X \), is positive semi-definite.

To show a correlation matrix \(R_X \) is positive semi-definite, we write

\[a' R_X a = a' E[XX'] a = E[a' XX' a] = E[(a'X)(Xa)] = E[(a'X)^2]. \]

(2)

We note that \(W = a'X \) is a random variable. Since \(E[W^2] \geq 0 \) for any random variable \(W \),

\[a' R_X a = E[W^2] \geq 0. \]

(3)

Problem 5.7.1 Solution

(a) From Theorem 5.12, the correlation matrix of \(X \) is

\[R_X = C_X + \mu_X \mu_X' \]

(1)

\[= \begin{bmatrix} 4 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 4 \end{bmatrix} + \begin{bmatrix} 4 \\ 8 \\ 6 \end{bmatrix} = \begin{bmatrix} 16 & 32 & 24 \\ 32 & 64 & 48 \\ 24 & 48 & 36 \end{bmatrix} = \begin{bmatrix} 20 & 30 & 25 \\ 30 & 68 & 46 \\ 25 & 46 & 40 \end{bmatrix}. \]

(2)

(3)
(b) Let $Y = [X_1, X_2]'$. Since Y is a subset of the components of X, it is a Gaussian random vector with expected value vector

$$
\mu_Y = [E[X_1], E[X_2]]' = [4, 8]'.
$$

and covariance matrix

$$
C_Y = \begin{bmatrix}
\text{Var}[X_1] & \text{Cov}[X_1, X_2] \\
\text{Cov}[X_1, X_2] & \text{Var}[X_2]
\end{bmatrix} = \begin{bmatrix}
4 & -2 \\
-2 & 4
\end{bmatrix}
$$

We note that $\det(C_Y) = 12$ and that $C_Y^{-1} = \frac{1}{12} \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 1/3 & 1/6 \\ 1/6 & 1/3 \end{bmatrix}$.

This implies that

$$
(y - \mu_Y)'C_Y^{-1}(y - \mu_Y) = [y_1 - 4, y_2 - 8]' \begin{bmatrix} 1/3 & 1/6 \\ 1/6 & 1/3 \end{bmatrix} \begin{bmatrix} y_1 - 4 \\ y_2 - 8 \end{bmatrix}
$$

$$
= \begin{bmatrix} y_1 - 4 & y_2 - 8 \end{bmatrix} \begin{bmatrix} y_1/3 + y_2/6 - 8/3 \\ y_1/6 + y_2/3 - 10/3 \end{bmatrix}
$$

$$
= \frac{y_1^2}{3} + \frac{y_1 y_2}{3} - \frac{16 y_1}{3} - \frac{20 y_2}{3} + \frac{y_2^2}{3} + \frac{112}{3}
$$

The PDF of Y is

$$
f_Y(y) = \frac{1}{2\pi\sqrt{12}}e^{-(y - \mu_Y)'C_Y^{-1}(y - \mu_Y)/2}
$$

$$
= \frac{1}{\sqrt{48\pi^2}}e^{-(y_1^2 + y_1 y_2 - 16 y_1 - 20 y_2 + y_2^2 + 112)/6}
$$

Since $Y = [X_1, X_2]'$, the PDF of X_1 and X_2 is simply

$$
f_{X_1, X_2}(x_1, x_2) = f_{Y_1, Y_2}(x_1, x_2) = \frac{1}{\sqrt{48\pi^2}}e^{-(x_1^2 + x_1 x_2 - 16 x_1 - 20 x_2 + x_2^2 + 112)/6}
$$

(c) We can observe directly from μ_X and C_X that X_1 is a Gaussian $(4, 2)$ random variable. Thus,

$$
P[X_1 > 8] = P\left[\frac{X_1 - 4}{2} > \frac{8 - 4}{2}\right] = Q(2) = 0.0228
$$

Problem 5.7.2 Solution

We are given that X is a Gaussian random vector with

$$
\mu_X = \begin{bmatrix} 4 \\ 8 \\ 6 \end{bmatrix}, \quad C_X = \begin{bmatrix} 4 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 4 \end{bmatrix}.
$$

We are also given that $Y = AX + b$ where

$$
A = \begin{bmatrix}
1 & 1/2 & 2/3 \\
1 & -1/2 & 2/3
\end{bmatrix}, \quad b = \begin{bmatrix} -4 \\ -4 \end{bmatrix}.
$$

Since the two rows of A are linearly independent row vectors, A has rank 2. By Theorem 5.16, Y is a Gaussian random vector. Given these facts, the various parts of this problem are just straightforward calculations using Theorem 5.16.
(a) The expected value of Y is
\[
\mu_Y = A\mu_X + b = \begin{bmatrix} 1 & 1/2 & 2/3 \\ 1 & -1/2 & 2/3 \end{bmatrix} \begin{bmatrix} 4 \\ 8/6 \end{bmatrix} + \begin{bmatrix} -4 \\ -4 \end{bmatrix} = \begin{bmatrix} 8 \\ 0 \end{bmatrix}.
\]

(b) The covariance matrix of Y is
\[
C_Y = AC_XA = \begin{bmatrix} 4 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & -1/2 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 43 & 55 \\ 55 & 103 \end{bmatrix}.
\]

(c) Y has correlation matrix
\[
R_Y = C_Y + \mu_Y\mu_Y' = \frac{1}{9} \begin{bmatrix} 43 & 55 \\ 55 & 103 \end{bmatrix} + \begin{bmatrix} 8 \\ 0 \end{bmatrix} \begin{bmatrix} 8 \\ 0 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 619 & 55 \\ 55 & 103 \end{bmatrix}.
\]

(d) From μ_Y, we see that $E[Y_2] = 0$. From the covariance matrix C_Y, we learn that Y_2 has variance $\sigma^2_2 = C_Y(2, 2) = 103/9$. Since Y_2 is a Gaussian random variable,
\[
P[-1 \leq Y_2 \leq 1] = P\left[\frac{-1}{\sigma_2} \leq \frac{Y_2}{\sigma_2} \leq \frac{1}{\sigma_2}\right]
\]
\[
= \Phi\left(\frac{1}{\sigma_2}\right) - \Phi\left(-\frac{1}{\sigma_2}\right)
\]
\[
= 2\Phi\left(\frac{1}{\sigma_2}\right) - 1
\]
\[
= 2\Phi\left(\frac{3}{\sqrt{103}}\right) - 1 = 0.2325.
\]

Problem 5.7.3 Solution
This problem is just a special case of Theorem 5.16 with the matrix A replaced by the row vector a' and a 1 element vector $b = b = 0$. In this case, the vector Y becomes the scalar Y. The expected value vector $\mu_Y = [\mu_Y]$ and the covariance “matrix” of Y is just the 1×1 matrix $[\sigma_2^2]$. Directly from Theorem 5.16, we can conclude that Y is a length 1 Gaussian random vector, which is just a Gaussian random variable. In addition, $\mu_Y = a'\mu_X$ and
\[
\text{Var}[Y] = C_Y = a'C_Xa.
\]

Problem 5.7.4 Solution
From Definition 5.17, the $n = 2$ dimensional Gaussian vector X has PDF
\[
f_X(x) = \frac{1}{2\pi|\det(C_X)|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_X)'C_X^{-1}(x - \mu_X)\right)
\]
where C_X has determinant
\[
\det(C_X) = \sigma_1^2\sigma_2^2 - \rho^2\sigma_1^2\sigma_2^2 = \sigma_1^2\sigma_2^2(1 - \rho^2).
\]
Thus,
\[
\frac{1}{2\pi|\text{det}(C)|^{1/2}} = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}}.
\] (3)

Using the \(2 \times 2\) matrix inverse formula
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},
\] (4)

we obtain
\[
C_X^{-1} = \frac{1}{\sigma_1^2\sigma_2^2(1 - \rho^2)} \begin{pmatrix} \rho\sigma_1\sigma_2 & -\rho \sigma_1^2 \\ -\rho\sigma_2^2 & \sigma_1^2 \end{pmatrix} = \frac{1}{1 - \rho^2} \begin{pmatrix} \frac{1}{\sigma_1^2} & -\rho \sigma_1^2 \\ -\rho \sigma_2^2 & \frac{1}{\sigma_2^2} \end{pmatrix}.
\] (5)

Thus
\[
\begin{pmatrix} x - \mu_1 \\ x - \mu_2 \end{pmatrix}'C_X^{-1}(x - \mu) = \frac{1}{2(1 - \rho^2)} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sigma_1^2} & -\rho \sigma_1^2 \\ -\rho \sigma_2^2 & \frac{1}{\sigma_2^2} \end{pmatrix} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}
\] (6)
\[
= \frac{(x_1 - \mu_1)^2 - 2\rho(x_1 - \mu_1)(x_2 - \mu_2) + (x_2 - \mu_2)^2}{2(1 - \rho^2)}. \] (7)

Combining Equations (1), (3), and (8), we see that
\[
f_X(x) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}} \exp \left[\frac{(x_1 - \mu_1)^2 - 2\rho(x_1 - \mu_1)(x_2 - \mu_2) + (x_2 - \mu_2)^2}{2(1 - \rho^2)} \right],
\] (9)

which is the bivariate Gaussian PDF in Definition 4.17.

Problem 5.7.5 Solution

Since
\[
W = \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} I \\ A \end{bmatrix} X = DX
\] (1)

Suppose that \(X\) Gaussian \((0, I)\) random vector. By Theorem 5.13, \(\mu_W = 0\) and \(C_W = DD'\). The matrix \(D\) is \((m + n) \times n\) and has rank \(n\). That is, the rows of \(D\) are dependent and there exists a vector \(y\) such that \(y'D = 0\). This implies \(y'DD'y = 0\). Hence \(\text{det}(C_W) = 0\) and \(C_W^{-1}\) does not exist. Hence \(W\) is not a Gaussian random vector.

The point to keep in mind is that the definition of a Gaussian random vector does not permit a component random variable to be a deterministic linear combination of other components.

Problem 5.7.6 Solution
(a) From Theorem 5.13, Y has covariance matrix

$$C_Y = QC_XQ'$$ \hspace{1cm} (1)

$$= \begin{bmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \sigma^2_1 & 0 \\ 0 & \sigma^2_2 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta \end{bmatrix}$$ \hspace{1cm} (2)

$$= \sigma^2_1 \cos^2 \theta + \sigma^2_2 \sin^2 \theta \left(\sigma^2_1 - \sigma^2_2 \right) \sin \theta \cos \theta$$

$$\left(\sigma^2_1 - \sigma^2_2 \right) \sin \theta \cos \theta \sin^2 \theta + \sigma^2_2 \cos^2 \theta$$ \hspace{1cm} (3)

We conclude that Y_1 and Y_2 have covariance

$$\text{Cov} \left[Y_1, Y_2 \right] = C_Y(1, 2) = \left(\sigma^2_1 - \sigma^2_2 \right) \sin \theta \cos \theta.$$ \hspace{1cm} (4)

Since Y_1 and Y_2 are jointly Gaussian, they are independent if and only if $\text{Cov}[Y_1, Y_2] = 0$. Thus, Y_1 and Y_2 are independent for all θ if and only if $\sigma^2_1 = \sigma^2_2$. In this case, when the joint PDF $f_X(x) = f_{X_1, X_2}(x_1, x_2)$ depends on $r = \sqrt{x_1^2 + x_2^2}$ but for a given r, is constant for all $\phi = \tan^{-1}(x_2/x_1)$. The transformation of X to Y is just a rotation of the coordinate system by θ preserves this circular symmetry.

(b) If $\sigma^2_2 > \sigma^2_1$, then Y_1 and Y_2 are independent if and only if $\sin \theta \cos \theta = 0$. This occurs in the following cases:

- $\theta = 0$: $Y_1 = X_1$ and $Y_2 = X_2$
- $\theta = \pi/2$: $Y_1 = -X_2$ and $Y_2 = -X_1$
- $\theta = \pi$: $Y_1 = -X_1$ and $Y_2 = -X_2$
- $\theta = -\pi/2$: $Y_1 = X_2$ and $Y_2 = X_1$

In all four cases, Y_1 and Y_2 are just relabeled versions, possibly with sign changes, of X_1 and X_2. In these cases, Y_1 and Y_2 are independent because X_1 and X_2 are independent. For other values of θ, each Y_i is a linear combination of both X_1 and X_2. This mixing results in correlation between Y_1 and Y_2.

Problem 5.7.7 Solution

The difficulty of this problem is overrated since its a pretty simple application of Problem 5.7.6. In particular,

$$Q = \begin{bmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \bigg|_{\theta = 45^\circ} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}. \hspace{1cm} (1)$$

Since $X = QY$, we know from Theorem 5.16 that X is Gaussian with covariance matrix

$$C_X = QC_YQ'$$ \hspace{1cm} (2)

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 + \rho & 0 \\ 0 & 1 - \rho \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$ \hspace{1cm} (3)

$$= \frac{1}{2} \begin{bmatrix} 1 + \rho & - (1 - \rho) \\ 1 + \rho & 1 - \rho \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$ \hspace{1cm} (4)

$$= \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}. \hspace{1cm} (5)$$

225
Problem 5.7.8 Solution
As given in the problem statement, we define the m-dimensional vector X, the n-dimensional vector Y, and $W = [X' Y']'$. Note that W has expected value

$$\mu_W = E[W] = E\left[\begin{bmatrix} X \\ Y \end{bmatrix}\right] = \begin{bmatrix} E[X] \\ E[Y] \end{bmatrix} = \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}. \quad (1)$$

The covariance matrix of W is

$$C_W = E\left[(W - \mu_W)(W - \mu_W)'
ight] \quad (2)$$

$$= E\left[\begin{bmatrix} X - \mu_X \\ Y - \mu_Y \end{bmatrix}'(X - \mu_X) (Y - \mu_Y)'\right] \quad (3)$$

$$= E[(X - \mu_X)(X - \mu_X)'] E[(Y - \mu_Y)(Y - \mu_Y)']$$

$$= \begin{bmatrix} C_X & C_{XY} \\ C_{YX} & C_Y \end{bmatrix}. \quad (5)$$

The assumption that X and Y are independent implies that

$$C_{XY} = E[(X - \mu_X)(Y' - \mu_Y')]' = (E[(X - \mu_X)] E[(Y' - \mu_Y')'] = 0. \quad (6)$$

This also implies $C_{YX} = C_{XY}' = 0'$. Thus

$$C_W = \begin{bmatrix} C_X & 0' \\ 0' & C_Y \end{bmatrix}. \quad (7)$$

Problem 5.7.9 Solution
(a) If you are familiar with the Gram-Schmidt procedure, the argument is that applying Gram-Schmidt to the rows of A yields m orthogonal row vectors. It is then possible to augment those vectors with an additional $n - m$ orthogonal vectors. Those orthogonal vectors would be the rows of \tilde{A}.

An alternate argument is that since A has rank m the nullspace of A, i.e., the set of all vectors y such that $Ay = 0$ has dimension $n - m$. We can choose any $n - m$ linearly independent vectors $y_1, y_2, \ldots, y_{n-m}$ in the nullspace A. We then define \tilde{A}' to have columns $y_1, y_2, \ldots, y_{n-m}$. It follows that $A\tilde{A}' = 0$.

(b) To use Theorem 5.16 for the case $m = n$ to show

$$Y = \begin{bmatrix} Y' \\ Y \end{bmatrix} = \begin{bmatrix} A \\ \tilde{A} \end{bmatrix} X. \quad (1)$$

is a Gaussian random vector requires us to show that

$$\tilde{A} = \begin{bmatrix} A \\ \tilde{A} \end{bmatrix} = \begin{bmatrix} A \\ \bar{A}C_X^{-1} \end{bmatrix} \quad (2)$$
is a rank n matrix. To prove this fact, we will suppose there exists w such that $\tilde{A}w = 0$, and then show that w is a zero vector. Since A and \tilde{A} together have n linearly independent rows, we can write the row vector w' as a linear combination of the rows of A and \tilde{A}. That is, for some v and $\tilde{v},$

$$w' = vt' A + \tilde{v}' \tilde{A}. \quad (3)$$

The condition $\tilde{A}w = 0$ implies

$$\begin{bmatrix} A \\ \tilde{A} \tilde{C}^{-1}_X \end{bmatrix} \begin{bmatrix} A' v + \tilde{A}' \tilde{v}' \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \quad (4)$$

This implies

$$AA' v + A \tilde{A}' \tilde{v} = 0 \quad (5)$$
$$\tilde{A} \tilde{C}^{-1}_X A v + \tilde{A} \tilde{C}^{-1}_X \tilde{A}' \tilde{v} = 0 \quad (6)$$

Since $A \tilde{A}' = 0$, Equation (5) implies that $AA' v = 0$. Since A is rank m, AA' is an $m \times m$ rank m matrix. It follows that $v = 0$. We can then conclude from Equation (6) that

$$\tilde{A} \tilde{C}^{-1}_X \tilde{A}' \tilde{v} = 0. \quad (7)$$

This would imply that $\tilde{v}' \tilde{A} \tilde{C}^{-1}_X \tilde{A}' \tilde{v} = 0$. Since \tilde{C}^{-1}_X is invertible, this would imply that $\tilde{A}' \tilde{v} = 0$. Since the rows of \tilde{A} are linearly independent, it must be that $\tilde{v} = 0$. Thus \tilde{A} is full rank and \tilde{Y} is a Gaussian random vector.

(c) We note that By Theorem 5.16, the Gaussian vector $\tilde{Y} = \tilde{A}X$ has covariance matrix

$$\tilde{C} = \tilde{A} \tilde{C} X \tilde{A}'. \quad (8)$$

Since $(\tilde{C}^{-1}_X)' = \tilde{C}^{-1}_X,$

$$\tilde{A}' = \begin{bmatrix} A' \\ \tilde{A} \tilde{C}^{-1}_X \end{bmatrix} = \begin{bmatrix} A' & \tilde{A} \tilde{C}^{-1}_X \tilde{A}' \end{bmatrix}. \quad (9)$$

Applying this result to Equation (8) yields

$$\tilde{C} = \begin{bmatrix} A \\ \tilde{A} \tilde{C}^{-1}_X \end{bmatrix} C X \begin{bmatrix} A' \\ \tilde{A} \tilde{C}^{-1}_X \tilde{A}' \end{bmatrix} = \begin{bmatrix} A \tilde{C} X & A' \tilde{C}^{-1}_X \tilde{A}' \end{bmatrix} = \begin{bmatrix} A \tilde{C} X A' & \tilde{A} \tilde{C}^{-1}_X \tilde{A}' \end{bmatrix}. \quad (10)$$

Since $\tilde{A} \tilde{A}' = 0,$

$$\tilde{C} = \begin{bmatrix} A \tilde{C} X A' & 0 \\ 0 & \tilde{A} \tilde{C}^{-1}_X \tilde{A}' \end{bmatrix} = \begin{bmatrix} C_Y & 0 \\ 0 & \tilde{C}_X \end{bmatrix}. \quad (11)$$

We see that \tilde{C} is block diagonal covariance matrix. From the claim of Problem 5.7.8, we can conclude that Y and \hat{Y} are independent Gaussian random vectors.

Problem 5.8.1 Solution

We can use Theorem 5.16 since the scalar Y is also a 1-dimensional vector. To do so, we write

$$Y = [1/3 \quad 1/3 \quad 1/3] X = AX. \quad (1)$$

By Theorem 5.16, Y is a Gaussian vector with expected value

$$E [Y] = A \mu_X = (E [X_1] + E [X_2] + E [X_3])/3 = (4 + 8 + 6)/3 = 6 \quad (2)$$
and covariance matrix

\[C_Y = \text{Var}[Y] = AC_X A' \] \hspace{1cm} (3)

\[= \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ -2 & 4 & -2 \\ 1 & -2 & 4 \end{bmatrix} \begin{bmatrix} 1/3 \\ -2 \\ 1 \end{bmatrix} = \frac{2}{3} \] \hspace{1cm} (4)

Thus \(Y \) is a Gaussian \((6, \sqrt{2/3})\) random variable, implying

\[P[Y > 4] = P \left[\frac{Y - 6}{\sqrt{2/3}} > \frac{4 - 6}{\sqrt{2/3}} \right] = 1 - \Phi(-\sqrt{6}) = \Phi(\sqrt{6}) = 0.9928 \] \hspace{1cm} (5)

Problem 5.8.2 Solution

(a) The covariance matrix \(C_X \) has \(\text{Var}[X_i] = 25 \) for each diagonal entry. For \(i \neq j \), the \(i,j \)th entry of \(C_X \) is

\[[C_X]_{ij} = \rho_{x_i,x_j} \sqrt{\text{Var}[X_i] \text{Var}[X_j]} = (0.8)(25) = 20 \] \hspace{1cm} (1)

The covariance matrix of \(X \) is a \(10 \times 10 \) matrix of the form

\[C_X = \begin{bmatrix} 25 & 20 & \cdots & 20 \\ 20 & 25 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 20 \\ 20 & \cdots & 20 & 25 \end{bmatrix} \] \hspace{1cm} (2)

(b) We observe that

\[Y = \begin{bmatrix} 1/10 & 1/10 & \cdots & 1/10 \end{bmatrix} X = AX \] \hspace{1cm} (3)

Since \(Y \) is the average of 10 iid random variables, \(E[Y] = E[X_i] = 5 \). Since \(Y \) is a scalar, the \(1 \times 1 \) covariance matrix \(C_Y = \text{Var}[Y] \). By Theorem 5.13, the variance of \(Y \) is

\[\text{Var}[Y] = C_Y = AC_X A' = 20.5 \] \hspace{1cm} (4)

Since \(Y \) is Gaussian,

\[P[Y \leq 25] = P \left[\frac{Y - 5}{\sqrt{20.5}} \leq \frac{25 - 20.5}{\sqrt{20.5}} \right] = \Phi(0.9939) = 0.8399. \] \hspace{1cm} (5)

Problem 5.8.3 Solution

Under the model of Quiz 5.8, the temperature on day \(i \) and on day \(j \) have covariance

\[\text{Cov}[T_i, T_j] = C_T |i - j| = \frac{36}{1 + |i - j|} \] \hspace{1cm} (1)

From this model, the vector \(T = [T_1 \ \cdots \ T_{31}]' \) has covariance matrix

If you have read the solution to Quiz 5.8, you know that CT is a symmetric Toeplitz matrix and that MATLAB has a `toeplitz` function to generate Toeplitz matrices. Using the `toeplitz` function to generate the covariance matrix, it is easy to use `gaussvector` to generate samples of the random vector T. Here is the code for estimating $P[A]$ using m samples.

```matlab
function p=julytemp583(m);
c=36./(1+(0:30));
CT=toeplitz(c);
mu=80*ones(31,1);
T=gaussvector(mu,CT,m);
Y=sum(T)/31;
Tmin=min(T);
p=sum((Tmin>=72) & (Y <= 82))/m;
end
```

We see from repeated experiments with $m = 100,000$ trials that $P[A] \approx 0.07$.

Problem 5.8.4 Solution

The covariance matrix C_X has $\text{Var}[X_i] = 25$ for each diagonal entry. For $i \neq j$, the i,jth entry of C_X is

$$[C_X]_{ij} = \rho_{X_i,X_j} \sqrt{\text{Var}[X_i] \text{Var}[X_j]} = (0.8)(25) = 20$$

The covariance matrix of X is a 10×10 matrix of the form

$$C_X = \begin{bmatrix} 25 & 20 & \cdots & 20 \\ 20 & 25 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 20 \\ 20 & \cdots & 20 & 25 \end{bmatrix}$$

A program to estimate $P[W \leq 25]$ uses `gaussvector` to generate m sample vector of race times X. In the program `sailboats.m`, X is an $10 \times m$ matrix such that each column of X is a vector of race times. In addition $\text{min}(X)$ is a row vector indicating the fastest time in each race.

```matlab
function p=sailboats(w,m)
%Usage: p=sailboats(f,m)
%In Problem 5.8.4, W is the winning time in a 10 boat race.
%We use m trials to estimate P[W<w]
CX=(5*eye(10))+(20*ones(10,10));
mu=35*ones(10,1);
X=gaussvector(mu,CX,m);
W=min(X);
p=sum(W<=w)/m;
end
```

We see from repeated experiments with $m = 100,000$ trials that $P[W \leq 25] \approx 0.08$.

Problem 5.8.5 Solution

When we built `poissonrv.m`, we went to some trouble to be able to generate m iid samples at once. In this problem, each Poisson random variable that we generate has an expected value that
is different from that of any other Poisson random variables. Thus, we must generate the daily jackpots sequentially. Here is a simple program for this purpose.

```matlab
function jackpot=lottery1(jstart,M,D)
%Usage: function j=lottery1(jstart,M,D)
%Perform M trials of the D day lottery
%of Problem 5.5.5 and initial jackpot jstart
jackpot=zeros(M,1);
for m=1:M,
    disp('trm)
    jackpot(m)=jstart;
    for d=1:D,
        jackpot(m)=jackpot(m)+(0.5*poissonrv(jackpot(m),1));
    end
end
```

The main problem with `lottery1` is that it will run very slowly. Each call to `poissonrv` generates an entire Poisson PMF $P_X(x)$ for $x = 0, 1, \ldots, x_{\text{max}}$ where $x_{\text{max}} \geq 2 \cdot 10^6$. This is slow in several ways. First, we repeating the calculation of $\sum_{j=1}^{x_{\text{max}}} \log j$ with each call to `poissonrv`. Second, each call to `poissonrv` asks for a Poisson sample value with expected value $\alpha > 1 \cdot 10^6$. In these cases, for small values of x, $P_X(x) = \frac{\alpha^x e^{-\alpha}}{x!}$ is so small that it is less than the smallest nonzero number that MATLAB can store!

To speed up the simulation, we have written a program `bigpoissonrv` which generates Poisson (α) samples for large α. The program makes an approximation that for a Poisson (α) random variable X, $P_X(x) \approx 0$ for $|x-\alpha| > 6\sqrt{\alpha}$. Since X has standard deviation $\sqrt{\alpha}$, we are assuming that X cannot be more than six standard deviations away from its mean value. The error in this approximation is very small. In fact, for a Poisson (α) random variable, the program `poissonsigma(a,k)` calculates the error $P\{X - \alpha > k\sqrt{\alpha}\}$. Here is `poissonsigma.m` and some simple calculations:

```matlab
function err=poissonsigma(a,k);
xmin=max(0,floor(a-k*sqrt(a)));
xmax=a+ceil(k*sqrt(a));
sx=xmin:xmax;
logfacts =cumsum([0,log(1:xmax)]);
%logfacts includes 0 in case xmin=0
%Now we extract needed values:
logfacts=logfacts(sx+1);
%pmf(i,:) is a Poisson a(i) PMF
% from xmin to xmax
pmf=exp(-a+ (log(a)*sx)-(logfacts));
err=1-sum(pmf);
```

The error reported by `poissonsigma(a,k)` should always be positive. In fact, we observe negative errors for very large α. For large α and x, numerical calculation of $P_X(x) = \frac{\alpha^x e^{-\alpha}}{x!}$ is tricky because we are taking ratios of very large numbers. In fact, for $\alpha = x = 1,000,000$, MATLAB calculation of α^x and $x!$ will report infinity while $e^{-\alpha}$ will evaluate as zero. Our method
of calculating the Poisson (α) PMF is to use the fact that $\ln x! = \sum_{j=1}^{x} \ln j$ to calculate

$$\exp(\ln P_X(x)) = \exp \left(x \ln \alpha - \alpha - \sum_{j=1}^{x} \ln j \right).$$

(1)

This method works reasonably well except that the calculation of the logarithm has finite precision. The consequence is that the calculated sum over the PMF can vary from 1 by a very small amount, on the order of 10^{-7} in our experiments. In our problem, the error is inconsequential, however, one should keep in mind that this may not be the case in other experiments using large Poisson random variables. In any case, we can conclude that within the accuracy of MATLAB’s simulated experiments, the approximations to be used by bigpoissonrv are not significant.

The other feature of bigpoissonrv is that for a vector alpha corresponding to expected values $[\alpha_1 \cdots \alpha_m]'$, bigpoissonrv returns a vector X such that $X(i)$ is a Poisson $\alpha(i)$ sample. The work of calculating the sum of logarithms is done only once for all calculated samples. The result is a significant savings in cpu time as long as the values of alpha are reasonably close to each other.

```matlab
function x=bigpoissonrv(alpha)
%for vector alpha, returns a vector x such that
% x(i) is a Poisson (alpha(i)) rv
%set up Poisson CDF from xmin to xmax for each alpha(i)
alpha=alpha(:);
amin=min(alpha(:));
amax=max(alpha(:));
%Assume Poisson PMF is negligible +-6 sigma from the average
xmin=max(0,floor(amin-6*sqrt(amax)));
xmax=amax+ceil(6*sqrt(amax));%set max range
sx=xmin:xmax;
%Now we include the basic code of poissonpmf (but starting at xmin)
logfacts =cumsum([0,log(1:sx)]); %include 0 in case xmin=0
logfacts=logfacts(sx+1); %extract needed values
%pmf(i,:) is a Poisson alpha(i) PMF from xmin to xmax
pmf=exp(-alpha*ones(size(sx))+ ...
    (log(alpha)*sx)-(ones(size(alpha))*logfacts));
cdf=cumsum(pmf,2); %each row is a cdf
x=(xmin-1)+sum((rand(size(alpha))*ones(size(sx))<=cdf),2);
```

Finally, given bigpoissonrv, we can write a short program lottery that simulates trials of the jackpot experiment. Ideally, we would like to use lottery to perform $m = 1,000$ trials in a single pass. In general, MATLAB is more efficient when calculations are executed in parallel using vectors. However, in bigpoissonrv, the matrix pmf will have m rows and at least $12\sqrt{\alpha} = 12,000$ columns. For m more than several hundred, MATLAB running on my laptop reported an “Out of Memory” error. Thus, we wrote the program lottery to perform M trials at once and to repeat that N times. The output is an $M \times N$ matrix where each i,j entry is a sample jackpot after seven days.
function jackpot=lottery(jstart,M,N,D)
%Usage: function j=lottery(jstart,M,N,D)
%Perform M trials of the D day lottery
%of Problem 5.5.5 and initial jackpot jstart
jackpot=zeros(M,N);
for n=1:N,
 jackpot(:,n)=jstart*ones(M,1);
 for d=1:D,
 disp(d);
 jackpot(:,n)=jackpot(:,n)+(0.5*bigpoissonrv(jackpot(:,n)));
 end
end
end

Executing \texttt{J=lottery(1e6,200,10,7)} generates a matrix \texttt{J} of 2,000 sample jackpots. The command \texttt{hist(J(:),50)} generates a histogram of the values with 50 bins. An example is shown here:

![Histogram of lottery results](image)

If you go back and solve Problem 5.5.5, you will see that the jackpot \(J \) has expected value \(E[J] = (3/2)^7 \times 10^6 = 1.70859 \times 10^7 \) dollars. Thus it is not surprising that the histogram is centered around a jackpot of \(1.708 \times 10^7 \) dollars. If we did more trials, and used more histogram bins, the histogram would appear to converge to the shape of a Gaussian PDF. This fact is explored in Chapter 6.
Problem Solutions – Chapter 6

Problem 6.1.1 Solution
The random variable X_{33} is a Bernoulli random variable that indicates the result of flip 33. The PMF of X_{33} is

$$P_{X_{33}}(x) = \begin{cases} 1 - p & x = 0 \\ p & x = 1 \\ 0 & \text{otherwise} \end{cases}$$ \hfill (1)$$

Note that each X_i has expected value $E[X] = p$ and variance $\text{Var}[X] = p(1 - p)$. The random variable $Y = X_1 + \cdots + X_{100}$ is the number of heads in 100 coin flips. Hence, Y has the binomial PMF

$$P_Y(y) = \begin{cases} \binom{100}{y} p^y (1 - p)^{100-y} & y = 0, 1, \ldots, 100 \\ 0 & \text{otherwise} \end{cases}$$ \hfill (2)$$

Since the X_i are independent, by Theorems 6.1 and 6.3, the mean and variance of Y are

$$E[Y] = 100E[X] = 100p \quad \text{Var}[Y] = 100 \text{Var}[X] = 100p(1 - p)$$ \hfill (3)$$

Problem 6.1.2 Solution
Let $Y = X_1 - X_2$.

(a) Since $Y = X_1 + (-X_2)$, Theorem 6.1 says that the expected value of the difference is

$$E[Y] = E[X_1] + E[-X_2] = E[X] - E[X] = 0$$ \hfill (1)$$

(b) By Theorem 6.2, the variance of the difference is

$$\text{Var}[Y] = \text{Var}[X_1] + \text{Var}[-X_2] = 2 \text{Var}[X]$$ \hfill (2)$$

Problem 6.1.3 Solution

(a) The PMF of N_1, the number of phone calls needed to obtain the correct answer, can be determined by observing that if the correct answer is given on the nth call, then the previous $n - 1$ calls must have given wrong answers so that

$$P_{N_1}(n) = \begin{cases} (3/4)^{n-1}(1/4) & n = 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases}$$ \hfill (1)$$

(b) N_1 is a geometric random variable with parameter $p = 1/4$. In Theorem 2.5, the mean of a geometric random variable is found to be $1/p$. For our case, $E[N_1] = 4$.

(c) Using the same logic as in part (a) we recognize that in order for n to be the fourth correct answer, that the previous $n - 1$ calls must have contained exactly 3 correct answers and that the fourth correct answer arrived on the n-th call. This is described by a Pascal random variable.

$$P_{N_4}(n_4) = \begin{cases} \binom{n-1}{3}(3/4)^{n-4}(1/4)^4 & n = 4, 5, \ldots \\ 0 & \text{otherwise} \end{cases}$$ \hfill (2)$$

(d) Using the hint given in the problem statement we can find the mean of N_4 by summing up the means of the 4 identically distributed geometric random variables each with mean 4. This gives $E[N_4] = 4E[N_1] = 16$.

233
Problem 6.1.4 Solution
We can solve this problem using Theorem 6.2 which says that
\[
\text{Var}[W] = \text{Var}[X] + \text{Var}[Y] + 2 \text{Cov}[X,Y] \tag{1}
\]
The first two moments of \(X\) are
\[
E[X] = \int_0^1 \int_0^{1-x} 2x \, dy \, dx = \int_0^1 2x(1-x) \, dx = 1/3 \tag{2}
\]
\[
E[X^2] = \int_0^1 \int_0^{1-x} 2x^2 \, dy \, dx = \int_0^1 2x^2(1-x) \, dx = 1/6 \tag{3}
\]
Thus the variance of \(X\) is \(\text{Var}[X] = E[X^2] - (E[X])^2 = 1/18\). By symmetry, it should be apparent that \(E[Y] = E[X] = 1/3\) and \(\text{Var}[Y] = \text{Var}[X] = 1/18\). To find the covariance, we first find the correlation
\[
E[XY] = \int_0^1 \int_0^{1-x} 2xy \, dy \, dx = \int_0^1 x(1-x)^2 \, dx = 1/12 \tag{5}
\]
The covariance is
\[
\text{Cov}[X,Y] = E[XY] - E[X]E[Y] = 1/12 - (1/3)^2 = -1/36 \tag{6}
\]
Finally, the variance of the sum \(W = X + Y\) is
\[
\text{Var}[W] = \text{Var}[X] + \text{Var}[Y] - 2 \text{Cov}[X,Y] = 2/18 - 2/36 = 1/18 \tag{7}
\]
For this specific problem, it’s arguable whether it would easier to find \(\text{Var}[W]\) by first deriving the CDF and PDF of \(W\). In particular, for \(0 \leq w \leq 1\),
\[
F_W(w) = P[X + Y \leq w] = \int_0^w \int_0^{w-x} 2 \, dy \, dx = \int_0^w 2(w-x) \, dx = w^2 \tag{8}
\]
Hence, by taking the derivative of the CDF, the PDF of \(W\) is
\[
f_W(w) = \begin{cases} 2w & 0 \leq w \leq 1 \\ 0 & \text{otherwise} \end{cases} \tag{9}
\]
From the PDF, the first and second moments of \(W\) are
\[
E[W] = \int_0^1 2w^2 \, dw = 2/3 \quad E[W^2] = \int_0^1 2w^3 \, dw = 1/2 \tag{10}
\]
The variance of \(W\) is \(\text{Var}[W] = E[W^2] - (E[W])^2 = 1/18\). Not surprisingly, we get the same answer both ways.

Problem 6.1.5 Solution
This problem should be in either Chapter 10 or Chapter 11.
Since each \(X_i\) has zero mean, the mean of \(Y_n\) is
\[
E[Y_n] = E[X_n + X_{n-1} + X_{n-2}] / 3 = 0 \tag{1}
\]
234
Since Y_n has zero mean, the variance of Y_n is
\[
\text{Var}[Y_n] = E[Y_n^2] = \frac{1}{9}E[(X_n + X_{n-1} + X_{n-2})^2] = \frac{1}{9}E[X_n^2 + X_{n-1}^2 + X_{n-2}^2 + 2X_nX_{n-1} + 2X_nX_{n-2} + 2X_{n-1}X_{n-2}] = \frac{1}{9}(1 + 1 + 1 + 2/4 + 0 + 2/4) = \frac{4}{9} \tag{5}
\]

Problem 6.2.1 Solution
The joint PDF of X and Y is
\[
f_{X,Y}(x, y) = \begin{cases}
2 & 0 \leq x \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]

We wish to find the PDF of W where $W = X + Y$. First we find the CDF of W, $F_W(w)$, but we must realize that the CDF will require different integrations for different values of w.

For values of $0 \leq w \leq 1$ we look to integrate the shaded area in the figure to the right.
\[
F_W(w) = \int_0^w \int_x^{w-x} 2 \, dy \, dx = \frac{w^2}{2} \tag{2}
\]

For values of w in the region $1 \leq w \leq 2$ we look to integrate over the shaded region in the graph to the right. From the graph we see that we can integrate with respect to x first, ranging y from 0 to $w/2$, thereby covering the lower right triangle of the shaded region and leaving the upper trapezoid, which is accounted for in the second term of the following expression:
\[
F_W(w) = \int_0^{w/2} 2 \, dx \, dy + \int_{w/2}^1 \int_0^{w-y} 2 \, dx \, dy = 2w - 1 - \frac{w^2}{2} \tag{3}
\]

Putting all the parts together gives the CDF $F_W(w)$ and (by taking the derivative) the PDF $f_W(w)$.
\[
F_W(w) = \begin{cases}
0 & w < 0 \\
\frac{w^2}{2} & 0 \leq w \leq 1 \\
2w - 1 - \frac{w^2}{2} & 1 \leq w \leq 2 \\
1 & w > 2
\end{cases} \quad f_W(w) = \begin{cases}
w & 0 \leq w \leq 1 \\
2 - w & 1 \leq w \leq 2 \\
0 & \text{otherwise}
\end{cases} \tag{5}
\]

Problem 6.2.2 Solution
The joint PDF of X and Y is
\[
f_{X,Y}(x, y) = \begin{cases}
1 & 0 \leq x, y \leq 1 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]
Proceeding as in Problem 6.2.1, we must first find $F_W(w)$ by integrating over the square defined by $0 \leq x, y \leq 1$. Again we are forced to find $F_W(w)$ in parts as we did in Problem 6.2.1 resulting in the following integrals for their appropriate regions. For $0 \leq w \leq 1$,

$$F_W(w) = \int_0^w \int_0^{w-x} dx \, dy = w^2/2 \quad (2)$$

For $1 \leq w \leq 2$,

$$F_W(w) = \int_0^{w-1} \int_0^1 dx \, dy + \int_1^1 \int_0^{w-y} dx \, dy = 2w - 1 - w^2/2 \quad (3)$$

The complete CDF $F_W(w)$ is shown below along with the corresponding PDF $f_W(w) = dF_W(w)/dw$.

$$F_W(w) = \begin{cases} 0 & w < 0 \\ w^2/2 & 0 \leq w \leq 1 \\ 2w - 1 - w^2/2 & 1 \leq w \leq 2 \\ 1 & \text{otherwise} \end{cases}$$

$$f_W(w) = \begin{cases} w & 0 \leq w \leq 1 \\ 2 - w & 1 \leq w \leq 2 \\ 0 & \text{otherwise} \end{cases} \quad (4)$$

Problem 6.2.3 Solution

By using Theorem 6.5, we can find the PDF of $W = X + Y$ by convolving the two exponential distributions. For $\mu \neq \lambda$,

$$f_W(w) = \int_{-\infty}^{\infty} f_X(x) f_Y(w-x) \, dx \quad (1)$$

$$= \int_0^w \lambda e^{-\lambda x} \mu e^{-\mu(w-x)} \, dx \quad (2)$$

$$= \lambda \mu e^{-\mu w} \int_0^w e^{-(\lambda-\mu)x} \, dx \quad (3)$$

$$= \begin{cases} \frac{\lambda \mu}{\lambda - \mu} (e^{-\mu w} - e^{-\lambda w}) & w \geq 0 \\ 0 & \text{otherwise} \end{cases} \quad (4)$$

When $\mu = \lambda$, the previous derivation is invalid because of the denominator term $\lambda - \mu$. For $\mu = \lambda$, we have

$$f_W(w) = \int_{-\infty}^{\infty} f_X(x) f_Y(w-x) \, dx \quad (5)$$

$$= \int_0^w \lambda e^{-\lambda x} \lambda e^{-\lambda(w-x)} \, dx \quad (6)$$

$$= \lambda^2 e^{-\lambda w} \int_0^w dx \quad (7)$$

$$= \begin{cases} \lambda^2 w e^{-\lambda w} & w \geq 0 \\ 0 & \text{otherwise} \end{cases} \quad (8)$$

Note that when $\mu = \lambda$, W is the sum of two iid exponential random variables and has a second order Erlang PDF.
Problem 6.2.4 Solution
In this problem, \(X \) and \(Y \) have joint PDF
\[
 f_{X,Y}(x, y) = \begin{cases}
 8xy & 0 \leq y \leq x \leq 1 \\
 0 & \text{otherwise}
\end{cases}
\] (1)

We can find the PDF of \(W \) using Theorem 6.4: \(f_W(w) = \int_{\infty}^{\infty} f_{X,Y}(x, w - x) \, dx \). The only tricky part remaining is to determine the limits of the integration. First, for \(w < 0 \), \(f_W(w) = 0 \). The two remaining cases are shown in the accompanying figure. The shaded area shows where the joint PDF \(f_{X,Y}(x, y) \) is nonzero. The diagonal lines depict \(y = w - x \) as a function of \(x \). The intersection of the diagonal line and the shaded area define our limits of integration.

For \(0 \leq w \leq 1 \),
\[
 f_W(w) = \int_{w/2}^{w} 8x(w - x) \, dx
= 4wx^2 - 8x^3/3\bigg|_{w/2}^{w} = 2w^3/3
\] (2)

For \(1 \leq w \leq 2 \),
\[
 f_W(w) = \int_{w/2}^{1} 8x(w - x) \, dx
= 4wx^2 - 8x^3/3\bigg|_{w/2}^{1}
= 4w - 8/3 - 2w^3/3
\] (5)

Since \(X + Y \leq 2 \), \(f_W(w) = 0 \) for \(w > 2 \). Hence the complete expression for the PDF of \(W \) is
\[
 f_W(w) = \begin{cases}
 2w^3/3 & 0 \leq w \leq 1 \\
 4w - 8/3 - 2w^3/3 & 1 \leq w \leq 2 \\
 0 & \text{otherwise}
\end{cases}
\] (7)

Problem 6.2.5 Solution
We first find the CDF of \(W \) following the same procedure as in the proof of Theorem 6.4.
\[
 F_W(w) = P[X \leq Y + w] = \int_{-\infty}^{\infty} \int_{-\infty}^{y+w} f_{X,Y}(x, y) \, dx \, dy
\] (1)

By taking the derivative with respect to \(w \), we obtain
\[
 f_W(w) = \frac{dF_W(w)}{dw} = \int_{-\infty}^{y+w} \frac{df_{X,Y}(x, y)}{dx} \, dy
= \int_{-\infty}^{\infty} f_{X,Y}(w + y, y) \, dy
\] (3)

With the variable substitution \(y = x - w \), we have \(dy = dx \) and
\[
 f_W(w) = \int_{-\infty}^{\infty} f_{X,Y}(x, x - w) \, dx
\] (4)
Problem 6.2.6 Solution
The random variables K and J have PMFs

\[P_J(j) = \begin{cases} \frac{\alpha^j e^{-\alpha}}{j!} & j = 0, 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \quad P_K(k) = \begin{cases} \frac{\beta^k e^{-\beta}}{k!} & k = 0, 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \]

(1)

For $n \geq 0$, we can find the PMF of $N = J + K$ via

\[P[N = n] = \sum_{k=-\infty}^{\infty} P[J = n - k, K = k] \]

(2)

Since J and K are independent, non-negative random variables,

\[P[N = n] = \sum_{k=0}^{n} P_J(n - k) P_K(k) \]

\[= \sum_{k=0}^{n} \frac{\alpha^{n-k} e^{-\alpha}}{(n-k)!} \frac{\beta^k e^{-\beta}}{k!} \]

\[= \frac{(\alpha + \beta)^n e^{-(\alpha + \beta)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \left(\frac{\alpha}{\alpha + \beta} \right)^{n-k} \left(\frac{\beta}{\alpha + \beta} \right)^k \]

\[= \frac{(\alpha + \beta)^n e^{-(\alpha + \beta)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \left(\frac{\alpha}{\alpha + \beta} \right)^{n-k} \left(\frac{\beta}{\alpha + \beta} \right)^k \]

\[\frac{(\alpha + \beta)^n e^{-(\alpha + \beta)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \left(\frac{\alpha}{\alpha + \beta} \right)^{n-k} \left(\frac{\beta}{\alpha + \beta} \right)^k \]

\[= \frac{(\alpha + \beta)^n e^{-(\alpha + \beta)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \left(\frac{\alpha}{\alpha + \beta} \right)^{n-k} \left(\frac{\beta}{\alpha + \beta} \right)^k \]

The marked sum above equals 1 because it is the sum of a binomial PMF over all possible values. The PMF of N is the Poisson PMF

\[P_N(n) = \begin{cases} \frac{(\alpha + \beta)^n e^{-(\alpha + \beta)}}{n!} & n = 0, 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \]

(6)

Problem 6.3.1 Solution
For a constant $a > 0$, a zero mean Laplace random variable X has PDF

\[f_X(x) = \frac{a}{2} e^{-a|x|} \quad -\infty < x < \infty \]

(1)

The moment generating function of X is

\[\phi_X(s) = E[e^{sx}] = \frac{a}{2} \int_{-\infty}^{0} e^{sx} e^{ax} \, dx + \frac{a}{2} \int_{0}^{\infty} e^{sx} e^{-ax} \, dx \]

\[= \frac{a}{2} \left[e^{s+a} - e^{s-a} \right]_{-\infty}^{\infty} \]

\[= \frac{a}{2} \left(\frac{1}{s + a} - \frac{1}{s - a} \right) \]

\[= \frac{a^2}{s^2 - a^2} \]

\[= \frac{a^2}{a^2 - s^2} \]

(5)
Problem 6.3.2 Solution

(a) By summing across the rows of the table, we see that J has PMF

$$P_J(j) = \begin{cases}
0.6 & j = -2 \\
0.4 & j = -1
\end{cases} \quad (1)$$

The MGF of J is $\phi_J(s) = E[e^{sJ}] = 0.6e^{-2s} + 0.4e^{-s}$.

(b) Summing down the columns of the table, we see that K has PMF

$$P_K(k) = \begin{cases}
0.7 & k = -1 \\
0.2 & k = 0 \\
0.1 & k = 1
\end{cases} \quad (2)$$

The MGF of K is $\phi_K(s) = 0.7e^{-s} + 0.2 + 0.1e^s$.

(c) To find the PMF of $M = J + K$, it is easiest to annotate each entry in the table with the corresponding value of M:

$$P_{J,K}(j,k) = \begin{cases}
0.42(M = -3) & k = -1 \\
0.12(M = -2) & k = 0 \\
0.06(M = -1) & k = 1
\end{cases} \quad (3)$$

We obtain $P_M(m)$ by summing over all j, k such that $j + k = m$, yielding

$$P_M(m) = \begin{cases}
0.42 & m = -3 \\
0.40 & m = -2 \\
0.14 & m = -1 \\
0.04 & m = 0
\end{cases} \quad (4)$$

(d) One way to solve this problem, is to find the MGF $\phi_M(s)$ and then take four derivatives. Sometimes it’s better to just work with definition of $E[M^4]$:

$$E[M^4] = \sum_m P_M(m) m^4 \quad (5)$$

$$= 0.42(-3)^4 + 0.40(-2)^4 + 0.14(-1)^4 + 0.04(0)^4 = 40.434 \quad (6)$$

As best I can tell, the purpose of this problem is to check that you know when not to use the methods in this chapter.

Problem 6.3.3 Solution

We find the MGF by calculating $E[e^{sX}]$ from the PDF $f_X(x)$.

$$\phi_X(s) = E[e^{sX}] = \int_a^b e^{sx} \frac{1}{b-a} dx = \frac{e^{bs} - e^{as}}{s(b-a)} \quad (1)$$

Now to find the first moment, we evaluate the derivative of $\phi_X(s)$ at $s = 0$.

$$E[X] = \left. \frac{d\phi_X(s)}{ds} \right|_{s=0} = \left. \frac{b e^{bs} - a e^{as}}{(b-a)s^2} - \frac{e^{bs} - e^{as}}{(b-a)s^2} \right|_{s=0} \quad (2)$$
Using the moment generating function of X, differentiate the numerator and denominator.

$$E[X] = \lim_{s \to 0} \frac{be^{bs} - ae^{as} + s [b^2 e^{bs} - a^2 e^{as}] - [be^{bs} - ae^{as}]}{2(b - a)s}$$

$$= \lim_{s \to 0} \frac{b^2 e^{bs} - a^2 e^{as}}{2(b - a)} = \frac{b + a}{2}$$

To find the second moment of X, we first find that the second derivative of $\phi_X(s)$ is

$$\frac{d^2 \phi_X(s)}{ds^2} = \frac{s^2 [b^2 e^{bs} - a^2 e^{as}] - 2s [be^{bs} - ae^{as}] + 2 [be^{bs} - ae^{as}]}{(b - a)s^3}$$

Substituting $s = 0$ will yield $0/0$ so once again we apply l'Hôpital’s rule and differentiate the numerator and denominator.

$$E[X^2] = \lim_{s \to 0} \frac{d^2 \phi_X(s)}{ds^2} = \lim_{s \to 0} \frac{s^2 [b^3 e^{bs} - a^3 e^{as}]}{3(b - a)s^2}$$

$$= \frac{b^3 - a^3}{3(b - a)} = \frac{(b^2 + ab + a^2)/3}{3(b - a)}$$

In this case, it is probably simpler to find these moments without using the MGF.

Problem 6.3.4 Solution

Using the moment generating function of X, $\phi_X(s) = e^{\sigma^2 s^2/2}$. We can find the nth moment of X, $E[X^n]$ by taking the nth derivative of $\phi_X(s)$ and setting $s = 0$.

$$E[X] = (\sigma^2 s e^{\sigma^2 s^2/2} \bigg|_{s=0}) = 0$$

$$E[X^2] = (\sigma^2 e^{\sigma^2 s^2/2} + \sigma^4 s^2 e^{\sigma^2 s^2/2} \bigg|_{s=0}) = \sigma^2.$$

Continuing in this manner we find that

$$E[X^3] = (3\sigma^4 s + \sigma^6 s^3) e^{\sigma^2 s^2/2} \bigg|_{s=0} = 0$$

$$E[X^4] = (3\sigma^4 + 6\sigma^6 s^2 + \sigma^8 s^4) e^{\sigma^2 s^2/2} \bigg|_{s=0} = 3\sigma^4.$$

To calculate the moments of Y, we define $Y = X + \mu$ so that Y is Gaussian (μ, σ). In this case the second moment of Y is

$$E[Y^2] = E[(X + \mu)^2] = E[X^2 + 2\mu X + \mu^2] = \sigma^2 + \mu^2.$$

Similarly, the third moment of Y is

$$E[Y^3] = E[(X + \mu)^3] = E[X^3 + 3\mu X^2 + 3\mu^2 X + \mu^3] = 3\mu \sigma^2 + \mu^3.$$

Finally, the fourth moment of Y is

$$E[Y^4] = E[(X + \mu)^4] = E[X^4 + 4\mu X^3 + 6\mu^2 X^2 + 4\mu^3 X + \mu^4] = 3\sigma^4 + 6\mu^2 \sigma^2 + \mu^4.$$
Problem 6.3.5 Solution

The PMF of K is

$$ P_K(k) = \begin{cases}
1/n & \text{k} = 1, 2, \ldots, n \\
0 & \text{otherwise}
\end{cases} \quad (1) $$

The corresponding MGF of K is

$$ \phi_K(s) = E[e^{sK}] = \frac{1}{n} (e^s + e^{2s} + \cdots + e^{ns}) \quad (2) $$

$$ = \frac{e^s}{n} \left(1 + e^s + e^{2s} + \cdots + e^{(n-1)s}\right) \quad (3) $$

$$ = \frac{e^s(e^{ns} - 1)}{n(e^s - 1)} \quad (4) $$

We can evaluate the moments of K by taking derivatives of the MGF. Some algebra will show that

$$ \frac{d\phi_K(s)}{ds} = \frac{ne^{(n+2)s} - (n + 1)e^{(n+1)s} + e^s}{n(e^s - 1)^2} \quad (5) $$

Evaluating $\frac{d\phi_K(s)}{ds}$ at $s = 0$ yields $0/0$. Hence, we apply l'Hôpital’s rule twice (by twice differentiating the numerator and twice differentiating the denominator) when we write

$$ \left. \frac{d\phi_K(s)}{ds} \right|_{s=0} = \lim_{s \to 0} \frac{n(n + 2)e^{(n+2)s} - (n + 1)^2e^{(n+1)s} + e^s}{2n(e^s - 1)} \quad (6) $$

$$ = \lim_{s \to 0} \frac{n(n + 2)^2e^{(n+2)s} - (n + 1)^3e^{(n+1)s} + e^s}{2ne^s} = (n + 1)/2 \quad (7) $$

A significant amount of algebra will show that the second derivative of the MGF is

$$ \frac{d^2\phi_K(s)}{ds^2} = \frac{n^2e^{(n+3)s} - (2n^2 + 2n - 1)e^{(n+2)s} + (n + 1)^2e^{(n+1)s} - 2e^{2s} - e^s}{n(e^s - 1)^3} \quad (8) $$

Evaluating $\frac{d^2\phi_K(s)}{ds^2}$ at $s = 0$ yields $0/0$. Because $(e^s - 1)^3$ appears in the denominator, we need to use l'Hôpital’s rule three times to obtain our answer.

$$ \left. \frac{d^2\phi_K(s)}{ds^2} \right|_{s=0} = \lim_{s \to 0} \frac{n^2(n + 3)^3e^{(n+3)s} - (2n^2 + 2n - 1)(n + 2)^3e^{(n+2)s} + (n + 1)^5 - 8e^{2s} - e^s}{6ne^s} \quad (9) $$

$$ = \frac{n^2(n + 3)^3 - (2n^2 + 2n - 1)(n + 2)^3 + (n + 1)^5 - 9}{6n} \quad (10) $$

$$ = (2n + 1)(n + 1)/6 \quad (11) $$

We can use these results to derive two well known results. We observe that we can directly use the PMF $P_K(k)$ to calculate the moments

$$ E[K] = \frac{1}{n} \sum_{k=1}^{n} k \quad E[K^2] = \frac{1}{n} \sum_{k=1}^{n} k^2 \quad (12) $$

Using the answers we found for $E[K]$ and $E[K^2]$, we have the formulas

$$ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \quad \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \quad (13) $$

241
Problem 6.4.1 Solution

N is a binomial ($n = 100, p = 0.4$) random variable. M is a binomial ($n = 50, p = 0.4$) random variable. Thus N is the sum of 100 independent Bernoulli ($p = 0.4$) and M is the sum of 50 independent Bernoulli ($p = 0.4$) random variables. Since M and N are independent, $L = M + N$ is the sum of 150 independent Bernoulli ($p = 0.4$) random variables. Hence L is a binomial $n = 150, p = 0.4$ and has PMF

$$P_L(l) = \binom{150}{l} (0.4)^l (0.6)^{150-l}.$$

Problem 6.4.2 Solution

Random variable Y has the moment generating function $\phi_Y(s) = 1/(1 - s)$. Random variable V has the moment generating function $\phi_V(s) = 1/(1 - s)^4$. Y and V are independent. $W = Y + V$.

(a) From Table 6.1, Y is an exponential ($\lambda = 1$) random variable. For an exponential (λ) random variable, Example 6.5 derives the moments of the exponential random variable. For $\lambda = 1$, the moments of Y are

(b) Since Y and V are independent, $W = Y + V$ has MGF

$$\phi_W(s) = \phi_Y(s)\phi_V(s) = \left(\frac{1}{1 - s}\right) \left(\frac{1}{1 - s}\right)^4 = \left(\frac{1}{1 - s}\right)^5.$$

W is the sum of five independent exponential ($\lambda = 1$) random variables X_1, \ldots, X_5. (That is, W is an Erlang ($n = 5, \lambda = 1$) random variable.) Each X_i has expected value $E[X] = 1$ and variance $\text{Var}[X] = 1$. From Theorem 6.1 and Theorem 6.3,

$$E[W] = 5E[X] = 5, \quad \text{Var}[W] = 5 \text{Var}[X] = 5.$$

It follows that

Problem 6.4.3 Solution

In the iid random sequence K_1, K_2, \ldots, each K_i has PMF

$$P_K(k) = \begin{cases} 1 - p & k = 0, \\ p & k = 1, \\ 0 & \text{otherwise}. \end{cases}$$

(a) The MGF of K is $\phi_K(s) = E[e^{sK}] = 1 - p + pe^s$.

(b) By Theorem 6.8, $M = K_1 + K_2 + \ldots + K_n$ has MGF

$$\phi_M(s) = [\phi_K(s)]^n = [1 - p + pe^s]^n.$$

242
(c) Although we could just use the fact that the expectation of the sum equals the sum of the expectations, the problem asks us to find the moments using $\phi_M(s)$. In this case,

$$E[M] = \frac{d\phi_M(s)}{ds} \bigg|_{s=0} = n(1 - p + pe^s)^{n-1}pe^s \bigg|_{s=0} = np$$ \hspace{1cm} (3)

The second moment of M can be found via

$$E[M^2] = \frac{d^2\phi_M(s)}{ds^2} \bigg|_{s=0}$$ \hspace{1cm} (4)

$$= np ((n - 1)(1 - p + pe^s)pe^{2s} + (1 - p + pe^s)^{n-1}e^s) \bigg|_{s=0}$$ \hspace{1cm} (5)

$$= np((n - 1)p + 1)$$ \hspace{1cm} (6)

The variance of M is

$$\text{Var}[M] = E[M^2] - (E[M])^2 = np(1 - p) = n \text{Var}[K]$$ \hspace{1cm} (7)

Problem 6.4.4 Solution

Based on the problem statement, the number of points X_i that you earn for game i has PMF

$$P_{X_i}(x) = \begin{cases} 1/3 & x = 0, 1, 2 \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (1)

(a) The MGF of X_i is

$$\phi_{X_i}(s) = E[e^{sX_i}] = 1/3 + e^s/3 + e^{2s}/3$$ \hspace{1cm} (2)

Since $Y = X_1 + \cdots + X_n$, Theorem 6.8 implies

$$\phi_Y(s) = [\phi_{X_i}(s)]^n = [1 + e^s + e^{2s}]^n/3^n$$ \hspace{1cm} (3)

(b) First we observe that first and second moments of X_i are

$$E[X_i] = \sum_x xP_{X_i}(x) = 1/3 + 2/3 = 1$$ \hspace{1cm} (4)

$$E[X_i^2] = \sum_x x^2P_{X_i}(x) = 1^2/3 + 2^2/3 = 5/3$$ \hspace{1cm} (5)

Hence,

$$\text{Var}[X_i] = E[X_i^2] - (E[X_i])^2 = 2/3.$$ \hspace{1cm} (6)

By Theorems 6.1 and 6.3, the mean and variance of Y are

$$E[Y] = nE[X] = n$$ \hspace{1cm} (7)

$$\text{Var}[Y] = n\text{Var}[X] = 2n/3$$ \hspace{1cm} (8)

Another more complicated way to find the mean and variance is to evaluate derivatives of $\phi_Y(s)$ as $s = 0$.

243
Problem 6.4.5 Solution

\[P_{K_i}(k) = \begin{cases} 2^ke^{-2}/k! & k = 0, 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \]

(1)

And let \(R_i = K_1 + K_2 + \ldots + K_i \)

(a) From Table 6.1, we find that the Poisson (\(\alpha = 2 \)) random variable \(K \) has MGF \(\phi_K(s) = e^{2(e^s-1)} \).

(b) The MGF of \(R_i \) is the product of the MGFs of the \(K_i \)'s.

\[\phi_{R_i}(s) = \prod_{n=1}^{i} \phi_K(s) = e^{2i(e^s-1)} \]

(2)

(c) Since the MGF of \(R_i \) is of the same form as that of the Poisson with parameter, \(\alpha = 2i \). Therefore we can conclude that \(R_i \) is in fact a Poisson random variable with parameter \(\alpha = 2i \). That is,

\[P_{R_i}(r) = \begin{cases} (2i)^re^{-2i}/r! & r = 0, 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \]

(3)

(d) Because \(R_i \) is a Poisson random variable with parameter \(\alpha = 2i \), the mean and variance of \(R_i \) are then both \(2i \).

Problem 6.4.6 Solution

The total energy stored over the 31 days is

\[Y = X_1 + X_2 + \cdots + X_{31} \]

(1)

The random variables \(X_1, \ldots, X_{31} \) are Gaussian and independent but not identically distributed. However, since the sum of independent Gaussian random variables is Gaussian, we know that \(Y \) is Gaussian. Hence, all we need to do is find the mean and variance of \(Y \) in order to specify the PDF of \(Y \). The mean of \(Y \) is

\[E[Y] = \sum_{i=1}^{31} E[X_i] = \sum_{i=1}^{31} (32 - i/4) = 32(31) - \frac{31(32)}{8} = 868 \text{ kW-hr} \]

(2)

Since each \(X_i \) has variance of \(100(\text{kW-hr})^2 \), the variance of \(Y \) is

\[\text{Var}[Y] = \text{Var}[X_1] + \cdots + \text{Var}[X_{31}] = 31 \text{ Var}[X_i] = 3100 \]

(3)

Since \(E[Y] = 868 \) and \(\text{Var}[Y] = 3100 \), the Gaussian PDF of \(Y \) is

\[f_Y(y) = \frac{1}{\sqrt{6200\pi}} e^{-(y-868)^2/6200} \]

(4)
Problem 6.4.7 Solution
By Theorem 6.8, we know that $\phi_M(s) = [\phi_K(s)]^n$.

(a) The first derivative of $\phi_M(s)$ is

$$\frac{d\phi_M(s)}{ds} = n [\phi_K(s)]^{n-1} \frac{d\phi_K(s)}{ds}$$

(1)

We can evaluate $d\phi_M(s)/ds$ at $s = 0$ to find $E[M]$.

$$E[M] = \left. \frac{d\phi_M(s)}{ds} \right|_{s=0} = n [\phi_K(s)]^{n-1} \left. \frac{d\phi_K(s)}{ds} \right|_{s=0} = nE[K]$$

(2)

(b) The second derivative of $\phi_M(s)$ is

$$\frac{d^2\phi_M(s)}{ds^2} = n(n-1) [\phi_K(s)]^{n-2} \left(\frac{d\phi_K(s)}{ds} \right)^2 + n [\phi_K(s)]^{n-1} \frac{d^2\phi_K(s)}{ds^2}$$

(3)

Evaluating the second derivative at $s = 0$ yields

$$E[M^2] = \left. \frac{d^2\phi_M(s)}{ds^2} \right|_{s=0} = n(n-1) (E[K])^2 + nE[K^2]$$

(4)

Problem 6.5.1 Solution

(a) From Table 6.1, we see that the exponential random variable X has MGF

$$\phi_X(s) = \frac{\lambda}{\lambda - s}$$

(1)

(b) Note that K is a geometric random variable identical to the geometric random variable X in Table 6.1 with parameter $p = 1 - q$. From Table 6.1, we know that random variable K has MGF

$$\phi_K(s) = \frac{(1-q)e^s}{1-qe^s}$$

(2)

Since K is independent of each X_i, $V = X_1 + \cdots + X_K$ is a random sum of random variables. From Theorem 6.12,

$$\phi_V(s) = \phi_K(\ln \phi_X(s)) = \frac{(1-q)\lambda}{1-q\lambda - s} = \frac{(1-q)\lambda}{(1-q)\lambda - s}$$

(3)

We see that the MGF of V is that of an exponential random variable with parameter $(1-q)\lambda$. The PDF of V is

$$f_V(v) = \begin{cases} (1-q)\lambda e^{-(1-q)\lambda v} & v \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

(4)
Problem 6.5.2 Solution
The number N of passes thrown has the Poisson PMF and MGF

$$P_N(n) = \begin{cases}
(30^n e^{-30}/n! & n = 0, 1, \ldots \\
0 & \text{otherwise}
\end{cases} \quad \phi_N(s) = e^{30(e^s-1)} \quad (1)$$

Let $X_i = 1$ if pass i is thrown and completed and otherwise $X_i = 0$. The PMF and MGF of each X_i is

$$P_{X_i}(x) = \begin{cases}
1/3 & x = 0 \\
2/3 & x = 1 \\
0 & \text{otherwise} \end{cases} \quad \phi_{X_i}(s) = 1/3 + (2/3)e^s \quad (2)$$

The number of completed passes can be written as the random sum of random variables

$$K = X_1 + \cdots + X_N \quad (3)$$

Since each X_i is independent of N, we can use Theorem 6.12 to write

$$\phi_K(s) = \phi_N(\ln \phi_{X_i}(s)) = e^{30(\phi_{X_i}(s)-1)} = e^{30(2/3)(e^s-1)} \quad (4)$$

We see that K has the MGF of a Poisson random variable with mean $E[K] = 30(2/3) = 20$, variance $\text{Var}[K] = 20$, and PMF

$$P_K(k) = \begin{cases}
(20)^k e^{-20}/k! & k = 0, 1, \ldots \\
0 & \text{otherwise} \end{cases} \quad (5)$$

Problem 6.5.3 Solution
In this problem, $Y = X_1 + \cdots + X_N$ is not a straightforward random sum of random variables because N and the X_i’s are dependent. In particular, given $N = n$, then we know that there were exactly 100 heads in N flips. Hence, given N, $X_1 + \cdots + X_N = 100$ no matter what is the actual value of N. Hence $Y = 100$ every time and the PMF of Y is

$$P_Y(y) = \begin{cases}
1 & y = 100 \\
0 & \text{otherwise} \end{cases} \quad (1)$$

Problem 6.5.4 Solution
Donovan McNabb’s passing yardage is the random sum of random variables

$$V + Y_1 + \cdots + Y_K \quad (1)$$

where Y_i has the exponential PDF

$$f_{Y_i}(y) = \begin{cases}
1/15 e^{-y/15} & y \geq 0 \\
0 & \text{otherwise} \end{cases} \quad (2)$$

From Table 6.1, the MGFs of Y and K are

$$\phi_Y(s) = \frac{1/15}{1 - s/15} = \frac{1}{1 - 15s} \quad \phi_K(s) = e^{20(e^s-1)} \quad (3)$$

From Theorem 6.12, V has MGF

$$\phi_V(s) = \phi_K(\ln \phi_Y(s)) = e^{20(\phi_Y(s)-s)} = e^{300s/(1-15s)} \quad (4)$$
The PDF of V cannot be found in a simple form. However, we can use the MGF to calculate the mean and variance. In particular,

$$E[V] = \left. \frac{d\phi_V(s)}{ds} \right|_{s=0} = e^{300s/(1-15s)} \frac{300}{(1-15s)^2} \bigg|_{s=0} = 300 \quad (5)$$

$$E[V^2] = \left. \frac{d^2\phi_V(s)}{ds^2} \right|_{s=0} = e^{300s/(1-15s)} \left(\frac{300}{(1-15s)^2} \right)^2 + e^{300s/(1-15s)} \frac{9000}{(1-15s)^3} \bigg|_{s=0} = 99,000 \quad (7)$$

Thus, V has variance $\text{Var}[V] = E[V^2] - (E[V])^2 = 9,000$ and standard deviation $\sigma_V \approx 94.9$.

A second way to calculate the mean and variance of V is to use Theorem 6.13 which says

$$E[V] = E[K]E[Y] = 20(15) = 200 \quad (8)$$

$$\text{Var}[V] = E[K]\text{Var}[Y] + \text{Var}[K](E[Y])^2 = (20)^2 + (20)^2 = 9000 \quad (9)$$

Problem 6.5.5 Solution

Since each ticket is equally likely to have one of $\binom{46}{6}$ combinations, the probability a ticket is a winner is

$$q = \frac{1}{\binom{46}{6}} \quad (1)$$

Let $X_i = 1$ if the ith ticket sold is a winner; otherwise $X_i = 0$. Since the number K of tickets sold has a Poisson PMF with $E[K] = r$, the number of winning tickets is the random sum

$$V = X_1 + \cdots + X_K \quad (2)$$

From Appendix A,

$$\phi_X(s) = (1 - q) + q e^s \quad \phi_K(s) = e^{r[e^s-1]} \quad (3)$$

By Theorem 6.12,

$$\phi_V(s) = \phi_K(\ln \phi_X(s)) = e^{r[\phi_X(s)]-1} = e^{rq(e^s-1)} \quad (4)$$

Hence, we see that V has the MGF of a Poisson random variable with mean $E[V] = rq$. The PMF of V is

$$P_V(v) = \begin{cases} (rq)^v e^{-rq} / v! & v = 0, 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (5)$$

Problem 6.5.6 Solution

(a) We can view K as a shifted geometric random variable. To find the MGF, we start from first principles with Definition 6.1:

$$\phi_K(s) = \sum_{k=0}^{\infty} e^{sk} p(1-p)^k = p \sum_{n=0}^{\infty} [(1-p)e^s]^k = \frac{p}{1 - (1-p)e^s} \quad (1)$$

247
(b) First, we need to recall that each X_i has MGF $\phi_X(s) = e^{s+2s/2}$. From Theorem 6.12, the MGF of R is

$$\phi_R(s) = \phi_K(\ln \phi_X(s)) = \phi_K(s + 2s/2) = \frac{p}{1 - (1-p)e^{s+2s/2}} \quad (2)$$

(c) To use Theorem 6.13, we first need to calculate the mean and variance of K:

$$E[K] = \left. \frac{d\phi_K(s)}{ds} \right|_{s=0} = \left. \frac{p(1-p)e^s}{1 - (1-p)e^s} \right|_{s=0} = \frac{1-p}{p} \quad (3)$$

$$E[K^2] = \left. \frac{d^2\phi_K(s)}{ds^2} \right|_{s=0} = \left. \frac{p(1-p)[1 - (1-p)e^s]e^s + 2(1-p)e^{2s}}{[1 - (1-p)e^s]^2} \right|_{s=0} = \frac{(1-p)(2-p)}{p^2} \quad (4)$$

Hence, $\text{Var}[K] = E[K^2] - (E[K])^2 = (1-p)/p^2$. Finally, we can use Theorem 6.13 to write

$$\text{Var}[R] = E[K]\text{Var}[X] + (E[X])^2\text{Var}[K] = \frac{1-p}{p} + \frac{1-p}{p^2} = \frac{1-p^2}{p^2} \quad (5)$$

Problem 6.5.7 Solution

The way to solve for the mean and variance of U is to use conditional expectations. Given $K = k$, $U = X_1 + \cdots + X_k$ and

$$E[U|K = k] = E[X_1 + \cdots + X_k|X_1 + \cdots + X_n = k] \quad (1)$$

$$= \sum_{i=1}^k E[X_i|X_1 + \cdots + X_n = k] \quad (2)$$

Since X_i is a Bernoulli random variable,

$$E[X_i|X_1 + \cdots + X_n = k] = P \left[X_i = 1 \left| \sum_{j=1}^n X_j = k \right. \right] \quad (3)$$

$$= \frac{P \left[X_i = 1, \sum_{j\neq i} X_j = k - 1 \right]}{P \left[\sum_{j=1}^n X_j = k \right]} \quad (4)$$

Note that $\sum_{j=1}^n X_j$ is just a binomial random variable for n trials while $\sum_{j\neq i} X_j$ is a binomial random variable for $n - 1$ trials. In addition, X_i and $\sum_{j\neq i} X_j$ are independent random variables. This implies

$$E[X_i|X_1 + \cdots + X_n = k] = \frac{P \left[X_i = 1 \right] P \left[\sum_{j\neq i} X_j = k - 1 \right]}{P \left[\sum_{j=1}^n X_j = k \right]} \quad (5)$$

$$= \frac{p(n-1)p^{k-1}(1-p)^{n-1-(k-1)}}{\left(\begin{array}{c} n \\ k \end{array}\right)p^k(1-p)^{n-k}} = k \quad (6)$$
A second way is to argue that symmetry implies \(E[X_i | X_1 + \cdots + X_n = k] = \gamma \), the same for each \(i \). In this case,

\[
n\gamma = \sum_{i=1}^{n} E[X_i | X_1 + \cdots + X_n = k] = E[X_1 + \cdots + X_n | X_1 + \cdots + X_n = k] = k
\]

Thus \(\gamma = k/n \). At any rate, the conditional mean of \(U \) is

\[
E[U | K = k] = \sum_{i=1}^{k} E[X_i | X_1 + \cdots + X_n = k] = \sum_{i=1}^{k} \frac{k}{n} = \frac{k^2}{n}
\]

This says that the random variable \(E[U | K] = K^2/n \). Using iterated expectations, we have

\[
E[U] = E[E[U | K]] = E[K^2/n]
\]

Since \(K \) is a binomial random variable, we know that \(E[K] = np \) and \(\text{Var}[K] = np(1 - p) \). Thus,

\[
E[U] = \frac{1}{n} E[K^2] = \frac{1}{n} (\text{Var}[K] + (E[K])^2) = p(1 - p) + np^2
\]

On the other hand, \(V \) is just an ordinary random sum of independent random variables and the mean of \(E[V] = E[X]E[M] = np^2 \).

Problem 6.5.8 Solution

Using \(N \) to denote the number of games played, we can write the total number of points earned as the random sum

\[
Y = X_1 + X_2 + \cdots + X_N
\]

(a) It is tempting to use Theorem 6.12 to find \(\phi_Y(s) \); however, this would be wrong since each \(X_i \) is not independent of \(N \). In this problem, we must start from first principles using iterated expectations.

\[
\phi_Y(s) = E \left[E \left[e^{s(X_1 + \cdots + X_N)} | N \right] \right] = \sum_{n=1}^{\infty} P_N(n) E \left[e^{s(X_1 + \cdots + X_n)} | N = n \right]
\]

Given \(N = n \), \(X_1, \ldots, X_n \) are independent so that

\[
E \left[e^{s(X_1 + \cdots + X_n)} | N = n \right] = E \left[e^{sX_1} | N = n \right] E \left[e^{sX_2} | N = n \right] \cdots E \left[e^{sX_n} | N = n \right]
\]

Given \(N = n \), we know that games 1 through \(n - 1 \) were either wins or ties and that game \(n \) was a loss. That is, given \(N = n \), \(X_n = 0 \) and for \(i < n \), \(X_i \neq 0 \). Moreover, for \(i < n \), \(X_i \) has the conditional PMF

\[
P_{X_i | N=n} = P_{X_i | X_i \neq 0} = \begin{cases} 1/2 & x = 1, 2 \\ 0 & \text{otherwise} \end{cases}
\]

These facts imply

\[
E \left[e^{sX_n} | N = n \right] = e^0 = 1
\]

and that for \(i < n \),

\[
E \left[e^{sX_i} | N = n \right] = (1/2)e^s + (1/2)e^{2s} = e^s/2 + e^{2s}/2
\]

249
Now we can find the MGF of Y.

$$
\phi_Y(s) = \sum_{n=1}^{\infty} P_N(n) E[e^{sX_1}|N=n] E[e^{sX_2}|N=n] \cdots E[e^{sX_n}|N=n]
$$

$$
= \sum_{n=1}^{\infty} P_N(n) \left(\frac{e^s}{2} + e^{2s}/2\right)^{n-1} = \frac{1}{e^s/2 + e^{2s}/2} \sum_{n=1}^{\infty} P_N(n) \left(\frac{e^s}{2} + e^{2s}/2\right)^n
$$

(7)

It follows that

$$
\phi_Y(s) = \frac{1}{e^s/2 + e^{2s}/2} \sum_{n=1}^{\infty} P_N(n) e^{n \ln(e^s/2 + e^{2s}/2)} = \frac{\phi_N(\ln(e^s/2 + e^{2s}/2))}{e^s/2 + e^{2s}/2}
$$

(8)

The tournament ends as soon as you lose a game. Since each game is a loss with probability 1/3 independent of any previous game, the number of games played has the geometric PMF and corresponding MGF

$$
P_N(n) = \begin{cases}
(2/3)^{n-1} (1/3) & n = 1, 2, \ldots \\
0 & \text{otherwise}
\end{cases}
$$

$$
\phi_N(s) = \frac{(1/3)e^s}{1 - (2/3)e^s}
$$

(9)

Thus, the MGF of Y is

$$
\phi_Y(s) = \frac{1/3}{1 - (e^s + e^{2s})/3}
$$

(10)

(b) To find the moments of Y, we evaluate the derivatives of the MGF $\phi_Y(s)$. Since

$$
\frac{d\phi_Y(s)}{ds} = \frac{e^s + 2e^{2s}}{9 \left[1 - e^s/3 - e^{2s}/3\right]^2}
$$

(12)

we see that

$$
E[Y] = \frac{d\phi_Y(s)}{ds} \bigg|_{s=0} = \frac{3}{9(1/3)^2} = 3
$$

(13)

If you're curious, you may notice that $E[Y] = 3$ precisely equals $E[N]E[X_i]$, the answer you would get if you mistakenly assumed that N and each X_i were independent. Although this may seem like a coincidence, it actually the result of theorem known as Wald's equality.

The second derivative of the MGF is

$$
\frac{d^2\phi_Y(s)}{ds^2} = \frac{(1 - e^s/3 - e^{2s}/3)(e^s + 4e^{2s}) + 2(e^s + 2e^{2s})^2/3}{9(1 - e^s/3 - e^{2s}/3)^3}
$$

(14)

The second moment of Y is

$$
E[Y^2] = \frac{d^2\phi_Y(s)}{ds^2} \bigg|_{s=0} = \frac{5/3 + 6}{1/3} = 23
$$

(15)

The variance of Y is

$$
$$
Problem 6.6.1 Solution

We know that the waiting time, W is uniformly distributed on $[0,10]$ and therefore has the following PDF.

$$f_W(w) = \begin{cases}
1/10 & 0 \leq w \leq 10 \\
0 & \text{otherwise}
\end{cases}$$

(1)

We also know that the total time is 3 milliseconds plus the waiting time, that is $X = W + 3$.

(b) The variance of X is $\text{Var}[X] = \text{Var}[W + 3] = \text{Var}[W] = 25/3$.

(c) The expected value of A is $E[A] = 12E[X] = 96$.

(d) The standard deviation of A is $\sigma_A = \sqrt{\text{Var}[A]} = \sqrt{12(25/3)} = 10$.

(e) $P[A > 116] = 1 - \Phi(116 - 96) = 1 - \Phi(2) = 0.02275$.

(f) $P[A < 86] = \Phi(86 - 96) = \Phi(-1) = 1 - \Phi(1) = 0.1587$.

Problem 6.6.2 Solution

Knowing that the probability that voice call occurs is 0.8 and the probability that a data call occurs is 0.2 we can define the random variable D_i as the number of data calls in a single telephone call. It is obvious that for any i there are only two possible values for D_i, namely 0 and 1. Furthermore for all i the D_i’s are independent and identically distributed with the following PMF.

$$P_{D_i}(d) = \begin{cases}
0.8 & d = 0 \\
0.2 & d = 1 \\
0 & \text{otherwise}
\end{cases}$$

(1)

From the above we can determine that

$$E[D] = 0.2 \quad \text{Var}[D] = 0.2 - 0.04 = 0.16$$

(2)

With these facts, we can answer the questions posed by the problem.

(a) $E[K_{100}] = 100E[D] = 20$

(b) $\text{Var}[K_{100}] = \sqrt{100\text{Var}[D]} = \sqrt{16} = 4$

(c) $P[K_{100} \geq 18] = 1 - \Phi(\frac{18 - 20}{4}) = 1 - \Phi(-1/2) = \Phi(1/2) = 0.6915$

(d) $P[16 \leq K_{100} \leq 24] = \Phi(\frac{24 - 20}{4}) - \Phi(\frac{16 - 20}{4}) = \Phi(1) - \Phi(-1) = 2\Phi(1) - 1 = 0.6826$

Problem 6.6.3 Solution

(a) Let X_1, \ldots, X_{120} denote the set of call durations (measured in minutes) during the month. From the problem statement, each $X - I$ is an exponential (λ) random variable with $E[X_i] = 1/\lambda = 2.5$ min and $\text{Var}[X_i] = 1/\lambda^2 = 6.25$ min2. The total number of minutes used during the month is $Y = X_1 + \cdots + X_{120}$. By Theorem 6.1 and Theorem 6.3,

$$E[Y] = 120E[X_i] = 300 \quad \text{Var}[Y] = 120\text{Var}[X_i] = 750.$$

(1)
The subscriber’s bill is $30 + 0.4(y - 300)^+ \text{ where } x^+ = x \text{ if } x \geq 0 \text{ or } x^+ = 0 \text{ if } x < 0. \text{ the subscribers bill is exactly $36 if } Y = 315. \text{ The probability the subscribers bill exceeds $36 equals}
\begin{equation}
P[Y > 315] = P\left[\frac{Y - 300}{\sigma_y} > \frac{315 - 300}{\sigma_y}\right] = Q\left(\frac{15}{\sqrt{750}}\right) = 0.2919. \quad (2)
\end{equation}

(b) If the actual call duration is X_i, the subscriber is billed for $M_i = \lceil X_i \rceil$ minutes. Because each X_i is an exponential (λ) random variable, Theorem 3.9 says that M_i is a geometric (p) random variable with $p = 1 - e^{-\lambda} = 0.3297$. Since M_i is geometric,
\begin{align*}
E[M_i] &= \frac{1}{p} = 3.033, \\
\text{Var}[M_i] &= \frac{1-p}{p^2} = 6.167. \quad (3)
\end{align*}
The number of billed minutes in the month is $B = M_1 + \cdots + M_{120}$. Since M_1, \ldots, M_{120} are iid random variables,
\begin{align*}
E[B] &= 120E[M_i] = 364.0, \\
\text{Var}[B] &= 120\text{Var}[M_i] = 740.08. \quad (4)
\end{align*}
Similar to part (a), the subscriber is billed $36 if $B = 315 minutes. The probability the subscriber is billed more than $36 is
\begin{equation}
P[B > 315] = P\left[\frac{B - 364}{\sqrt{740.08}} > \frac{315 - 365}{\sqrt{740.08}}\right] = Q(-1.8) = \Phi(1.8) = 0.964. \quad (5)
\end{equation}

Problem 6.7.1 Solution

In Problem 6.2.6, we learned that a sum of iid Poisson random variables is a Poisson random variable. Hence W_n is a Poisson random variable with mean $E[W_n] = nE[K] = n$. Thus W_n has variance $\text{Var}[W_n] = n$ and PMF
\begin{equation}
P_{W_n}(w) = \begin{cases}
 n^w e^{-n}/w! & \text{if } w = 0, 1, 2, \ldots \\
 0 & \text{otherwise}
\end{cases} \quad (1)
\end{equation}
All of this implies that we can exactly calculate
\begin{equation}
P[W_n = n] = P_{W_n}(n) = n^n e^{-n}/n! \quad (2)
\end{equation}
Since we can perform the exact calculation, using a central limit theorem may seem silly; however for large n, calculating n^n or $n!$ is difficult for large n. Moreover, it’s interesting to see how good the approximation is. In this case, the approximation is
\begin{equation}
P[W_n = n] = P[n \leq W_n \leq n] \approx \Phi\left(\frac{n + 0.5 - n}{\sqrt{n}}\right) - \Phi\left(\frac{n - 0.5 - n}{\sqrt{n}}\right) = 2\Phi\left(\frac{1}{2\sqrt{n}}\right) - 1 \quad (3)
\end{equation}
The comparison of the exact calculation and the approximation are given in the following table.
\begin{align*}
| P[W_n = n] | & | n = 1 | n = 4 | n = 16 | n = 64 | \\
\text{exact} & 0.3679 | 0.1954 | 0.0992 | 0.0498 | \\
\text{approximate} & 0.3829 | 0.1974 | 0.0995 | 0.0498 |
\end{align*}
Problem 6.7.2 Solution

(a) Since the number of requests N has expected value $E[N] = 300$ and variance $\text{Var}[N] = 300$, we need C to satisfy

$$P[N > C] = P\left[\frac{N - 300}{\sqrt{300}} > \frac{C - 300}{\sqrt{300}}\right] = 1 - \Phi\left(\frac{C - 300}{\sqrt{300}}\right) = 0.05. \hspace{1cm} (1)$$

From Table 3.1, we note that $\Phi(1.65) = 0.9505$. Thus,

$$C = 300 + 1.65\sqrt{300} = 328.6. \hspace{1cm} (3)$$

(b) For $C = 328.6$, the exact probability of overload is

$$P[N > C] = 1 - P[N \leq 328] = 1 - \text{poissoncdf}(300, 328) = 0.0516, \hspace{1cm} (4)$$

which shows the central limit theorem approximation is reasonable.

(c) This part of the problem could be stated more carefully. Re-examining Definition 2.10 for the Poisson random variable and the accompanying discussion in Chapter 2, we observe that the webserver has an arrival rate of $\lambda = 300$ hits/min, or equivalently $\lambda = 5$ hits/sec. Thus in a one second interval, the number of requests N' is a Poisson ($\alpha = 5$) random variable.

However, since the server “capacity” in a one second interval is not precisely defined, we will make the somewhat arbitrary definition that the server capacity is $C' = 328.6/60 = 5.477$ packets/sec. With this somewhat arbitrary definition, the probability of overload in a one second interval is

$$P[N' > C'] = 1 - P[N' \leq 5.477] = 1 - P[N' \leq 5]. \hspace{1cm} (5)$$

Because the number of arrivals in the interval is small, it would be a mistake to use the Central Limit Theorem to estimate this overload probability. However, the direct calculation of the overload probability is not hard. For $E[N'] = \alpha = 5$,

$$1 - P[N' \leq 5] = 1 - \sum_{n=0}^{5} P_N(n) = 1 - e^{-\alpha} \sum_{n=0}^{5} \frac{\alpha^n}{n!} = 0.3840. \hspace{1cm} (6)$$

(d) Here we find the smallest C such that $P[N' \leq C] \geq 0.95$. From the previous step, we know that $C > 5$. Since N' is a Poisson ($\alpha = 5$) random variable, we need to find the smallest C such that

$$P[N \leq C] = \sum_{n=0}^{C} \alpha^n e^{-\alpha}/n! \geq 0.95. \hspace{1cm} (7)$$

Some experiments with $\text{poissoncdf(alpha,c)}$ will show that $P[N \leq 8] = 0.9319$ while $P[N \leq 9] = 0.9682$. Hence $C = 9$.

253
(c) If we use the Central Limit theorem to estimate the overload probability in a one second interval, we would use the facts that $E[N'] = 5$ and $\text{Var}[N'] = 5$ to estimate the the overload probability as

$$1 - P[N' \leq 5] = 1 - \Phi\left(\frac{5 - 5}{\sqrt{5}}\right) = 0.5$$

which overestimates the overload probability by roughly 30 percent. We recall from Chapter 2 that a Poisson random is the limiting case of the (n, p) binomial random variable when n is large and $np = \alpha$. In general, for fixed p, the Poisson and binomial PMFs become closer as n increases. Since large n is also the case for which the central limit theorem applies, it is not surprising that the CLT approximation for the Poisson (α) CDF is better when $\alpha = np$ is large.

Comment: Perhaps a more interesting question is why the overload probability in a one-second interval is so much higher than that in a one-minute interval? To answer this, consider a T-second interval in which the number of requests N_T is a Poisson (λT) random variable while the server capacity is cT hits. In the earlier problem parts, $c = 5.477$ hits/sec. We make the assumption that the server system is reasonably well-engineered in that $c > \lambda$. (We will learn in Chapter 12 that to assume otherwise means that the backlog of requests will grow without bound.) Further, assuming T is fairly large, we use the CLT to estimate the probability of overload in a T-second interval as

$$P [N_T \geq cT] = P \left[\frac{N_T - \lambda T}{\sqrt{\lambda T}} \geq k\sqrt{T} \right] = Q\left(k\sqrt{T}\right),$$

where $k = (c - \lambda)/\sqrt{\lambda}$. As long as $c > \lambda$, the overload probability decreases with increasing T. In fact, the overload probability goes rapidly to zero as T becomes large. The reason is that the gap $cT - \lambda T$ between server capacity cT and the expected number of requests λT grows linearly in T while the standard deviation of the number of requests grows proportional to \sqrt{T}. However, one should add that the definition of a T-second overload is somewhat arbitrary. In fact, one can argue that as T becomes large, the requirement for no overloads simply becomes less stringent. In Chapter 12, we will learn techniques to analyze a system such as this webserver in terms of the average backlog of requests and the average delay in serving a request. These statistics won’t depend on a particular time period T and perhaps better describe the system performance.

Problem 6.7.3 Solution

(a) The number of tests L needed to identify 500 acceptable circuits is a Pascal ($k = 500$, $p = 0.8$) random variable, which has expected value $E[L] = k/p = 625$ tests.

(b) Let K denote the number of acceptable circuits in $n = 600$ tests. Since K is binomial ($n = 600$, $p = 0.8$), $E[K] = np = 480$ and $\text{Var}[K] = np(1 - p) = 96$. Using the CLT, we estimate the probability of finding at least 500 acceptable circuits as

$$P[K \geq 500] = P \left[\frac{K - 480}{\sqrt{96}} \geq \frac{20}{\sqrt{96}} \right] \approx Q\left(\frac{20}{\sqrt{96}}\right) = 0.0206.$$

(c) Using MATLAB, we observe that

```matlab
1.0-binomialcdf(600, 0.8, 499)
ans =
0.0215
```
We need to find the smallest value of n such that the binomial (n, p) random variable K satisfies $P[K \geq 500] \geq 0.9$. Since $E[K] = np$ and $\text{Var}[K] = np(1-p)$, the CLT approximation yields

$$P[K \geq 500] = P\left[\frac{K - np}{\sqrt{np(1-p)}} \geq \frac{500 - np}{\sqrt{np(1-p)}}\right] \approx 1 - \Phi(z) = 0.90. \hspace{1cm} (2)$$

where $z = (500 - np)/\sqrt{np(1-p)}$. It follows that $1 - \Phi(z) = \Phi(-z) \geq 0.9$, implying $z = -1.29$. Since $p = 0.8$, we have that

$$np - 500 = 1.29\sqrt{np(1-p)}. \hspace{1cm} (3)$$

Equivalently, for $p = 0.8$, solving the quadratic equation

$$\left(\frac{n - 500}{p}\right)^2 = (1.29)^2 \frac{1-p}{p} \hspace{1cm} (4)$$

we obtain $n = 641.3$. Thus we should test $n = 642$ circuits.

Problem 6.8.1 Solution

The $N[0,1]$ random variable Z has MGF $\phi_Z(s) = e^{s^2/2}$. Hence the Chernoff bound for Z is

$$P[Z \geq c] \leq \min_{s \geq 0} e^{-sc} e^{s^2/2} = \min_{s \geq 0} e^{s^2/2 - sc} \hspace{1cm} (1)$$

We can minimize $e^{s^2/2 - sc}$ by minimizing the exponent $s^2/2 - sc$. By setting

$$\frac{d}{ds} \left(s^2/2 - sc\right) = 2s - c = 0 \hspace{1cm} (2)$$

we obtain $s = c$. At $s = c$, the upper bound is $P[Z \geq c] \leq e^{-c^2/2}$. The table below compares this upper bound to the true probability. Note that for $c = 1, 2$ we use Table 3.1 and the fact that $Q(c) = 1 - \Phi(c)$.

<table>
<thead>
<tr>
<th>c</th>
<th>Chernoff bound</th>
<th>$Q(c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.606</td>
<td>0.1587</td>
</tr>
<tr>
<td>2</td>
<td>0.135</td>
<td>0.0228</td>
</tr>
<tr>
<td>3</td>
<td>0.011</td>
<td>0.0013</td>
</tr>
<tr>
<td>4</td>
<td>3.35 \times 10^{-4}</td>
<td>3.17 \times 10^{-5}</td>
</tr>
<tr>
<td>5</td>
<td>3.73 \times 10^{-6}</td>
<td>2.87 \times 10^{-7}</td>
</tr>
</tbody>
</table>

(3)

We see that in this case, the Chernoff bound typically overestimates the true probability by roughly a factor of 10.

Problem 6.8.2 Solution

For an $N[\mu, \sigma^2]$ random variable X, we can write

$$P[X \geq c] = P[(X - \mu)/\sigma \geq (c - \mu)/\sigma] = P[Z \geq (c - \mu)/\sigma] \hspace{1cm} (1)$$

Since Z is $N[0,1]$, we can apply the result of Problem 6.8.1 with c replaced by $(c - \mu)/\sigma$. This yields

$$P[X \geq c] = P[Z \geq (c - \mu)/\sigma] \leq e^{-(c-\mu)^2/2\sigma^2} \hspace{1cm} (2)$$

255
Problem 6.8.3 Solution
From Appendix A, we know that the MGF of K is
\[\phi_K(s) = e^{\alpha(e^s - 1)} \]
(1)
The Chernoff bound becomes
\[P[K \geq c] \leq \min_{s \geq 0} e^{-sc} e^{\alpha(e^s - 1)} = \min_{s \geq 0} e^{\alpha(e^s - 1) - sc} \]
(2)
Since e^s is an increasing function, it is sufficient to choose s to minimize $h(s) = \alpha(e^s - 1) - sc$. Setting $dh(s)/ds = \alpha e^s - c = 0$ yields $e^s = c/\alpha$ or $s = \ln(c/\alpha)$. Note that for $c < \alpha$, the minimizing s is negative. In this case, we choose $s = 0$ and the Chernoff bound is $P[K \geq c] \leq 1$. For $c \geq \alpha$, applying $s = \ln(c/\alpha)$ yields $P[K \geq c] \leq e^{-\alpha(\alpha e/c)c}$. A complete expression for the Chernoff bound is
\[P[K \geq c] \leq \begin{cases} 1 & c < \alpha \\ \alpha e^{-\alpha/\alpha} & c \geq \alpha \end{cases} \]
(3)

Problem 6.8.4 Solution
This problem is solved completely in the solution to Quiz 6.8! We repeat that solution here. Since $W = X_1 + X_2 + X_3$ is an Erlang ($n = 3, \lambda = 1/2$) random variable, Theorem 3.11 says that for any $w > 0$, the CDF of W satisfies
\[F_W(w) = 1 - \sum_{k=0}^{2} \frac{(\lambda w)^k e^{-\lambda w}}{k!} \]
(1)
Equivalently, for $\lambda = 1/2$ and $w = 20$,
\[P[W > 20] = 1 - F_W(20) = e^{-10} \left(1 + \frac{10}{1} + \frac{10^2}{2!}\right) = 61e^{-10} = 0.0028 \]
(2)

Problem 6.8.5 Solution
Let $W_n = X_1 + \cdots + X_n$. Since $M_n(X) = W_n/n$, we can write
\[P[M_n(X) \geq c] = P[W_n \geq nc] \]
(1)
Since $\phi_{W_n}(s) = (\phi_X(s))^n$, applying the Chernoff bound to W_n yields
\[P[W_n \geq nc] \leq \min_{s \geq 0} e^{-sc} \phi_{W_n}(s) = \min_{s \geq 0} \left(e^{-sc} \phi_X(s)\right)^n \]
(2)
For $y \geq 0$, y^n is a nondecreasing function of y. This implies that the value of s that minimizes $e^{-sc} \phi_X(s)$ also minimizes $(e^{-sc} \phi_X(s))^n$. Hence
\[P[M_n(X) \geq c] = P[W_n \geq nc] \leq \left(\min_{s \geq 0} e^{-sc} \phi_X(s)\right)^n \]
(3)
Problem 6.9.1 Solution

Note that W_n is a binomial $(10^n, 0.5)$ random variable. We need to calculate

$$P[B_n] = P[0.499 \times 10^n \leq W_n \leq 0.501 \times 10^n]$$

$$= P[W_n \leq 0.501 \times 10^n] - P[W_n < 0.499 \times 10^n].$$

(1)

(2)

A complication is that the event $W_n < w$ is not the same as $W_n \leq w$ when w is an integer. In this case, we observe that

$$P[W_n < w] = P[W_n \leq \lceil w \rceil - 1] = F_{W_n}(\lceil w \rceil - 1)$$

(3)

Thus

$$P[B_n] = F_{W_n}(0.501 \times 10^n) - F_{W_n}(\lceil 0.499 \times 10^n \rceil - 1)$$

(4)

For $n = 1, \ldots, N$, we can calculate $P[B_n]$ in this MATLAB program:

```matlab
function pb=binomialcdftest(N);
pb=zeros(1,N);
for n=1:N,
    w=[0.499 0.501]*10^n;
    w(1)=ceil(w(1))-1;
    pb(n)=diff(binomialcdf(10^n,0.5,w));
end
```

Unfortunately, on this user’s machine (a Windows XP laptop), the program fails for $N = 4$. The problem, as noted earlier is that `binomialcdf.m` uses `binomialpmf.m`, which fails for a binomial $(10000, p)$ random variable. Of course, your mileage may vary. A slightly better solution is to use the `bignomialcdf.m` function, which is identical to `binomialcdf.m` except it calls `bignomialpmf.m` rather than `binomialpmf.m`. This enables calculations for larger values of n, although at some cost in numerical accuracy. Here is the code:

```matlab
function pb=bignomialcdftest(N);
pb=zeros(1,N);
for n=1:N,
    w=[0.499 0.501]*10^n;
    w(1)=ceil(w(1))-1;
    pb(n)=diff(bignomialcdf(10^n,0.5,w));
end
```

For comparison, here are the outputs of the two programs:

```matlab
>> binomialcdftest(4)
an =
    0.2461  0.0796  0.0756       NaN
>> bignomialcdftest(6)
an =
    0.2461  0.0796  0.0756  0.1663  0.4750  0.9546
```

The result 0.9546 for $n = 6$ corresponds to the exact probability in Example 6.15 which used the CLT to estimate the probability as 0.9544. Unfortunately for this user, for $n = 7$, `bignomialcdftest(7)` failed.

257
Problem 6.9.2 Solution

The Erlang \((n, \lambda = 1)\) random variable \(X\) has expected value \(E[X] = n/\lambda = n\) and variance \(\text{Var}[X] = n/\lambda^2 = n\). The PDF of \(X\) as well as the PDF of a Gaussian random variable \(Y\) with the same expected value and variance are

\[
f_X(x) = \begin{cases}
 \frac{x^{n-1}e^{-x}}{(n-1)!} & x \geq 0 \\
 0 & \text{otherwise}
\end{cases}
\]

\[
f_Y(x) = \frac{1}{\sqrt{2\pi n}} e^{-x^2/2n}
\]

From the forms of the functions, it not likely to be apparent that \(f_X(x)\) and \(f_Y(x)\) are similar. The following program plots \(f_X(x)\) and \(f_Y(x)\) for values of \(x\) within three standard deviations of the expected value \(n\). Below are sample outputs of \texttt{erlangclt(n)} for \(n = 4, 20, 100\).

In the graphs we will see that as \(n\) increases, the Erlang PDF becomes increasingly similar to the Gaussian PDF of the same expected value and variance. This is not surprising since the Erlang \((n, \lambda)\) random variable is the sum of \(n\) of exponential random variables and the CLT says that the Erlang CDF should converge to a Gaussian CDF as \(n\) gets large.

On the other hand, the convergence should be viewed with some caution. For example, the mode (the peak value) of the Erlang PDF occurs at \(x = n - 1\) while the mode of the Gaussian PDF is at \(x = n\). This difference only appears to go away for \(n = 100\) because the graph \(x\)-axis range is expanding. More important, the two PDFs are quite different far away from the center of the distribution. The Erlang PDF is always zero for \(x < 0\) while the Gaussian PDF is always positive. For large positive \(x\), the two distributions do not have the same exponential decay. Thus it’s not a good idea to use the CLT to estimate probabilities of rare events such as \(\{X > x\}\) for extremely large values of \(x\).

Problem 6.9.3 Solution

In this problem, we re-create the plots of Figure 6.3 except we use the binomial PMF and corresponding Gaussian PDF. Here is a MATLAB program that compares the binomial \((n, p)\) PMF and the Gaussian PDF with the same expected value and variance.

```matlab
function df=erlangclt(n);
r=3*sqrt(n);
x=(n-r):(2*r)/100:n+r;
fx=erlangpdf(n,1,x);
fy=gausspdf(n,sqrt(n),x);
plot(x,fx,x,fy);
df=fx-fy;
```
Here are the output plots for $p = 1/2$ and $n = 2, 4, 8, 16$.

To see why the values of the PDF and PMF are roughly the same, consider the Gaussian random variable Y. For small Δ,

$$f_Y(x) \Delta \approx \frac{F_Y(x + \Delta/2) - F_Y(x - \Delta/2)}{\Delta}.$$

(1)

For $\Delta = 1$, we obtain

$$f_Y(x) \approx F_Y(x + 1/2) - F_Y(x - 1/2).$$

(2)

Since the Gaussian CDF is approximately the same as the CDF of the binomial (n, p) random variable X, we observe for an integer x that

$$f_Y(x) \approx F_X(x + 1/2) - F_X(x - 1/2) = P_X(x).$$

(3)

Although the equivalence in heights of the PMF and PDF is only an approximation, it can be useful for checking the correctness of a result.

Problem 6.9.4 Solution

Since the `conv` function is for convolving signals in time, we treat $P_{X_1}(x)$ and $P_{X_2}(x_2)x$, or as though they were signals in time starting at time $x = 0$. That is,

$$px1 = [P_{X_1}(0) \ P_{X_1}(1) \ \cdots \ P_{X_1}(25)]$$

(1)

$$px2 = [P_{X_2}(0) \ P_{X_2}(1) \ \cdots \ P_{X_2}(100)]$$

(2)
In particular, between its minimum and maximum values, the vector px2 must enumerate all integer values, including those which have zero probability. In addition, we write down sw = 0:125 directly based on knowledge that the range enumerated by px1 and px2 corresponds to $X_1 + X_2$ having a minimum value of 0 and a maximum value of 125.

The resulting plot will be essentially identical to Figure 6.4. One final note, the command `set(h,'LineWidth',0.25)` is used to make the bars of the PMF thin enough to be resolved individually.

Problem 6.9.5 Solution

Since the `mdgrid` function extends naturally to higher dimensions, this solution follows the logic of `sumx1x2` in Example 6.19.

The output of `sumx1x2x3` is the plot of the PMF of W shown below. We use the command `set(h,'LineWidth',0.25)` to ensure that the bars of the PMF are thin enough to be resolved individually.

Problem 6.9.6 Solution

`sumfinitepmf` generalizes the method of Example 6.19. The only difference is that the PMFs px and py and ranges sx and sy are not hard coded, but instead are function inputs.
As an example, suppose \(X \) is a discrete uniform \((0, 20)\) random variable and \(Y \) is an independent discrete uniform \((0, 80)\) random variable. The following program \texttt{sum2unif} will generate and plot the PMF of \(W = X + Y \).

%sum2unif.m
sx=0:20;px=ones(1,21)/21;
sy=0:80;py=ones(1,81)/81;
[pw,sw]=sumfinitepmf(px,sx,py,sy);
h=pmfplot(sw,pw,’\it w’,’\it P_W(w)’);
set(h,’LineWidth’,0.25);

Here is the graph generated by \texttt{sum2unif}.

![Graph generated by sum2unif](image-url)
Problem Solutions – Chapter 7

Problem 7.1.1 Solution
Recall that \(X_1, X_2 \ldots X_n \) are independent exponential random variables with mean value \(\mu_X = 5 \) so that for \(x \geq 0, F_X(x) = 1 - e^{-x/5} \).

(a) Using Theorem 7.1, \(\sigma^2_{M_n(x)} = \sigma^2_X/n \). Realizing that \(\sigma^2_X = 25 \), we obtain

\[
\text{Var}[M_9(X)] = \frac{\sigma^2_X}{9} = \frac{25}{9} \tag{1}
\]

(b)

\[
P [X_1 \geq 7] = 1 - P [X_1 \leq 7] = 1 - F_X(7) = 1 - (1 - e^{-7/5}) = e^{-7/5} \approx 0.247 \tag{3}
\]

(c) First we express \(P[M_9(X) > 7] \) in terms of \(X_1, \ldots, X_9 \).

\[
P[M_9(X) > 7] = 1 - P[M_9(X) \leq 7] = 1 - P[(X_1 + \ldots + X_9) \leq 63] \tag{4}
\]

Now the probability that \(M_9(X) > 7 \) can be approximated using the Central Limit Theorem (CLT).

\[
P[M_9(X) > 7] \approx 1 - \Phi \left(\frac{63 - 9\mu_X}{9\sigma_X} \right) = 1 - \Phi(6/5) \tag{6}
\]

Consulting with Table 3.1 yields \(P[M_9(X) > 7] \approx 0.1151 \).

Problem 7.1.2 Solution
\(X_1, X_2 \ldots X_n \) are independent uniform random variables with mean value \(\mu_X = 7 \) and \(\sigma^2_X = 3 \)

(a) Since \(X_1 \) is a uniform random variable, it must have a uniform PDF over an interval \([a, b]\). From Appendix A, we can look up that \(\mu_X = (a + b)/2 \) and that \(\text{Var}[X] = (b - a)^2/12 \). Hence, given the mean and variance, we obtain the following equations for \(a \) and \(b \).

\[
\frac{(b - a)^2}{12} = 3 \quad \frac{(a + b)/2}{2} = 7 \tag{1}
\]

Solving these equations yields \(a = 4 \) and \(b = 10 \) from which we can state the distribution of \(X \).

\[
f_X(x) = \begin{cases}
1/6 & 4 \leq x \leq 10 \\
0 & \text{otherwise}
\end{cases} \tag{2}
\]

(b) From Theorem 7.1, we know that

\[
\text{Var}[M_{16}(X)] = \frac{\text{Var}[X]}{16} = \frac{3}{16} \tag{3}
\]
(c) \[P[X_1 \geq 9] = \int_9^{\infty} f_{X_1}(x) \, dx = \int_9^{10} (1/6) \, dx = 1/6 \] (4)

(d) The variance of \(M_{16}(X) \) is much less than \(\text{Var}[X_1] \). Hence, the PDF of \(M_{16}(X) \) should be much more concentrated about \(E[X] \) than the PDF of \(X_1 \). Thus we should expect \(P[M_{16}(X) > 9] \) to be much less than \(P[X_1 > 9] \).

\[
P[M_{16}(X) > 9] = 1 - P[M_{16}(X) \leq 9] = 1 - P[(X_1 + \cdots + X_{16}) \leq 144]
\] (5)

By a Central Limit Theorem approximation,

\[
P[M_{16}(X) > 9] \approx 1 - \Phi \left(\frac{144 - 16\mu_X}{\sqrt{16\sigma_X}} \right) = 1 - \Phi(2.66) = 0.0039
\] (6)

As we predicted, \(P[M_{16}(X) > 9] \ll P[X_1 > 9] \).

Problem 7.1.3 Solution

This problem is in the wrong section since the standard error isn’t defined until Section 7.3. However is we peek ahead to this section, the problem isn’t very hard. Given the sample mean estimate \(M_n(X) \), the standard error is defined as the standard deviation \(e_n = \sqrt{\text{Var}[M_n(X)]]} \). In our problem, we use samples \(X_i \) to generate \(Y_i = X_{2i}^2 \). For the sample mean \(M_n(Y) \), we need to find the standard error

\[
e_n = \sqrt{\text{Var}[M_n(Y)]} = \sqrt{\frac{\text{Var}[Y]}{n}}.
\] (1)

Since \(X \) is a uniform \((0, 1)\) random variable,

\[
E[Y] = E[X^2] = \int_0^1 x^2 \, dx = 1/3,
\] (2)
\[
E[Y^2] = E[X^4] = \int_0^1 x^4 \, dx = 1/5.
\] (3)

Thus \(\text{Var}[Y] = 1/5 - (1/3)^2 = 4/45 \) and the sample mean \(M_n(Y) \) has standard error

\[
e_n = \sqrt{\frac{4}{45n}}.
\] (4)

Problem 7.1.4 Solution

(a) Since \(Y_n = X_{2n-1} + (-X_{2n}) \), Theorem 6.1 says that the expected value of the difference is

\[
E[Y] = E[X_{2n-1}] + E[-X_{2n}] = E[X] - E[X] = 0 \] (1)

(b) By Theorem 6.2, the variance of the difference between \(X_{2n-1} \) and \(X_{2n} \) is

\[
\text{Var}[Y_n] = \text{Var}[X_{2n-1}] + \text{Var}[-X_{2n}] = 2 \text{Var}[X] \] (2)
(c) Each \(Y_n \) is the difference of two samples of \(X \) that are independent of the samples used by any other \(Y_m \). Thus \(Y_1, Y_2, \ldots \) is an iid random sequence. By Theorem 7.1, the mean and variance of \(M_n(Y) \) are
\[
E[M_n(Y)] = E[Y_n] = 0
\]
\[
\text{Var}[M_n(Y)] = \frac{\text{Var}[Y_n]}{n} = \frac{2\text{Var}[X]}{n}
\]

Problem 7.2.1 Solution
If the average weight of a Maine black bear is 500 pounds with standard deviation equal to 100 pounds, we can use the Chebyshev inequality to upper bound the probability that a randomly chosen bear will be more than 200 pounds away from the average.
\[
P(|W - E[W]| \geq 200) \leq \frac{\text{Var}[W]}{200^2} \leq \frac{100^2}{200^2} = 0.25
\]

Problem 7.2.2 Solution
We know from the Chebyshev inequality that
\[
P(|X - E[X]| \geq c) \leq \frac{\sigma_X^2}{c^2}
\]
Choosing \(c = k\sigma_X \), we obtain
\[
P(|X - E[X]| \geq k\sigma_X) \leq \frac{1}{k^2}
\]
The actual probability the Gaussian random variable \(Y \) is more than \(k \) standard deviations from its expected value is
\[
P(|Y - E[Y]| \geq k\sigma_Y) = P[Y - E[Y] \leq -k\sigma_Y] + P[Y - E[Y] \geq k\sigma_Y]
\]
\[
= 2P\left[\frac{Y - E[Y]}{\sigma_Y} \geq k\right]
\]
\[
= 2Q(k)
\]
The following table compares the upper bound and the true probability:

<table>
<thead>
<tr>
<th></th>
<th>(k = 1)</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
<th>(k = 4)</th>
<th>(k = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chebyshev bound</td>
<td>1</td>
<td>0.250</td>
<td>0.111</td>
<td>0.0625</td>
<td>0.040</td>
</tr>
<tr>
<td>(2Q(k))</td>
<td>0.317</td>
<td>0.046</td>
<td>0.0027</td>
<td>6.33 (\times 10^{-5})</td>
<td>5.73 (\times 10^{-7})</td>
</tr>
</tbody>
</table>

The Chebyshev bound gets increasingly weak as \(k \) goes up. As an example, for \(k = 4 \), the bound exceeds the true probability by a factor of 1,000 while for \(k = 5 \) the bound exceeds the actual probability by a factor of nearly 100,000.

Problem 7.2.3 Solution
The hard part of this problem is to derive the PDF of the sum \(W = X_1 + X_2 + X_3 \) of iid uniform \((0, 30)\) random variables. In this case, we need to use the techniques of Chapter 6 to convolve the three PDFs. To simplify our calculations, we will instead find the PDF of \(V = Y_1 + Y_2 + Y_3 \) where
the Y_i are iid uniform $(0, 1)$ random variables. By Theorem 3.20 to conclude that $W = 30V$ is the sum of three iid uniform $(0, 30)$ random variables.

To start, let $V_2 = Y_1 + Y_2$. Since each Y_i has a PDF shaped like a unit area pulse, the PDF of V_2 is the triangular function

$$f_{V_2}(v) = \begin{cases} v & 0 \leq v \leq 1 \\ 2 - v & 1 < v \leq 2 \\ 0 & \text{otherwise} \end{cases}$$

The PDF of V is the convolution integral

$$f_V(v) = \int_{-\infty}^{\infty} f_{V_2}(y) f_{Y_3}(v - y) \, dy = \int_0^1 y f_{Y_3}(v - y) \, dy + \int_1^2 (2 - y) f_{Y_3}(v - y) \, dy.$$

Evaluation of these integrals depends on v through the function

$$f_{Y_3}(v - y) = \begin{cases} 1 & v - 1 < v < 1 \\ 0 & \text{otherwise} \end{cases}$$

To compute the convolution, it is helpful to depict the three distinct cases. In each case, the square “pulse” is $f_{Y_3}(v - y)$ and the triangular pulse is $f_{V_2}(y)$.

From the graphs, we can compute the convolution for each case:

$$0 \leq v < 1 : \quad f_{V_3}(v) = \int_0^v y \, dy = \frac{1}{2} v^2$$

$$1 \leq v < 2 : \quad f_{V_3}(v) = \int_{v-1}^1 y \, dy + \int_1^v (2 - y) \, dy = -v^2 + 3v - \frac{3}{2}$$

$$2 \leq v < 3 : \quad f_{V_3}(v) = \int_{v-1}^2 (2 - y) \, dy = \frac{(3 - v)^2}{2}$$

To complete the problem, we use Theorem 3.20 to observe that $W = 30V_3$ is the sum of three iid uniform $(0, 30)$ random variables. From Theorem 3.19,

$$f_W(w) = \frac{1}{30} f_{V_3}(v_3) v/30 = \begin{cases} \frac{(w/30)^2}{60} & 0 \leq w < 30, \\ \frac{-(w/30)^2 + 3(w/30) - 3/2}{30} & 30 \leq w < 60, \\ \frac{[3 - (w/30)]^2}{60} & 60 \leq w < 90, \\ 0 & \text{otherwise}. \end{cases}$$
Finally, we can compute the exact probability

\[P[W \geq 75] = \frac{1}{60} \int_{75}^{90} [3 - (w/30)]^2 \, dw = -\frac{(3 - w/30)\sqrt{6}}{125} \bigg|_{75}^{90} = \frac{1}{48} \]

(9)

For comparison, the Markov inequality indicated that \(P[W < 75] \leq 3/5 \) and the Chebyshev inequality showed that \(P[W < 75] \leq 1/4 \). As we see, both inequalities are quite weak in this case.

Problem 7.2.4 Solution

On each roll of the dice, a success, namely snake eyes, occurs with probability \(p = 1/36 \). The number of trials, \(R \), needed for three successes is a Pascal \((k = 3, p)\) random variable with

\[E[R] = 3/p = 108, \quad \text{Var}[R] = 3(1 - p)/p^2 = 3780. \]

(1)

(a) By the Markov inequality,

\[P[R \geq 250] \leq \frac{E[R]}{250} = \frac{54}{125} = 0.432. \]

(2)

(b) By the Chebyshev inequality,

\[P[R \geq 250] = P[R - 108 \geq 142] = P[|R - 108| \geq 142] \leq \frac{\text{Var}[R]}{(142)^2} = 0.1875. \]

(4)

(c) The exact value is \(P[R \geq 250] = 1 - \sum_{r=3}^{249} P_R(r) \). Since there is no way around summing the Pascal PMF to find the CDF, this is what `pascalcdf` does.

\[
\text{>> 1-pascalcdf}(3,1/36,249) \\
\text{ans = } 0.0299
\]

Thus the Markov and Chebyshev inequalities are valid bounds but not good estimates of \(P[R \geq 250] \).

Problem 7.3.1 Solution

For an arbitrary Gaussian \((\mu, \sigma)\) random variable \(Y \),

\[P[\mu - \sigma \leq Y \leq \mu + \sigma] = P[-\sigma \leq Y - \mu \leq \sigma] \]

\[= P[-1 \leq \frac{Y - \mu}{\sigma} \leq 1] \]

\[= \Phi(1) - \Phi(-1) = 2\Phi(1) - 1 = 0.6827. \]

(3)

Note that \(Y \) can be any Gaussian random variable, including, for example, \(M_n(X) \) when \(X \) is Gaussian. When \(X \) is not Gaussian, the same claim holds to the extent that the central limit theorem promises that \(M_n(X) \) is nearly Gaussian for large \(n \).
Problem 7.3.2 Solution
It should seem obvious that the result is true since \(\text{Var}[\hat{R}_n] \) going to zero implies the probability that \(\hat{R}_n \) differs from \(E[\hat{R}_n] \) is going to zero. Similarly, the difference between \(E[\hat{R}_n] \) and \(r \) is also going to zero deterministically. Hence it ought to follow that \(\hat{R}_n \) is converging to \(r \) in probability. Here are the details:

We must show that \(\lim_{N \to \infty} P(|\hat{R}_n - r| \geq \epsilon) = 0 \). First we note that \(\hat{R}_n \) being asymptotically unbiased implies that \(\lim_{n \to \infty} E[\hat{R}_n] = r \). Equivalently, given \(\epsilon > 0 \), there exists \(n_0 \) such that \(|E[\hat{R}_n] - r| \leq \epsilon^2/2 \) for all \(n \geq n_0 \).

Second, we observe that

\[
\left| \hat{R}_n - r \right|^2 = \left| (\hat{R}_n - E[\hat{R}_n]) + (E[\hat{R}_n] - r) \right|^2 \leq \left| \hat{R}_n - E[\hat{R}_n] \right|^2 + \left| E[\hat{R}_n] - r \right|^2. \tag{1}
\]

Thus for all \(n \geq n_0 \),

\[
\left| \hat{R}_n - r \right|^2 \leq \left| \hat{R}_n - E[\hat{R}_n] \right|^2 + \epsilon^2/2. \tag{2}
\]

It follows for \(n \geq n_0 \) that

\[
P\left[\left| \hat{R}_n - r \right|^2 \geq \epsilon^2 \right] \leq P\left[\left| \hat{R}_n - E[\hat{R}_n] \right|^2 + \epsilon^2/2 \geq \epsilon^2 \right] = P\left[\left| \hat{R}_n - E[\hat{R}_n] \right|^2 \geq \epsilon^2/2 \right] \tag{3}
\]

By the Chebyshev inequality, we have that

\[
P\left[\left| \hat{R}_n - E[\hat{R}_n] \right|^2 \geq \epsilon^2/2 \right] \leq \frac{\text{Var}[\hat{R}_n]}{(\epsilon/\sqrt{2})^2} \tag{4}
\]

Combining these facts, we see for \(n \geq n_0 \) that

\[
P\left[\left| \hat{R}_n - r \right|^2 \geq \epsilon^2 \right] \leq \frac{\text{Var}[\hat{R}_n]}{(\epsilon/\sqrt{2})^2}. \tag{5}
\]

It follows that

\[
\lim_{n \to \infty} P\left[\left| \hat{R}_n - r \right|^2 \geq \epsilon^2 \right] \leq \lim_{n \to \infty} \frac{\text{Var}[\hat{R}_n]}{(\epsilon/\sqrt{2})^2} = 0. \tag{6}
\]

This proves that \(\hat{R}_n \) is a consistent estimator.

Problem 7.3.3 Solution
This problem is really very simple. If we let \(Y = X_1X_2 \) and for the \(i \)th trial, let \(Y_i = X_1(i)X_2(i) \), then \(\hat{R}_n = M_n(Y) \), the sample mean of random variable \(Y \). By Theorem 7.5, \(M_n(Y) \) is unbiased. Since \(\text{Var}[Y] = \text{Var}[X_1X_2] < \infty \), Theorem 7.7 tells us that \(M_n(Y) \) is a consistent sequence.

Problem 7.3.4 Solution

(a) Since the expectation of a sum equals the sum of the expectations also holds for vectors,

\[
E[M(n)] = \frac{1}{n} \sum_{i=1}^{n} E[X(i)] = \frac{1}{n} \sum_{i=1}^{n} \mu_X = \mu_X. \tag{1}
\]
(b) The \(j \)th component of \(\mathbf{M}(n) \) is \(M_j(n) = \frac{1}{n} \sum_{i=1}^{n} X_j(i) \), which is just the sample mean of \(X_j \).

Defining \(A_j = \{|M_j(n) - \mu_j| \geq c\} \), we observe that

\[
P \left[\max_{j=1,\ldots,k} |M_j(n) - \mu_j| \geq c \right] = P \left[A_1 \cup A_2 \cup \cdots \cup A_k \right].
\] (2)

Applying the Chebyshev inequality to \(M_j(n) \), we find that

\[
P[A_j] \leq \frac{\text{Var}[M_j(n)]}{c^2} = \frac{\sigma_j^2}{nc^2}.
\] (3)

By the union bound,

\[
P \left[\max_{j=1,\ldots,k} |M_j(n) - \mu_j| \geq c \right] \leq \sum_{j=1}^{k} P[A_j] \leq \frac{1}{nc^2} \sum_{j=1}^{k} \sigma_j^2
\] (4)

Since \(\sum_{j=1}^{k} \sigma_j^2 < \infty \), \(\lim_{n \to \infty} P[\max_{j=1,\ldots,k} |M_j(n) - \mu_j| \geq c] = 0 \).

Problem 7.3.5 Solution

Note that we can write \(Y_k \) as

\[
Y_k = \left(\frac{X_{2k-1} - X_{2k}}{2} \right)^2 + \left(\frac{X_{2k} - X_{2k-1}}{2} \right)^2 = \frac{(X_{2k} - X_{2k-1})^2}{2}
\] (1)

Hence,

\[
E[Y_k] = \frac{1}{2} E \left[X_{2k}^2 - 2X_{2k}X_{2k-1} + X_{2k-1}^2 \right] = E \left[X^2 \right] - (E \left[X \right])^2 = \text{Var}[X]
\] (2)

Next we observe that \(Y_1, Y_2, \ldots \) is an iid random sequence. If this independence is not obvious, consider that \(Y_1 \) is a function of \(X_1 \) and \(X_2 \), \(Y_2 \) is a function of \(X_3 \) and \(X_4 \), and so on. Since \(X_1, X_2, \ldots \) is an iid sequence, \(Y_1, Y_2, \ldots \) is an iid sequence. Hence, \(E[M_n(Y)] = E[Y] = \text{Var}[X] \), implying \(M_n(Y) \) is an unbiased estimator of \(\text{Var}[X] \). We can use Theorem 7.5 to prove that \(M_n(Y) \) is consistent if we show that \(\text{Var}[Y] \) is finite. Since \(\text{Var}[Y] \leq E[Y^2] \), it is sufficient to prove that \(E[Y^2] < \infty \). Note that

\[
Y_k^2 = \frac{X_{2k}^4 - 4X_{2k}^3X_{2k-1} + 6X_{2k}^2X_{2k-1}^2 - 4X_{2k}X_{2k-1}^3 + X_{2k-1}^4}{4}
\] (3)

Taking expectations yields

\[
E \left[Y_k^2 \right] = \frac{1}{2} E \left[X^4 \right] - 2E \left[X^3 \right] E \left[X \right] + \frac{3}{2} \left(E \left[X^2 \right] \right)^2
\] (4)

Hence, if the first four moments of \(X \) are finite, then \(\text{Var}[Y] \leq E[Y^2] < \infty \). By Theorem 7.5, the sequence \(M_n(Y) \) is consistent.

Problem 7.3.6 Solution
(a) From Theorem 6.2, we have

\[\text{Var}[X_1 + \cdots + X_n] = \sum_{i=1}^{n} \text{Var}[X_i] + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \text{Cov}[X_i, X_j] \] (1)

Note that \(\text{Var}[X_i] = \sigma^2 \) and for \(j > i \), \(\text{Cov}[X_i, X_j] = \sigma^2 a^{j-i} \). This implies

\[\text{Var}[X_1 + \cdots + X_n] = n\sigma^2 + 2\sigma^2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a^{j-i} \] (2)

\[= n\sigma^2 + 2\sigma^2 \sum_{i=1}^{n-1} (a + a^2 + \cdots + a^{n-i}) \] (3)

\[= n\sigma^2 + \frac{2a\sigma^2}{1-a} \sum_{i=1}^{n-1} (1 - a^{n-i}) \] (4)

With some more algebra, we obtain

\[\text{Var}[X_1 + \cdots + X_n] = n\sigma^2 + \frac{2a\sigma^2}{1-a} (n-1) - \frac{2a\sigma^2}{1-a} (a + a^2 + \cdots + a^{n-1}) \] (5)

\[= \left(\frac{n(1+a)\sigma^2}{1-a} \right) - \frac{2a\sigma^2}{1-a} \left(a \left(\frac{1}{1-a} \right) \right)^2 (1-a^{n-1}) \] (6)

Since \(a/(1-a)\) and \(1-a^n\) are both nonnegative,

\[\text{Var}[X_1 + \cdots + X_n] \leq n\sigma^2 \left(\frac{1+a}{1-a} \right) \] (7)

(b) Since the expected value of a sum equals the sum of the expected values,

\[E[M(X_1, \ldots, X_n)] = \frac{E[X_1] + \cdots + E[X_n]}{n} = \mu \] (8)

The variance of \(M(X_1, \ldots, X_n) \) is

\[\text{Var}[M(X_1, \ldots, X_n)] = \frac{\text{Var}[X_1 + \cdots + X_n]}{n^2} \leq \frac{\sigma^2(1+a)}{n(1-a)} \] (9)

Applying the Chebyshev inequality to \(M(X_1, \ldots, X_n) \) yields

\[P[|M(X_1, \ldots, X_n) - \mu| \geq c] \leq \frac{\text{Var}[M(X_1, \ldots, X_n)]}{c^2} \leq \frac{\sigma^2(1+a)}{n(1-a)c^2} \] (10)

(c) Taking the limit as \(n \) approaches infinity of the bound derived in part (b) yields

\[\lim_{n \to \infty} P[|M(X_1, \ldots, X_n) - \mu| \geq c] \leq \lim_{n \to \infty} \frac{\sigma^2(1+a)}{n(1-a)c^2} = 0 \] (11)

Thus

\[\lim_{n \to \infty} P[|M(X_1, \ldots, X_n) - \mu| \geq c] = 0 \] (12)
Problem 7.3.7 Solution

(a) Since the expectation of the sum equals the sum of the expectations,
\[
E \left[\hat{R}(n) \right] = \frac{1}{n} \sum_{m=1}^{n} E[X(m)X'(m)] = \frac{1}{n} \sum_{m=1}^{n} R = R. \tag{1}
\]

(b) This proof follows the method used to solve Problem 7.3.4. The \(i, j\)th element of \(\hat{R}(n)\) is
\[
\hat{R}_{i,j}(n) = \frac{1}{n} \sum_{m=1}^{n} X_i(m)X_j(m),
\]
which is just the sample mean of \(X_iX_j\). Defining the event
\[
A_{i,j} = \left\{ \left| \hat{R}_{i,j}(n) - E[X_iX_j] \right| \geq c \right\}, \tag{2}
\]
we observe that
\[
P \left[\max_{i,j} \left| \hat{R}_{i,j}(n) - E[X_iX_j] \right| \geq c \right] = P \left[\cup_{i,j} A_{i,j} \right]. \tag{3}
\]
Applying the Chebyshev inequality to \(\hat{R}_{i,j}(n)\), we find that
\[
P[A_{i,j}] \leq \frac{\text{Var}[\hat{R}_{i,j}(n)]}{c^2} = \frac{\text{Var}[X_iX_j]}{nc^2}. \tag{4}
\]
By the union bound,
\[
P \left[\max_{i,j} \left| \hat{R}_{i,j}(n) - E[X_iX_j] \right| \geq c \right] \leq \sum_{i,j} P[A_{i,j}] \leq \frac{1}{nc^2} \sum_{i,j} \text{Var}[X_iX_j] \tag{5}
\]
By the result of Problem 4.11.8, \(X_iX_j\), the product of jointly Gaussian random variables, has finite variance. Thus
\[
\sum_{i,j} \text{Var}[X_iX_j] = \sum_{i=1}^{k} \sum_{j=1}^{k} \text{Var}[X_iX_j] \leq k^2 \max_{i,j} \text{Var}[X_iX_j] < \infty. \tag{6}
\]
It follows that
\[
\lim_{n \to \infty} P \left[\max_{i,j} \left| \hat{R}_{i,j}(n) - E[X_iX_j] \right| \geq c \right] \leq \lim_{n \to \infty} \frac{k^2 \max_{i,j} \text{Var}[X_iX_j]}{nc^2} = 0 \tag{7}
\]

Problem 7.4.1 Solution

\[
P_X(x) = \begin{cases}
0.1 & x = 0 \\
0.9 & x = 1 \\
0 & \text{otherwise}
\end{cases} \tag{1}
\]

(a) \(E[X]\) is in fact the same as \(P_X(1)\) because \(X\) is a Bernoulli random variable.

(b) We can use the Chebyshev inequality to find
\[
P \left[|M_{90}(X) - P_X(1)| \geq .05 \right] = P \left[|M_{90}(X) - E[X]| \geq .05 \right] \leq \alpha \tag{2}
\]
In particular, the Chebyshev inequality states that
\[
\alpha = \frac{\sigma_X^2}{90(.05)^2} = \frac{.09}{90(.05)^2} = 0.4 \tag{3}
\]
(c) Now we wish to find the value of \(n \) such that \(P[|M_n(X) - P_X(1)| \geq .03] \leq .01 \). From the Chebyshev inequality, we write

\[
0.1 = \frac{\sigma^2_X}{n(.03)^2}.
\]

Since \(\sigma^2_X = 0.09 \), solving for \(n \) yields \(n = 100. \)

Problem 7.4.2 Solution

\(X_1, X_2, \ldots \) are iid random variables each with mean 75 and standard deviation 15.

(a) We would like to find the value of \(n \) such that

\[
P[74 \leq M_n(X) \leq 76] = 0.99
\]

When we know only the mean and variance of \(X_i \), our only real tool is the Chebyshev inequality which says that

\[
P[74 \leq M_n(X) \leq 76] = 1 - P[|M_n(X) - E[X]| \geq 1] \\
\geq 1 - \frac{\text{Var}[X]}{n} = 1 - \frac{225}{n} \geq 0.99
\]

This yields \(n \geq 22,500. \)

(b) If each \(X_i \) is a Gaussian, the sample mean, \(M_n(X) \) will also be Gaussian with mean and variance

\[
E[M_{n'}(X)] = E[X] = 75 \\
\text{Var}[M_{n'}(X)] = \text{Var}[X]/n' = 225/n'
\]

In this case,

\[
P[74 \leq M_{n'}(X) \leq 76] = \Phi\left(\frac{76 - \mu}{\sigma}\right) - \Phi\left(\frac{74 - \mu}{\sigma}\right) \\
= \Phi(\sqrt{n'}/15) - \Phi(-\sqrt{n'}/15) \\
= 2\Phi(\sqrt{n'}/15) - 1 = 0.99
\]

Thus, \(n' = 1,521. \)

Since even under the Gaussian assumption, the number of samples \(n' \) is so large that even if the \(X_i \) are not Gaussian, the sample mean may be approximated by a Gaussian. Hence, about 1500 samples probably is about right. However, in the absence of any information about the PDF of \(X_i \) beyond the mean and variance, we cannot make any guarantees stronger than that given by the Chebyshev inequality.

Problem 7.4.3 Solution

(a) Since \(X_A \) is a Bernoulli \((p = P[A])\) random variable,

\[
E[X_A] = P[A] = 0.8, \quad \text{Var}[X_A] = P[A](1 - P[A]) = 0.16.
\]
Let \(X_{A,i} \) to denote \(X_A \) on the \(i \)th trial. Since \(\hat{P}_n(A) = M_n(X_A) = \frac{1}{n} \sum_{i=1}^{n} X_{A,i} \),
\[
\text{Var}[\hat{P}_n(A)] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[X_{A,i}] = \frac{P[A](1 - P[A])}{n}. \tag{2}
\]

Since \(\hat{P}_{100}(A) = M_{100}(X_A) \), we can use Theorem 7.12(b) to write
\[
P\left(\left| \hat{P}_{100}(A) - P[A] \right| < c \right) \geq 1 - \frac{\text{Var}[X_A]}{100c^2} = 1 - \frac{0.16}{100c^2} = 1 - \alpha. \tag{3}
\]
For \(c = 0.1 \), \(\alpha = 0.16/\left[100(0.1)^2\right] = 0.16 \). Thus, with 100 samples, our confidence coefficient is \(1 - \alpha = 0.84 \).

In this case, the number of samples \(n \) is unknown. Once again, we use Theorem 7.12(b) to write
\[
P\left(\left| \hat{P}_n(A) - P[A] \right| < c \right) \geq 1 - \frac{\text{Var}[X_A]}{nc^2} = 1 - \frac{0.16}{nc^2} = 1 - \alpha. \tag{4}
\]
For \(c = 0.1 \), we have confidence coefficient \(1 - \alpha = 0.95 \) if \(\alpha = 0.16/[n(0.1)^2] = 0.05 \), or \(n = 320 \).

\textbf{Problem 7.4.4 Solution}
Since \(E[X] = \mu_X = p \) and \(\text{Var}[X] = p(1 - p) \), we use Theorem 7.12(b) to write
\[
P\left(\left| M_{100}(X) - p \right| < c \right) \geq 1 - \frac{p(1 - p)}{100c^2} = 1 - \alpha. \tag{1}
\]
For confidence coefficient 0.99, we require
\[
\frac{p(1 - p)}{100c^2} \leq 0.01 \quad \text{or} \quad c \geq \sqrt{\frac{p(1 - p)}{0.01}}. \tag{2}
\]
Since \(p \) is unknown, we must ensure that the constraint is met for every value of \(p \). The worst case occurs at \(p = 1/2 \) which maximizes \(p(1 - p) \). In this case, \(c = \sqrt{1/4} = 1/2 \) is the smallest value of \(c \) for which we have confidence coefficient of at least 0.99.

If \(M_{100}(X) = 0.06 \), our interval estimate for \(p \) is
\[
M_{100}(X) - c < p < M_{100}(X) + c. \tag{3}
\]
Since \(p \geq 0 \), \(M_{100}(X) = 0.06 \) and \(c = 0.5 \) imply that our interval estimate is
\[
0 \leq p < 0.56. \tag{4}
\]
Our interval estimate is not very tight because because 100 samples is not very large for a confidence coefficient of 0.99.

\textbf{Problem 7.4.5 Solution}
First we observe that the interval estimate can be expressed as
\[
\left| \hat{P}_n(A) - P[A] \right| < 0.05. \tag{1}
\]
Since \(\hat{P}_n(A) = M_n(X_A) \) and \(E[M_n(X_A)] = P[A] \), we can use Theorem 7.12(b) to write
\[
P \left[\left| \hat{P}_n(A) - P[A] \right| < 0.05 \right] \geq 1 - \frac{\text{Var}[X_A]}{n(0.05)^2}. \tag{2}
\]
Note that \(\text{Var}[X_A] = P[A](1 - P[A]) \leq 0.25 \). Thus for confidence coefficient 0.9, we require that
\[
1 - \frac{\text{Var}[X_A]}{n(0.05)^2} \geq 1 - \frac{0.25}{n(0.05)^2} \geq 0.9.
\tag{3}
\]
This implies \(n \geq 1,000 \) samples are needed.

Problem 7.4.6 Solution
Both questions can be answered using the following equation from Example 7.6:
\[
P \left[\left| \hat{P}_n(A) - P[A] \right| \geq c \right] \leq \frac{P[A](1 - P[A])}{nc^2}. \tag{1}
\]
The unusual part of this problem is that we are given the true value of \(P[A] \). Since \(P[A] = 0.01 \), we can write
\[
P \left[\left| \hat{P}_n(A) - P[A] \right| \geq c \right] \leq \frac{0.0099}{nc^2}. \tag{2}
\]
(a) In this part, we meet the requirement by choosing \(c = 0.001 \) yielding
\[
P \left[\left| \hat{P}_n(A) - P[A] \right| \geq 0.001 \right] \leq \frac{9900}{n}. \tag{3}
\]
Thus to have confidence level 0.01, we require that \(9900/n \leq 0.01 \). This requires \(n \geq 990,000 \).

(b) In this case, we meet the requirement by choosing \(c = 10^{-3}P[A] = 10^{-5} \). This implies
\[
P \left[\left| \hat{P}_n(A) - P[A] \right| \geq c \right] \leq \frac{0.0099}{n10^{-10}} = \frac{9.9 \times 10^7}{n}. \tag{4}
\]
The confidence level 0.01 is met if \(9.9 \times 10^7/n = 0.01 \) or \(n = 9.9 \times 10^9 \).

Problem 7.4.7 Solution
Since the relative frequency of the error event \(E \) is \(\hat{P}_n(E) = M_n(X_E) \) and \(E[M_n(X_E)] = P[E] \), we can use Theorem 7.12(a) to write
\[
P \left[\left| \hat{P}_n(A) - P[E] \right| \geq c \right] \leq \frac{\text{Var}[X_E]}{nc^2}. \tag{1}
\]
Note that \(\text{Var}[X_E] = P[E](1 - P[E]) \) since \(X_E \) is a Bernoulli \((p = P[E]) \) random variable. Using the additional fact that \(P[E] \leq \epsilon \) and the fairly trivial fact that \(1 - P[E] \leq 1 \), we can conclude that
\[
\text{Var}[X_E] = P[E](1 - P[E]) \leq P[E] \leq \epsilon. \tag{2}
\]
Thus
\[
P \left[\left| \hat{P}_n(A) - P[E] \right| \geq c \right] \leq \frac{\text{Var}[X_E]}{nc^2} \leq \frac{\epsilon}{nc^2}. \tag{3}
\]
Problem 7.5.1 Solution
In this problem, we have to keep straight that the Poisson expected value \(\alpha = 1 \) is a different \(\alpha \) than the confidence coefficient \(1 - \alpha \). That said, we will try avoid using \(\alpha \) for the confidence coefficient. Using \(X \) to denote the Poisson \((\alpha = 1) \) random variable, the trace of the sample mean is the sequence \(M_1(X), M_2(X), \ldots \). The confidence interval estimate of \(\alpha \) has the form

\[
M_n(X) - c \leq \alpha \leq M_n(X) + c. \tag{1}
\]

The confidence coefficient of the estimate based on \(n \) samples is

\[
P [M_n(X) - c \leq \alpha \leq M_n(X) + c] = P [\alpha - c \leq M_n(X) \leq \alpha + c] \tag{2}
= P [-c \leq M_n(X) - \alpha \leq c] \tag{3}.
\]

Since \(\text{Var}[M_n(X)] = \text{Var}[X]/n = 1/n \), the 0.9 confidence interval shrinks with increasing \(n \). In particular, \(c = c_n \) will be a decreasing sequence. Using a Central Limit Theorem approximation, a 0.9 confidence implies

\[
0.9 = P \left[\frac{-c_n}{\sqrt{1/n}} \leq \frac{M_n(X) - \alpha}{\sqrt{1/n}} \leq \frac{c_n}{\sqrt{1/n}} \right] \tag{4}
= \Phi(c_n\sqrt{n}) - \Phi(-c_n\sqrt{n}) = 2\Phi(c_n\sqrt{n}) - 1. \tag{5}
\]

Equivalently, \(\Phi(c_n\sqrt{n}) = 0.95 \) or \(c_n = 1.65/\sqrt{n} \).

Thus, as a function of the number of samples \(n \), we plot three functions: the sample mean \(M_n(X) \), and the upper limit \(M_n(X) + 1.65/\sqrt{n} \) and lower limit \(M_n(X) - 1.65/\sqrt{n} \) of the 0.9 confidence interval. We use the MATLAB function `poissonmeanseq(n)` to generate these sequences for \(n \) sample values.

```matlab
function M=poissonmeanseq(n);
    x=poissonrv(1,n);
nn=(1:n)’;
    M=cumsum(x)./nn;
    r=(1.65)./sqrt(nn);
    plot(nn,M,nn,M+r,nn,M-r);
```

Here are two output graphs:

![poissonmeanseq(60)](image1)
![poissonmeanseq(600)](image2)
Problem 7.5.2 Solution

For a Bernoulli \((p = 1/2)\) random variable \(X\), the sample mean \(M_n(X)\) is the fraction of successes in \(n\) Bernoulli trials. That is, \(M_n(X) = K_n/n\) where \(K_n\) is a binomial \((n, p = 1/2)\) random variable. Thus the probability the sample mean is within one standard error of \((p = 1/2)\) is

\[
p_n = P \left[\frac{n} {2} - \frac{\sqrt{n}} {2} \leq K_n \leq \frac{n} {2} + \frac{\sqrt{n}} {2} \right] = P \left[K_n \leq \frac{n} {2} + \frac{\sqrt{n}} {2} \right] - P \left[K_n < \frac{n} {2} - \frac{\sqrt{n}} {2} \right] = F_{K_n} \left(\frac{n} {2} + \frac{\sqrt{n}} {2} \right) - F_{K_n} \left(\left\lceil \frac{n} {2} - \frac{\sqrt{n}} {2} \right\rceil - 1 \right)
\]

Here is a MATLAB function that graphs \(p_n\) as a function of \(n\) for \(N\) steps alongside the output graph for \(\text{bernoullistderr}(50)\).

```matlab
function p=bernoullistderr(N);
p=zeros(1,N);
for n=1:N,
    r=[ceil((n-sqrt(n))/2)-1; ... (n+sqrt(n))/2];
p(n)=diff(binomialcdf(n,0.5,r));
end
plot(1:N,p);
ylabel(‘\textit{p}_n’);
xlabel(‘\textit{n}’);
```

The alternating up-down sawtooth pattern is a consequence of the CDF of \(K_n\) jumping up at integer values. In particular, depending on the value of \(\sqrt{n}/2\), every other value of \((n \pm \sqrt{n})/2\) exceeds the next integer and increases \(p_n\). The less frequent but larger jumps in \(p_n\) occur when \(\sqrt{n}\) is an integer. For very large \(n\), the central limit theorem takes over since the CDF of \(M_n(X)\) converges to a Gaussian CDF. In this case, the sawtooth pattern dies out and \(p_n\) will converge to 0.68, the probability that a Gaussian random variable is within one standard deviation of its expected value.

Finally, we note that the sawtooth pattern is essentially the same as the sawtooth pattern observed in Quiz 7.5 where we graphed the fraction of 1,000 Bernoulli sample mean traces that were within one standard error of the true expected value. For 1,000 traces in Quiz 7.5 was so large, the fraction of the number of traces within one standard error was always very close to the actual probability \(p_n\).

Problem 7.5.3 Solution

First, we need to determine whether the relative performance of the two estimators depends on the actual value of \(\lambda\). To address this, we observe that if \(Y\) is an exponential \((1)\) random variable, then Theorem 3.20 tells us that \(X = Y/\lambda\) is an exponential \((\lambda)\) random variable. Thus if \(Y_1, Y_2, \ldots\) are iid samples of \(Y\), then \(Y_1/\lambda, Y_2/\lambda, \ldots\) are iid samples of \(X\). Moreover, the sample mean of \(X\) is

\[
M_n(X) = \frac{1} {n\lambda} \sum_{i=1}^{n} Y_i = \frac{1} {\lambda} M_n(Y)
\]

Similarly, the sample variance of \(X\) satisfies

\[
V_n'(X) = \frac{1} {n-1} \sum_{i=1}^{n} (X_i - M_n(X))^2 = \frac{1} {n-1} \sum_{i=1}^{n} \left(\frac{Y_i}{\lambda} - \frac{1} {\lambda} M_n(Y) \right)^2 = \frac{V_n'(Y)} {\lambda^2}
\]
We can conclude that
\[
\hat{\lambda} = \frac{\lambda}{M_n(Y)} \quad \hat{\lambda} = \frac{\lambda}{\sqrt{V_n(Y)}} \tag{3}
\]

For \(\lambda \neq 1 \), the estimators \(\hat{\lambda} \) and \(\tilde{\lambda} \) are just scaled versions of the estimators for the case \(\lambda = 1 \). Hence it is sufficient to consider only the \(\lambda = 1 \) case. The function \texttt{z=lamest(n,m)} returns the estimation errors for \(m \) trials of each estimator where each trial uses \(n \) iid exponential (1) samples.

```matlab
function z=lamest(n,m);
x=exponentialrv(1,n*m);
x=reshape(x,n,m);
mx=sum(x)/n;
MX=ones(n,1)*mx;
vx=sum((x-MX).^2)/(n-1);
z=[(1./mx); (1./sqrt(vx))]-1;
```

In \texttt{lamest.m}, each column of matrix \(x \) represents one trial. Note that \(mx \) is a row vector such that \(mx(i) \) is the sample mean for trial \(i \). The matrix \(MX \) has \(mx(i) \) for every element in column \(i \). Thus \(vx \) is a row vector such that \(vx(i) \) is the sample variance for trial \(i \).

Finally, \(z \) is a \(2 \times m \) matrix such that column \(i \) of \(z \) records the estimation errors for trial \(i \). If \(\hat{\lambda}_i \) and \(\tilde{\lambda}_i \) are the estimates for for trial \(i \), then \(z(1,i) \) is the error \(\hat{Z}_i = \hat{\lambda}_i - 1 \) while \(z(2,i) \) is the error \(\tilde{Z}_i = \tilde{\lambda}_i - 1 \).

Now that we can simulate the errors generated by each estimator, we need to determine which estimator is better. We start by using the commands

\[
z=lamest(1000,1000);
plot(z(1,:),z(2,:),'bd')
\]

to perform 1,000 trials, each using 1,000 samples. The \texttt{plot} command generates a scatter plot of the error pairs \((Z_i, \tilde{Z}_i)\) for each trial. Here is an example of the resulting scatter plot:

![Scatter plot](scatter_plot.png)

In the scatter plot, each diamond marks an independent pair \((\hat{Z}, \tilde{Z})\) where \(\hat{Z} \) is plotted on the \(x \)-axis and \(\tilde{Z} \) is plotted on the \(y \)-axis. (Although it is outside the scope of this solution, it is interesting to note that the errors \(\hat{Z} \) and \(\tilde{Z} \) appear to be positively correlated.) From the plot, it may not be obvious that one estimator is better than the other. However, by reading the axis ticks carefully, one can observe that it appears that typical values for \(\hat{Z} \) are in the interval \((-0.05, 0.05)\) while typical values for \(\tilde{Z} \) are in the interval \((-0.1, 0.1)\). This suggests that \(\hat{Z} \) may be superior. To verify this observation, we calculate the sample mean for each squared errors

\[
M_m(\hat{Z}^2) = \frac{1}{m} \sum_{i=1}^{m} \hat{Z}_i^2 \quad M_m(\tilde{Z}^2) = \frac{1}{m} \sum_{i=1}^{m} \tilde{Z}_i^2 \tag{4}
\]

From our \texttt{Matlab} experiment with \(m = 1,000 \) trials, we calculate
That is, $M_{1,000}(\hat{Z}^2) = 0.0010$ and $M_{1,000}(\tilde{Z}^2) = 0.0021$. In fact, one can show (with a lot of work) for large m that

$$M_m(\hat{Z}^2) \approx \frac{1}{m} \quad M_m(\tilde{Z}^2) = \frac{2}{m}$$

and that

$$\lim_{m \to \infty} \frac{M_m(\tilde{Z}^2)}{M_m(\hat{Z}^2)} = 2.$$

In short, the mean squared error of the $\tilde{\lambda}$ estimator is twice that of the $\hat{\lambda}$ estimator.

Problem 7.5.4 Solution

For the sample covariance matrix

$$\hat{R}(n) = \frac{1}{n} \sum_{m=1}^{n} X(m)X'(m),$$

we wish to use a MATLAB simulation to estimate the probability

$$p(n) = P\left[\max_{i,j} \left| \hat{R}_{ij} - I_{ij} \right| \geq 0.05 \right].$$

(In the original printing, 0.05 was 0.01 but that requirement demanded that n be so large that most installations of MATLAB would grind to a halt on the calculations.)

The MATLAB program uses a matrix algebra identity that may (or may not) be familiar. For a matrix

$$X = \begin{bmatrix} x(1) & x(2) & \cdots & x(n) \end{bmatrix},$$

with columns $x(i)$, we can write

$$XX' = \sum_{i=1}^{n} x(i)x'(i).$$

The MATLAB function `diagtest(n,t)` performs the calculation by generating t sample covariance matrices, each using n vectors $x(i)$ in each sample covariance matrix. These n vectors are generated by the `gaussvector` function. The vector $x(i)$ is the ith column of the matrix X.

```matlab
function p=diagtest(n,t);
y=zeros(t,1); p=[];
for ntest=n,
    disp(ntest)
    for i=1:t,
        X=gaussvector(0,eye(10),ntest);
        R=X*(X')/ntest;
        y(i)=(max(max(abs(R-eye(10))))>= 0.05);
    end
    p=[p, sum(y)/t];
end
semilogy(n,p);
xlabel('\it n'); ylabel('\it p(n)');
```

The function `diagtest` estimates $p(n)$ as the fraction of t trials for which the threshold 0.05 is exceeded. In addition, if the input `n` to `diagtest` is a vector, then the experiment is repeated for each value in the vector `n`.

The following commands, estimate $p(n)$ for $n \in \{10, 100, 1000, 10000\}$ using $t = 2000$ trials:
n=[10 100 1000 10000];
p=diagtest(n,2000);

The output is

\[
p = \begin{bmatrix}
1.0000 & 1.0000 & 1.0000 & 0.0035
\end{bmatrix}
\]

We see that \(p(n) \) goes from roughly 1 to almost 0 in going from \(n = 1,000 \) to \(n = 10,000 \). To investigate this transition more carefully, we execute the commands

\[
\text{nn}=1000:500:10000;
p=\text{diagtest(nn,2000)};
\]

The output is shown in the following graph. We use a semilog plot to emphasize differences when \(p(n) \) is close to zero.

![Graph showing \(p(n) \) vs. \(n \)]

Beyond \(n = 1,000 \), the probability \(p(n) \) declines rapidly. The “bumpiness” of the graph for large \(n \) occurs because the probability \(p(n) \) is small enough that out of 2,000 trials, the 0.05 threshold is exceeded only a few times.

Note that if \(x \) has dimension greater than 10, then the value of \(n \) needed to ensure that \(p(n) \) is small would increase.

Problem 7.5.5 Solution

The difficulty in this problem is that although \(E[X] \) exists, \(EX^2 \) and higher order moments are infinite. Thus \(\text{Var}[X] \) is also infinite. It also follows for any finite \(n \) that the sample mean \(M_n(X) \) has infinite variance. In this case, we cannot apply the Chebyshev inequality to the sample mean to show the convergence in probability of \(M_n(X) \) to \(E[X] \).

If \(\lim_{n \to \infty} P[|M_n(X) - E[X]| \geq \epsilon] = p \), then there are two distinct possibilities:

- \(p > 0 \), or
- \(p = 0 \) but the Chebyshev inequality isn’t a sufficient powerful technique to verify this fact.

To resolve whether \(p = 0 \) (and the sample mean converges to the expected value) one can spend time trying to prove either \(p = 0 \) or \(p > 0 \). At this point, we try some simulation experiments to see if the experimental evidence points one way or the other.

As requested by the problem, we implement a MATLAB function \(\text{samplemeantest(n,a)} \) to simulate one hundred traces of the sample mean when \(E[X] = a \). Each trace is a length \(n \) sequence \(M_1(X), M_2(X), \ldots, M_n(X) \).
function mx=samplemeantest(n,a);
u=rand(n,100);
x=a-2+(1./sqrt(1-u));
d=((1:n)')*ones(1,100);
mx=cumsum(x)./d;
plot(mx);
xlabel('\it n'); ylabel('\it M_n(X)');
axis([0 n a-1 a+1]);

The $n \times 100$ matrix x consists of iid samples of X. Taking cumulative sums along each column of x, and dividing row i by i, each column of mx is a length n sample mean trace. We then plot the traces.

The following graph was generated by \texttt{samplemeantest(1000,5)}:

![Graph of sample mean traces](image)

Frankly, it is difficult to draw strong conclusions from the graph. If the sample sequences $M_n(X)$ are converging to $E[X]$, the convergence is fairly slow. Even after averaging 1,000 samples, typical values for the sample mean appear to range from $a - 0.5$ to $a + 0.5$. There may also be outlier sequences which are still off the charts since we truncated the y-axis range. On the other hand, the sample mean sequences do not appear to be diverging (which is also possible since $\text{Var}[X] = \infty$.) Note the above graph was generated using 10^5 sample values. Repeating the experiment with more samples, say \texttt{samplemeantest(10000,5)}, will yield a similarly inconclusive result. Even if your version of MATLAB can support the generation of 100 times as many samples, you won’t know for sure whether the sample mean sequence \textit{always} converges. On the other hand, the experiment is probably enough that if you pursue the analysis, you should start by trying to prove that $p = 0$. (This will make a a fun problem for the third edition!)
Problem Solutions – Chapter 8

Problem 8.1.1 Solution
Assuming the coin is fair, we must choose a rejection region \(R \) such that \(\alpha = P[R] = 0.05. \) We can choose a rejection region \(R = \{ L > r \} \). What remains is to choose \(r \) so that \(P[R] = 0.05 \). Note that \(L > l \) if we first observe \(l \) tails in a row. Under the hypothesis that the coin is fair, \(l \) tails in a row occurs with probability

\[
P[L > l] = (1/2)^l
\]

Thus, we need

\[
P[R] = P[L > r] = 2^{-r} = 0.05
\]

Thus, \(r = -\log_2(0.05) = \log_2(20) = 4.32 \). In this case, we reject the hypothesis that the coin is fair if \(L \geq 5 \). The significance level of the test is \(\alpha = P[L > 4] = 2^{-4} = 0.0625 \) which close to but not exactly 0.05.

The shortcoming of this test is that we always accept the hypothesis that the coin is fair whenever heads occurs on the first, second, third or fourth flip. If the coin was biased such that the probability of heads was much higher than 1/2, say 0.8 or 0.9, we would hardly ever reject the hypothesis that the coin is fair. In that sense, our test cannot identify that kind of biased coin.

Problem 8.1.2 Solution

(a) We wish to develop a hypothesis test of the form

\[
P[|K - E[K]| > c] = 0.05
\]

to determine if the coin we’ve been flipping is indeed a fair one. We would like to find the value of \(c \), which will determine the upper and lower limits on how many heads we can get away from the expected number out of 100 flips and still accept our hypothesis. Under our fair coin hypothesis, the expected number of heads, and the standard deviation of the process are

\[
E[K] = 50, \quad \sigma_K = \sqrt{100 \cdot 1/2 \cdot 1/2} = 5.
\]

Now in order to find \(c \) we make use of the central limit theorem and divide the above inequality through by \(\sigma_K \) to arrive at

\[
P \left[\frac{|K - E[K]|}{\sigma_K} > \frac{c}{\sigma_K} \right] = 0.05
\]

Taking the complement, we get

\[
P \left[\frac{c}{\sigma_K} \leq \frac{K - E[K]}{\sigma_K} \leq \frac{c}{\sigma_K} \right] = 0.95
\]

Using the Central Limit Theorem we can write

\[
\Phi \left(\frac{c}{\sigma_K} \right) - \Phi \left(\frac{-c}{\sigma_K} \right) = 2\Phi \left(\frac{c}{\sigma_K} \right) - 1 = 0.95
\]

This implies \(\Phi(c/\sigma_K) = 0.975 \) or \(c/\sigma_K = 1.96 \). That is, \(c = 9.8 \) flips. So we see that if we observe more then \(50 + 10 = 60 \) or less then \(50 - 10 = 40 \) heads, then with significance level \(\alpha \approx 0.05 \) we should reject the hypothesis that the coin is fair.
Now we wish to develop a test of the form
\[P[K > c] = 0.01 \] \hspace{1cm} (6)
Thus we need to find the value of \(c \) that makes the above probability true. This value will tell us that if we observe more than \(c \) heads, then with significance level \(\alpha = 0.01 \), we should reject the hypothesis that the coin is fair. To find this value of \(c \) we look to evaluate the CDF
\[F_K(k) = \sum_{i=0}^{k} \left(\frac{100}{i} \right) (1/2)^{100}. \] \hspace{1cm} (7)
Computation reveals that \(c \approx 62 \) flips. So if we observe 62 or greater heads, then with a significance level of 0.01 we should reject the fair coin hypothesis. Another way to obtain this result is to use a Central Limit Theorem approximation. First, we express our rejection region in terms of a zero mean, unit variance random variable.
\[P[K > c] = 1 - P[K \leq c] = 1 - P\left[\frac{K - E[K]}{\sigma_K} \leq \frac{c - E[K]}{\sigma_K} \right] = 0.01 \] \hspace{1cm} (8)
Since \(E[K] = 50 \) and \(\sigma_K = 5 \), the CLT approximation is
\[P[K > c] \approx 1 - \Phi\left(\frac{c - 50}{5} \right) = 0.01 \] \hspace{1cm} (9)
From Table 3.1, we have \((c - 50)/5 = 2.35 \) or \(c = 61.75 \). Once again, we see that we reject the hypothesis if we observe 62 or more heads.

Problem 8.1.3 Solution

A reasonable test would reject the null hypothesis that the plant is operating normally if one or more of the chips fail the one-day test. Exactly how many should be tested and how many failures \(N \) are needed to reject the null hypothesis would depend on the significance level of the test.

(a) The lifetime of a chip is \(X \), an exponential (\(\lambda \)) random variable with \(\lambda = (T/200)^2 \). The probability \(p \) that a chip passes the one-day test is
\[p = P[X \geq 1/365] = e^{-\lambda/365}. \] \hspace{1cm} (1)
For an \(m \) chip test, the significance level of the test is
\[\alpha = P[N > 0] = 1 - P[N = 0] = 1 - p^m = 1 - e^{-m\lambda/365}. \] \hspace{1cm} (2)

(b) At \(T = 100^\circ \), \(\lambda = 1/4 \) and we obtain a significance level of \(\alpha = 0.01 \) if
\[m = \frac{-365 \ln(0.99)}{\lambda} = \frac{3.67}{\lambda} = 14.74. \] \hspace{1cm} (3)
In fact, at \(m = 15 \) chips, the significance level is \(\alpha = 0.0102 \).

(c) Raising \(T \) raises the failure rate \(\lambda = (T/200)^2 \) and thus lowers \(m = 3.67/\lambda \). In essence, raising the temperature makes a “tougher” test and thus requires fewer chips to be tested for the same significance level.
Problem 8.1.4 Solution

(a) The rejection region is \(R = \{ T > t_0 \} \). The duration of a voice call has exponential PDF

\[
f_T(t) = \begin{cases}
\frac{1}{3}e^{-t/3} & t \geq 0, \\
0 & \text{otherwise.}
\end{cases}
\] (1)

The significance level of the test is

\[
\alpha = P[T > t_0] = \int_{t_0}^{\infty} f_T(t) \, dt = e^{-t_0/3}.
\] (2)

(b) The significance level is \(\alpha = 0.05 \) if \(t_0 = -3 \ln \alpha = 8.99 \) minutes.

Problem 8.1.5 Solution

In order to test just a small number of pacemakers, we test \(n \) pacemakers and we reject the null hypothesis if any pacemaker fails the test. Moreover, we choose the smallest \(n \) such that we meet the required significance level of the test.

The number of pacemakers that fail the test is \(X \), a binomial \((n, q_0 = 10^{-4}) \) random variable. The significance level of the test is

\[
\alpha = P[X > 0] = 1 - P[X = 0] = 1 - (1 - q_0)^n.
\] (1)

For a significance level \(\alpha = 0.01 \), we have that

\[
n = \frac{\ln(1 - \alpha)}{\ln(1 - q_0)} = 100.5.
\] (2)

Comment: For \(\alpha = 0.01 \), keep in mind that there is a one percent probability that a normal factory will fail the test. That is, a test failure is quite unlikely if the factory is operating normally.

Problem 8.1.6 Solution

Since the null hypothesis \(H_0 \) asserts that the two exams have the same mean and variance, we reject \(H_0 \) if the difference in sample means is large. That is, \(R = \{|D| \geq d_0\} \).

Under \(H_0 \), the two sample means satisfy

\[
E[M_A] = E[M_B] = \mu, \quad \text{Var}[M_A] = \text{Var}[M_B] = \frac{\sigma^2}{n} = \frac{100}{n}.
\] (1)

Since \(n \) is large, it is reasonable to use the Central Limit Theorem to approximate \(M_A \) and \(M_B \) as Gaussian random variables. Since \(M_A \) and \(M_B \) are independent, \(D \) is also Gaussian with

\[
E[D] = E[M_A] - E[M_B] = 0 \quad \text{Var}[D] = \text{Var}[M_A] + \text{Var}[M_B] = \frac{200}{n}.
\] (2)

Under the Gaussian assumption, we can calculate the significance level of the test as

\[
\alpha = P[|D| \geq d_0] = 2 \left(1 - \Phi \left(\frac{d_0}{\sigma_D} \right) \right).
\] (3)

For \(\alpha = 0.05 \), \(\Phi \left(\frac{d_0}{\sigma_D} \right) = 0.975 \), or \(d_0 = 1.96 \sigma_D = 1.96 \sqrt{200/n} \). If \(n = 100 \) students take each exam, then \(d_0 = 2.77 \) and we reject the null hypothesis that the exams are the same if the sample means differ by more than 2.77 points.
Problem 8.2.1 Solution
For the MAP test, we must choose acceptance regions A_0 and A_1 for the two hypotheses H_0 and H_1. From Theorem 8.2, the MAP rule is
\[
T \in A_0 \text{ if } \frac{P_{N\mid H_0}(n)}{P_{N\mid H_1}(n)} \geq \frac{P[H_1]}{P[H_0]}; \quad n \in A_1 \text{ otherwise.}
\] (1)

Since $P_{N\mid H_i}(n) = \frac{\lambda_i^n e^{-\lambda_i}}{n!}$, the MAP rule becomes
\[
T \in A_0 \text{ if } \left(\frac{\lambda_0}{\lambda_1}\right)^n e^{-(\lambda_0 - \lambda_1)} \geq \frac{P[H_1]}{P[H_0]}; \quad n \in A_1 \text{ otherwise.}
\] (2)

By taking logarithms and assuming $\lambda_1 > \lambda_0$ yields the final form of the MAP rule
\[
T \in A_0 \text{ if } \frac{\lambda_1 - \lambda_0 + \ln(P[H_0]/P[H_1])}{\ln(\lambda_1/\lambda_0)} \geq \frac{P[H_1]}{P[H_0]}; \quad n \in A_1 \text{ otherwise.}
\] (3)

From the MAP rule, we can get the ML rule by setting the a priori probabilities to be equal. This yields the ML rule
\[
T \in A_0 \text{ if } \frac{\lambda_1 - \lambda_0}{\ln(\lambda_1/\lambda_0)} \geq \frac{P[H_1]}{P[H_0]}; \quad n \in A_1 \text{ otherwise.}
\] (4)

Problem 8.2.2 Solution
Hypotheses H_0 and H_1 have a priori probabilities $P[H_0] = 0.8$ and $P[H_1] = 0.2$ and likelihood functions
\[
f_{T\mid H_0}(t) = \begin{cases} (1/3)e^{-t/3} & t \geq 0, \\ 0 & \text{otherwise}, \end{cases} \quad f_{T\mid H_1}(t) = \begin{cases} (1/\mu_D)e^{-t/\mu_D} & t \geq 0, \\ 0 & \text{otherwise}, \end{cases}
\] (1)

The acceptance regions are $A_0 = \{t \mid T \leq t_0\}$ and $A_1 = \{t \mid t > t_0\}$.

(a) The false alarm probability is
\[
P_{FA} = P[A_1\mid H_0] = \int_{t_0}^{\infty} f_{T\mid H_0}(t) \, dt = e^{-t_0/3}.\] (2)

(b) The miss probability is
\[
P_{MISS} = P[A_0\mid H_1] = \int_{0}^{t_0} f_{T\mid H_1}(t) \, dt = 1 - e^{-t_0/\mu_D}.\] (3)

(c) From Theorem 8.6, the maximum likelihood decision rule is
\[
t \in A_0 \text{ if } \frac{f_{T\mid H_0}(t)}{f_{T\mid H_1}(t)} \geq 1; \quad t \in A_1 \text{ otherwise.}
\] (4)

After some algebra, this rule simplifies to
\[
t \in A_0 \text{ if } t \leq t_{ML} = \frac{\ln(\mu_D/3)}{1/3 - 1/\mu_D}; \quad t \in A_1 \text{ otherwise.}
\] (5)

When $\mu_D = 6$ minutes, $t_{ML} = 6 \ln 2 = 4.16$ minutes. When $\mu_D = 10$ minutes, $t_{ML} = (30/7) \ln(10/3) = 5.16$ minutes.
(d) The ML rule is the same as the MAP rule when \(P[H_0] = P[H_1] \). When \(P[H_0] > P[H_1] \), the MAP rule (which minimizes the probability of an error) should enlarge the \(A_0 \) acceptance region. Thus we would expect \(t_{\text{MAP}} > t_{\text{ML}} \).

(e) From Theorem 8.2, the MAP rule is
\[
T \in A_0 \text{ if } \frac{f_{T|H_0}(t)}{f_{T|H_1}(t)} \geq \frac{P[H_1]}{P[H_0]} = \frac{1}{4}; \quad T \in A_1 \text{ otherwise.} \tag{6}
\]
This rule simplifies to
\[
T \in A_0 \text{ if } t \leq t_{\text{MAP}} = \frac{\ln(4\mu_D/3)}{1/3 - 1/\mu_D}; \quad T \in A_1 \text{ otherwise.} \tag{7}
\]
When \(\mu_D = 6 \) minutes, \(t_{\text{MAP}} = 6\ln 8 = 12.48 \) minutes. When \(\mu_D = 10 \) minutes, \(t_{\text{ML}} = (30/7)\ln(40/3) = 11.1 \) minutes.

(f) For a given threshold \(t_0 \), we learned in parts (a) and (b) that
\[
P_{\text{FA}} = e^{-t_0/3}, \quad P_{\text{MISS}} = 1 - e^{-t_0/\mu_D}. \tag{8}
\]

The Matlab program \texttt{rocvoicedataout} graphs both receiver operating curves. The program and the resulting ROC are shown here.

As one might expect, larger \(\mu_D \) resulted in reduced \(P_{\text{MISS}} \) for the same \(P_{\text{FA}} \).

Problem 8.2.3 Solution

By Theorem 8.5, the decision rule is
\[
n \in A_0 \text{ if } L(n) = \frac{P_{N|H_0}(n)}{P_{N|H_1}(n)} \geq \gamma; \quad n \in A_1 \text{ otherwise,} \tag{1}
\]
where where \(\gamma \) is the largest possible value such that \(\sum_{L(n) < \gamma} P_{N|H_0}(n) \leq \alpha \).

Given \(H_0 \), \(N \) is Poisson (\(a_0 = 1,000 \)) while given \(H_1 \), \(N \) is Poisson (\(a_1 = 1,300 \)). We can solve for the acceptance set \(A_0 \) by observing that \(n \in A_0 \) if
\[
\frac{P_{N|H_0}(n)}{P_{N|H_1}(n)} = \frac{a_0^n e^{-a_0}/n!}{a_1^n e^{-a_1}/n!} \geq \gamma. \tag{2}
\]
Cancelling common factors and taking the logarithm, we find that \(n \in A_0 \) if
\[
n \ln \frac{a_0}{a_1} \geq (a_0 - a_1) + \ln \gamma. \tag{3}
\]
Since $\ln(a_0/a_1) < 0$, dividing through reverses the inequality and shows that

$$n \in A_0 \text{ if } n \leq n^* = \frac{(a_0 - a_1) + \ln \gamma}{\ln(a_0/a_1)} = \frac{(a_1 - a_0) - \ln \gamma}{\ln(a_1/a_0)}; \quad n \in A_1 \text{ otherwise} \quad (4)$$

However, we still need to determine the constant γ. In fact, it is easier to work with the threshold n^* directly. Note that $L(n) < \gamma$ if and only if $n > n^*$. Thus we choose the smallest n^* such that

$$\frac{P[n \geq n^* | H_0]}{P[n = n^* | H_0]} < 10^{-6}.$$

To find n^* a reasonable approach would be to use Central Limit Theorem approximation since given H_0, N is a Poisson (1,000) random variable, which has the same PDF as the sum on 1,000 independent Poisson (1) random variables. Given H_0, N has expected value a_0 and variance a_0. From the CLT,

$$P[N > n^* | H_0] = P\left[\frac{N - a_0}{\sqrt{a_0}} > \frac{n^* - a_0}{\sqrt{a_0}} | H_0\right] \approx Q\left(\frac{n^* - a_0}{\sqrt{a_0}}\right) \leq 10^{-6}. \quad (6)$$

From Table 3.2, $Q(4.75) = 1.02 \times 10^{-6}$ and $Q(4.76) < 10^{-6}$, implying

$$n^* = a_0 + 4.76\sqrt{a_0} = 1150.5. \quad (7)$$

On the other hand, perhaps the CLT should be used with some caution since $\alpha = 10^{-6}$ implies we are using the CLT approximation far from the center of the distribution. In fact, we can check out answer using the `poissoncdf` functions:

```plaintext
>> nstar=[1150 1151 1152 1153 1154 1155];
>> (1.0-poissoncdf(1000,nstar))'
ans =
 1.0e-05 *
 0.1644 0.1420 0.1225 0.1056 0.0910 0.0783
```

Thus we see that n^*1154. Using this threshold, the miss probability is

$$P[N \leq n^* | H_1] = P[N \leq 1154 | H_1] = \text{poissoncdf}(1300,1154) = 1.98 \times 10^{-5}. \quad (8)$$

Keep in mind that this is the smallest possible P_{MISS} subject to the constraint that $P_{\text{FA}} \leq 10^{-6}$.

Problem 8.2.4 Solution

(a) Given H_0, X is Gaussian (0, 1). Given H_1, X is Gaussian (4, 1). From Theorem 8.2, the MAP hypothesis test is

$$x \in A_0 \text{ if } \frac{f_X|H_0}(x)}{f_X|H_1}(x) = \frac{e^{-x^2/2}}{e^{-(x-4)^2/2}
\geq \frac{P[H_1]}{P[H_0]};} \quad x \in A_1 \text{ otherwise.} \quad (1)$$

Since a target is present with probability $P[H_1] = 0.01$, the MAP rule simplifies to

$$x \in A_0 \text{ if } x \leq x_{\text{MAP}} = 2 - \frac{1}{4} \ln \left(\frac{P[H_1]}{P[H_0]}\right) = 3.15; \quad x \in A_1 \text{ otherwise.} \quad (2)$$
The choice of γ

This rule simplifies to

Taking logarithms, the Neyman-Pearson rule becomes

Given α,

Problem 8.2.5 Solution

Thus we choose x has a one-to-one correspondence with the choice of the threshold x_0. Moreover $L(x) \geq \gamma$ if and only if $x \leq x_0$. In terms of x_0, the false alarm probability is

Thus we choose x_0 such that $Q(x_0) = \alpha$.

286
Problem 8.2.6 Solution

Given H_0, $M_n(T)$ has expected value $E[V]/n = 3/n$ and variance $\text{Var}[V]/n = 9/n$. Given H_1, $M_n(T)$ has expected value $E[D]/n = 6/n$ and variance $\text{Var}[D]/n = 36/n$.

(a) Using a Central Limit Theorem approximation, the false alarm probability is

$$P_{FA} = P[M_n(T) > t_0 | H_0] = P \left[\frac{M_n(T) - 3}{\sqrt{9/n}} > \frac{t_0 - 3}{\sqrt{9/n}} \right] = Q(\sqrt{n}(t_0/3 - 1)).$$

(b) Again, using a CLT Approximation, the miss probability is

$$P_{MISS} = P[M_n(T) \leq t_0 | H_1] = P \left[\frac{M_n(T) - 6}{\sqrt{36/n}} \leq \frac{t_0 - 6}{\sqrt{36/n}} \right] = \Phi(\sqrt{n}(t_0/6 - 1)).$$

(c) From Theorem 8.6, the maximum likelihood decision rule is

$$t \in A_0 \text{ if } \frac{f_{M_n(T)|H_0}(t)}{f_{M_n(T)|H_1}(t)} \geq 1; \quad t \in A_1 \text{ otherwise.}$$

We will see shortly that using a CLT approximation for the likelihood functions is something of a detour. Nevertheless, with a CLT approximation, the likelihood functions are

$$f_{M_n(T)|H_0}(t) = \frac{n}{18\pi} e^{-n(t-3)^2/18} \quad f_{M_n(T)|H_1}(t) = \sqrt{\frac{n}{72\pi}} e^{-n(t-6)^2/72}$$

From the CLT approximation, the ML decision rule is

$$t \in A_0 \text{ if } \frac{\sqrt{72} e^{-n(t-3)^2/18}}{18 e^{-n(t-6)^2/72}} = 2e^{-n[4(t-3)^2-(t-6)^2]/72} \geq 1; \quad t \in A_1 \text{ otherwise.}$$

After some algebra, this rule simplifies to

$$t \in A_0 \text{ if } t^2 - 4t - \frac{24 \ln 2}{n} \leq 0; \quad t \in A_1 \text{ otherwise.}$$

Since the quadratic $t^2 - 4t - 24 \ln(2)/n$ has two zeros, we use the quadratic formula to find the roots. One root corresponds to a negative value of t and can be discarded since $M_n(T) \geq 0$. Thus the ML rule (for $n = 9$) becomes

$$t \in A_0 \text{ if } t \leq t_{ML} = 2 + 2\sqrt{1 + 6 \ln(2)/n} = 4.42; \quad t \in A_1 \text{ otherwise.}$$

The negative root of the quadratic is the result of the Gaussian assumption which allows for a nonzero probability that $M_n(T)$ will be negative. In this case, hypothesis H_1 which has higher variance becomes more likely. However, since $M_n(T) \geq 0$, we can ignore this root since it is just an artifact of the CLT approximation.

In fact, the CLT approximation gives an incorrect answer. Note that $M_n(T) = Y_n/n$ where Y_n is a sum of iid exponential random variables. Under hypothesis H_0, Y_n is an Erlang $(n, \lambda_0 = 1/3)$ random variable. Under hypothesis H_1, Y_n is an Erlang $(n, \lambda_1 = 1/6)$ random variable. Since $M_n(T) = Y_n/n$ is a scaled version of Y_n, Theorem 3.20 tells us that given...
hypothesis H_i, $M_n(T)$ is an Erlang $(n, n\lambda_i)$ random variable. Thus $M_n(T)$ has likelihood functions
\[
f_{M_n(T)|H_i}(t) = \begin{cases} \frac{(n\lambda_i)^{n-1}e^{-n\lambda_i t}}{(n-1)!} & t \geq 0 \\ 0 & \text{otherwise} \end{cases}
\]
(8)

Using the Erlang likelihood functions, the ML rule becomes
\[
t \in A_0 \text{ if } \frac{f_{M_n(T)|H_0}(t)}{f_{M_n(T)|H_1}(t)} = \left(\frac{\lambda_0}{\lambda_1} \right)^n e^{-n(\lambda_0-\lambda_1)t} \geq 1; \quad t \in A_1 \text{ otherwise.}
\]
(9)

This rule simplifies to
\[
t \in A_0 \text{ if } t \leq t_{ML} = \frac{\ln(\lambda_0/\lambda_1)}{\lambda_0 - \lambda_1} = 6 \ln 2 = 4.159; \quad t \in A_1 \text{ otherwise.}
\]
(10)

Since $6 \ln 2 = 4.159$, this rule is not the same as the rule derived using a CLT approximation. Using the exact Erlang PDF, the ML rule does not depend on n. Moreover, even if $n \to \infty$, the exact Erlang-derived rule and the CLT approximation rule remain different. In fact, the CLT-based rule is simply an approximation to the correct rule. This highlights that we should first check whether a CLT approximation is necessary before we use it.

(d) In this part, we will use the exact Erlang PDFs to find the MAP decision rule. From 8.2, the MAP rule is
\[
t \in A_0 \text{ if } \frac{f_{M_n(T)|H_0}(t)}{f_{M_n(T)|H_1}(t)} = \left(\frac{\lambda_0}{\lambda_1} \right)^n e^{-n(\lambda_0-\lambda_1)t} \geq \frac{P[H_1]}{P[H_0]}; \quad t \in A_1 \text{ otherwise.}
\]
(11)

Since $P[H_0] = 0.8$ and $P[H_1] = 0.2$, the MAP rule simplifies to
\[
t \in A_0 \text{ if } t \leq t_{MAP} = \frac{\ln(\lambda_0/\lambda_1) - \frac{1}{n} \ln \frac{P[H_1]}{P[H_0]}}{\lambda_0 - \lambda_1} = 6 \left[\ln 2 + \ln \left(\frac{4}{n} \right) \right]; \quad t \in A_1 \text{ otherwise.}
\]
(12)

For $n = 9$, $t_{MAP} = 5.083$.

(e) Although we have seen it is incorrect to use a CLT approximation to derive the decision rule, the CLT approximation used in parts (a) and (b) remains a good way to estimate the false alarm and miss probabilities. However, given H_i, $M_n(T)$ is an Erlang $(n, n\lambda_i)$ random variable. In particular, given H_0, $M_n(T)$ is an Erlang $(n, n/3)$ random variable while given H_1, $M_n(T)$ is an Erlang $(n, n/6)$. Thus we can also use erlangcdf for an exact calculation of the false alarm and miss probabilities. To summarize the results of parts (a) and (b), a threshold t_0 implies that
\[
P_{FA} = P[M_n(T) > t_0|H_0] \approx Q(\sqrt{n}[t_0/3 - 1]),
\]
(13)
\[
P_{MISS} = P[M_n(T) \leq t_0|H_1] = \text{erlangcdf}(n, n/6, t_0) \approx \Phi(\sqrt{n}t_0/6 - 1)).
\]
(14)

Here is a program that generates the receiver operating curve.
%voicedatroc.m
t0=1:0.1:8';
n=9;
PFA9=1.0-erlangcdf(n,n/3,t0);
PFA9clt=1-phi(sqrt(n)*((t0/3)-1));
PM9=erlangcdf(n,n/6,t0);
PM9clt=phi(sqrt(n)*((t0/6)-1));
n=16;
PFA16=1.0-erlangcdf(n,n/3,t0);
PFA16clt=1-phi(sqrt(n)*((t0/3)-1));
PM16=erlangcdf(n,n/6,t0);
PM16clt=phi(sqrt(n)*((t0/6)-1));
plot(PFA9,PM9,PFA9clt,PM9clt,PFA16,PM16,PFA16clt,PM16clt);
axis([0 0.8 0 0.8]);
legend('Erlang n=9','CLT n=9','Erlang n=16','CLT n=16');

Here are the resulting ROCs.

Both the true curve and CLT-based approximations are shown. The graph makes it clear that the CLT approximations are somewhat inaccurate. It is also apparent that the ROC for $n = 16$ is clearly better than for $n = 9$.

Problem 8.2.7 Solution

This problem is a continuation of Problem 8.2.6. In this case, we say a call is a “success” if $T > t_0$. The success probability depends on which hypothesis is true. In particular,

$$p_0 = P[T > t_0 | H_0] = e^{-t_0/3}, \quad p_1 = P[T > t_0 | H_1] = e^{-t_0/6}. \quad (1)$$

Under hypothesis H_i, K has the binomial (n, p_i) PMF

$$P_{K|H_i}(k) = \binom{n}{k} p_i^k (1 - p_i)^{n-k}. \quad (2)$$

(a) A false alarm occurs if $K > k_0$ under hypothesis H_0. The probability of this event is

$$P_{FA} = P[K > k_0 | H_0] = \sum_{k=k_0+1}^{n} \binom{n}{k} p_0^k (1 - p_0)^{n-k}, \quad (3)$$

(b) From Theorem 8.6, the maximum likelihood decision rule is

$$k \in A_0 \text{ if } \frac{P_{K|H_0}(k)}{P_{K|H_1}(k)} = \frac{p_0^k (1 - p_0)^{n-k}}{p_1^k (1 - p_1)^{n-k}} \geq 1; \quad k \in A_1 \text{ otherwise}. \quad (4)$$

289
This rule simplifies to
\[k \in A_0 \text{ if } k \ln \left(\frac{p_0/(1-p_0)}{p_1/(1-p_1)} \right) \geq \ln \left(\frac{1-p_1}{1-p_0} \right)n; \quad k \in A_1 \text{ otherwise.} \] (5)

To proceed further, we need to know if \(p_0 < p_1 \) or if \(p_0 \geq p_1 \). For \(t_0 = 4.5 \),
\[p_0 = e^{-1.5} = 0.2231 < e^{-0.75} = 0.4724 = p_1. \] (6)

In this case, the ML rule becomes
\[k \in A_0 \text{ if } k \leq k_{ML} = \frac{\ln \left(\frac{1-p_0}{1-p_1} \right)}{\ln \left(\frac{p_1/(1-p_1)}{p_0/(1-p_0)} \right)}n = (0.340)n; \quad k \in A_1 \text{ otherwise.} \] (7)

For \(n = 16 \), \(k_{ML} = 5.44. \)

(c) From Theorem 8.2, the MAP test is
\[k \in A_0 \text{ if } k \leq k_{MAP} = \ln \left(\frac{1-p_0}{1-p_1} \right) + \ln 4 \ln \left(\frac{p_1/(1-p_1)}{p_0/(1-p_0)} \right)n = (0.340)n + 1.22; \quad k \in A_1 \text{ otherwise.} \] (8)

For \(n = 16 \), \(k_{MAP} = 6.66. \)

(d) For threshold \(k_0 \), the false alarm and miss probabilities are
\[P_{FA} = P[K > k_0|H_0] = 1\text{-binomialcdf}(n,p_0,k_0) \] (11)
\[P_{MISS} = P[K \leq k_0|H_1] = \text{binomialcdf}(n,p_1,k_0) \] (12)

The ROC is generated by evaluating \(P_{FA} \) and \(P_{MISS} \) for each value of \(k_0 \). Here is a MATLAB program that does this task and plots the ROC.

```matlab
function [PFA,PMISS]=binvoicedataroc(n);
t0=[3; 4.5];
p0=exp(-t0/3); p1=exp(-t0/6);
k0=(0:n)';
PFA=zeros(n+1,2);
for j=1:2,
PFA(:,j) = 1.0-binomialcdf(n,p0(j),k0);
PM(:,j)=binomialcdf(n,p1(j),k0);
end
plot(PFA(:,1),PM(:,1),'-o',PFA(:,2),PM(:,2),'-x');
legend('t_0=3','t_0=4.5');
axis([0 0.8 0 0.8]);
xlabel('	extit{P}_{\text{FA}}');
ylabel('	extit{P}_{\text{MISS}}');
```
and here is the resulting ROC:

![ROC Graph]

As we see, the test works better with threshold $t_0 = 4.5$ than with $t_0 = 3$.

Problem 8.2.8 Solution

Given hypothesis H_0 that $X = 0$, $Y = W$ is an exponential ($\lambda = 1$) random variable. Given hypothesis H_1 that $X = 1$, $Y = V + W$ is an Erlang ($n = 2$, $\lambda = 1$) random variable. That is,

$$f_{Y|H_0}(y) = \begin{cases} e^{-y} & y \geq 0, \\ 0 & \text{otherwise,} \end{cases} \quad f_{Y|H_1}(y) = \begin{cases} ye^{-y} & y \geq 0, \\ 0 & \text{otherwise.} \end{cases}$$ \hfill (1)

The probability of a decoding error is minimized by the MAP rule. Since $P[H_0] = P[H_1] = 1/2$, the MAP rule is

$$y \in A_0 \text{ if } \frac{f_{Y|H_0}(y)}{f_{Y|H_1}(y)} = \frac{e^{-y}}{ye^{-y}} \geq \frac{P[H_1]}{P[H_0]} = 1; \quad y \in A_1 \text{ otherwise.}$$ \hfill (2)

Thus the MAP rule simplifies to

$$y \in A_0 \text{ if } y \leq 1; \quad y \in A_1 \text{ otherwise.}$$ \hfill (3)

The probability of error is

$$P_{\text{ERR}} = P[Y > 1|H_0] P[H_0] + P[Y \leq 1|H_1] P[H_1]$$ \hfill (4)

$$= \frac{1}{2} \int_1^\infty e^{-y} \, dy + \frac{1}{2} \int_0^1 ye^{-y} \, dy$$ \hfill (5)

$$= \frac{e^{-1}}{2} + \frac{1 - 2e^{-1}}{2} = \frac{1 - e^{-1}}{2}. \hfill (6)$$

Problem 8.2.9 Solution

Given hypothesis H_i, K has the binomial PMF

$$P_{K|H_i}(k) = \binom{n}{k} q_i^k (1 - q_i)^{n-k}. \hfill (1)$$

(a) The ML rule is

$$k \in A_0 \text{ if } P_{K|H_0}(k) > P_{K|H_1}(k); \quad k \in A_1 \text{ otherwise.} \hfill (2)$$

291
When we observe $K = k \in \{0, 1, \ldots, n\}$, plugging in the conditional PMF’s yields the rule

$$k \in A_0 \text{ if } \binom{n}{k} q_0^k (1 - q_0)^{n-k} > \binom{n}{k} q_1^k (1 - q_1)^{n-k}; \quad k \in A_1 \text{ otherwise.} \quad (3)$$

Cancelling common factors, taking the logarithm of both sides, and rearranging yields

$$k \in A_0 \text{ if } k \ln q_0 + (n - k) \ln(1 - q_0) > k \ln q_1 + (n - k) \ln(1 - q_1); \quad k \in A_1 \text{ otherwise.} \quad (4)$$

By combining all terms with k, the rule can be simplified to

$$k \in A_0 \text{ if } k \ln \left(\frac{q_1/(1 - q_1)}{q_0/(1 - q_0)} \right) < n \ln \left(\frac{1 - q_0}{1 - q_1} \right); \quad k \in A_1 \text{ otherwise.} \quad (5)$$

Note that $q_1 > q_0$ implies $q_1/(1 - q_1) > q_0/(1 - q_0)$. Thus, we can rewrite our ML rule as

$$k \in A_0 \text{ if } k < k^* = \frac{\ln[(1 - q_0)/(1 - q_1)]}{\ln[q_1/q_0] + \ln[(1 - q_0)/(1 - q_1)]}; \quad k \in A_1 \text{ otherwise.} \quad (6)$$

(b) Let k^* denote the threshold given in part (a). Using $n = 500$, $q_0 = 10^{-4}$, and $q_1 = 10^{-2}$, we have

$$k^* = 500 \frac{\ln[(1 - 10^{-4})/(1 - 10^{-2})]}{\ln[10^{-4}/10^{-4}] + \ln[(1 - 10^{-4})/(1 - 10^{-2})]} \approx 1.078 \quad (7)$$

Thus the ML rule is that if we observe $K \leq 1$, then we choose hypothesis H_0; otherwise, we choose H_1. The false alarm probability is

$$P_{FA} = P[A_1|H_0] = P[K > 1|H_0] \quad (8)$$

$$= 1 - P_{K|H_0}(0) - P_{K|H_1}(1) \quad (9)$$

$$= 1 - (1 - q_0)^{500} - 500q_0(1 - q_0)^{499} = 0.0012 \quad (10)$$

and the miss probability is

$$P_{MISS} = P[A_0|H_1] = P[K \leq 1|H_1] \quad (11)$$

$$= P_{K|H_1}(0) + P_{K|H_1}(1) \quad (12)$$

$$= (1 - q_1)^{500} + 500q_1(1 - q_1)^{499} = 0.0398. \quad (13)$$

(c) In the test of Example 8.8, the geometric random variable N, the number of tests needed to find the first failure, was used. In this problem, the binomial random variable K, the number of failures in 500 tests, was used. We will call these two procedures the geometric and the binomial tests. Also, we will use $P_{FA}^{(N)}$ and $P_{MISS}^{(N)}$ to denote the false alarm and miss probabilities using the geometric test. We also use $P_{FA}^{(K)}$ and $P_{MISS}^{(K)}$ for the error probabilities of the binomial test. From Example 8.8, we have the following comparison:

<table>
<thead>
<tr>
<th>geometric test</th>
<th>binomial test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{FA}^{(N)}$ = 0.0045,</td>
<td>$P_{FA}^{(K)}$ = 0.0012,</td>
</tr>
<tr>
<td>$P_{MISS}^{(N)}$ = 0.0087,</td>
<td>$P_{MISS}^{(K)}$ = 0.0398,</td>
</tr>
</tbody>
</table>
When making comparisons between tests, we want to judge both the reliability of the test as well as the cost of the testing procedure. With respect to the reliability, we see that the conditional error probabilities appear to be comparable in that

\[\frac{P_{\text{FA}}^{(N)}}{P_{\text{FA}}^{(K)}} = 3.75 \quad \text{but} \quad \frac{P_{\text{MISS}}^{(K)}}{P_{\text{MISS}}^{(N)}} = 4.57. \]

(17)

Roughly, the false alarm probability of the geometric test is about four times higher than that of the binomial test. However, the miss probability of the binomial test is about four times that of the geometric test. As for the cost of the test, it is reasonable to assume the cost is proportional to the number of disk drives that are tested. For the geometric test of Example 8.8, we test either until the first failure or until 46 drives pass the test. For the binomial test, we test until either 2 drives fail or until 500 drives pass the test! You can, if you wish, calculate the expected number of drives tested under each test method for each hypothesis. However, it isn’t necessary in order to see that a lot more drives will be tested using the binomial test. If we knew the a priori probabilities \(P[H_0] \) and also the relative costs of the two type of errors, then we could determine which test procedure was better. However, without that information, it would not be unreasonable to conclude that the geometric test offers performance roughly comparable to that of the binomial test but with a significant reduction in the expected number of drives tested.

Problem 8.2.10 Solution

The key to this problem is to observe that

\[P[A_0|H_0] = 1 - P[A_1|H_0], \quad P[A_1|H_1] = 1 - P[A_0|H_1]. \]

(1)

The total expected cost can be written as

\[
E[C] = P[A_1|H_0] P[H_0] C'_{10} + (1 - P[A_1|H_0]) P[H_0] C'_{00} + P[A_0|H_1] P[H_1] C'_{01} + (1 - P[A_0|H_1]) P[H_1] C'_{11}.
\]

(2)

Rearranging terms, we have

\[
E[C] = P[A_1|H_0] P[H_0] (C'_{10} - C'_{00}) + P[A_0|H_1] P[H_1] (C'_{01} - C'_{11}) + P[H_0] C'_{00} + P[H_1] C'_{11}.
\]

(3)

Since \(P[H_0]C'_{00} + P[H_1]C'_{11} \) does not depend on the acceptance sets \(A_0 \) and \(A_1 \), the decision rule that minimizes \(E[C] \) is the same decision rule that minimizes

\[
E[C''] = P[A_1|H_0] P[H_0] (C'_{10} - C'_{00}) + P[A_0|H_1] P[H_1] (C'_{01} - C'_{11}).
\]

(4)

The decision rule that minimizes \(E[C''] \) is the same as the minimum cost test in Theorem 8.3 with the costs \(C_{01} \) and \(C_{10} \) replaced by the differential costs \(C'_{01} - C'_{11} \) and \(C'_{10} - C'_{00} \).

Problem 8.3.1 Solution

Since the three hypotheses \(H_0, H_1, \) and \(H_2 \) are equally likely, the MAP and ML hypothesis tests are the same. From Theorem 8.8, the MAP rule is

\[x \in A_m \text{ if } f_{X|H_m}(x) \geq f_{X|H_j}(x) \text{ for all } j. \]

(1)
Since N is Gaussian with zero mean and variance σ^2_N, the conditional PDF of X given H_i is
\[
 f_{X|H_i}(x) = \frac{1}{\sqrt{2\pi\sigma^2_N}}e^{-(x-a(i-1))^2/2\sigma^2_N}.
\] (2)

Thus, the MAP rule is
\[
x \in A_m \text{ if } (x-a(m-1))^2 \leq (x-a(j-1))^2 \text{ for all } j.
\] (3)

This implies that the rule for membership in A_0 is
\[
x \in A_0 \text{ if } (x+a)^2 \leq x^2 \text{ and } (x+a)^2 \leq (x-a)^2.
\] (4)

This rule simplifies to
\[
x \in A_0 \text{ if } x \leq -a/2.
\] (5)

Similar rules can be developed for A_1 and A_2. These are:
\[
x \in A_1 \text{ if } -a/2 \leq x \leq a/2
\] (6)
\[
x \in A_2 \text{ if } x \geq a/2
\] (7)

To summarize, the three acceptance regions are
\[
A_0 = \{x \mid x \leq -a/2\} \quad A_1 = \{x \mid -a/2 < x \leq a/2\} \quad A_2 = \{x \mid x > a/2\}
\] (8)

Graphically, the signal space is one dimensional and the acceptance regions are

\[
\begin{array}{c|c|c|c}
 & A_0 & A_1 & A_2 \\
\hline
s_i & -a & s_i & a \\
\hline
& 0 & s_j & \\
\end{array}
\]

Just as in the QPSK system of Example 8.13, the additive Gaussian noise dictates that the acceptance region A_i is the set of observations x that are closer to $s_i = (i-1)a$ than any other s_j.

Problem 8.3.2 Solution

Let the components of s_{ijk} be denoted by $s^{(1)}_{ijk}$ and $s^{(2)}_{ijk}$ so that given hypothesis H_{ijk},
\[
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix} = \begin{bmatrix}
s^{(1)}_{ijk} \\
s^{(2)}_{ijk}
\end{bmatrix} + \begin{bmatrix}
N_1 \\
N_2
\end{bmatrix}
\] (1)

As in Example 8.13, we will assume N_1 and N_2 are iid zero mean Gaussian random variables with variance σ^2. Thus, given hypothesis H_{ijk}, X_1 and X_2 are independent and the conditional joint PDF of X_1 and X_2 is
\[
f_{X_1,X_2|H_{ijk}}(x_1,x_2) = f_{X_1|H_{ijk}}(x_1) f_{X_2|H_{ijk}}(x_2)
\] (2)
\[
= \frac{1}{2\pi\sigma^2}e^{-(x_1-s^{(1)}_{ijk})^2/2\sigma^2} e^{-(x_2-s^{(2)}_{ijk})^2/2\sigma^2}
\] (3)
\[
= \frac{1}{2\pi\sigma^2}e^{-[(x_1-s^{(1)}_{ijk})^2+(x_2-s^{(2)}_{ijk})^2]/2\sigma^2}
\] (4)
In terms of the distance $\|x - s_{ijk}\|$ between vectors

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad s_{ijk} = \begin{bmatrix} s_{ijk}^{(1)} \\ s_{ijk}^{(2)} \end{bmatrix}$$ \hspace{1cm} (5)$$

we can write

$$f_{X_1,X_2|H_{ij}}(x_1, x_2) = \frac{1}{2\pi\sigma^2} e^{-\|x - s_{ijk}\|^2/2\sigma^2}$$ \hspace{1cm} (6)$$

Since all eight symbols s_{000}, \ldots, s_{111} are equally likely, the MAP and ML rules are

$$x \in A_{ijk} \text{ if } f_{X_1,X_2|H_{ij}}(x_1, x_2) \geq f_{X_1,X_2|H_{ij'}k'}(x_1, x_2) \text{ for all other } H_{ij'k'}.$$ \hspace{1cm} (7)$$

This rule simplifies to

$$x \in A_{ijk} \text{ if } \|x - s_{ijk}\| \leq \|x - s_{ijk}\| \text{ for all other } i'j'k'.$$ \hspace{1cm} (8)$$

This means that A_{ijk} is the set of all vectors x that are closer to s_{ijk} than any other signal. Graphically, to find the boundary between points closer to s_{ijk} than $s_{ij'k'}$, we draw the line segment connecting s_{ijk} and $s_{ij'k'}$. The boundary is then the perpendicular bisector. The resulting boundaries are shown in this figure:

![Diagram](image)

Problem 8.3.3 Solution

In Problem 8.3.1, we found the MAP acceptance regions were

$$A_0 = \{x | x \leq -a/2\} \quad A_1 = \{x | -a/2 < x \leq a/2\} \quad A_2 = \{x | x > a/2\}$$ \hspace{1cm} (1)$$

To calculate the probability of decoding error, we first calculate the conditional error probabilities

$$P[D_E|H_i] = P[X \notin A_i|H_i]$$ \hspace{1cm} (2)$$

Given H_i, recall that $X = a(i - 1) + N$. This implies

$$P[X \notin A_0|H_0] = P[-a + N > -a/2] = P[N > a/2] = Q\left(\frac{a}{2\sigma N}\right)$$ \hspace{1cm} (3)$$

$$P[X \notin A_1|H_1] = P[N < -a/2] + P[N > a/2] = 2Q\left(\frac{a}{2\sigma N}\right)$$ \hspace{1cm} (4)$$

$$P[X \notin A_2|H_2] = P[a + N < a/2] = P[N < -a/2] = Q\left(\frac{a}{2\sigma N}\right)$$ \hspace{1cm} (5)$$

295
Since the three hypotheses \(H_0, H_1, \) and \(H_2 \) each have probability \(1/3 \), the probability of error is

\[
P[D_E] = \sum_{i=0}^{2} P[X \not\in A_i | H_i] P[H_i] = \frac{4}{3} Q \left(\frac{a}{2\sigma_N} \right) \quad (6)
\]

Problem 8.3.4 Solution

Let \(H_i \) denote the hypothesis that symbol \(a_i \) was transmitted. Since the four hypotheses are equally likely, the ML tests will maximize the probability of a correct decision. Given \(H_i \), \(N_1 \) and \(N_2 \) are independent and thus \(X_1 \) and \(X_2 \) are independent. This implies

\[
f_{X_1,X_2|H_i}(x_1,x_2) = f_{X_1|H_i}(x_1) f_{X_2|H_i}(x_2)
\]

\[
= \frac{1}{2\pi \sigma^2} e^{-(x_1-s_{i1})^2/2\sigma^2} e^{-(x_2-s_{i2})^2/2\sigma^2}
\]

\[
= \frac{1}{2\pi \sigma^2} e^{-(x_1-s_{i1})^2+(x_2-s_{i2})^2/2\sigma^2}
\]

From Definition 8.2 the acceptance regions \(A_i \) for the ML multiple hypothesis test must satisfy

\[
(x_1, x_2) \in A_i \text{ if } f_{X_1,X_2|H_i}(x_1,x_2) \geq f_{X_1,X_2|H_j}(x_1,x_2) \text{ for all } j.
\]

Equivalently, the ML acceptance regions are

\[
(x_1, x_2) \in A_i \text{ if } (x_1 - s_{i1})^2 + (x_2 - s_{i2})^2 \leq (x_1 - s_{j1})^2 + (x_2 - s_{j2})^2 \text{ for all } j.
\]

In terms of the vectors \(x \) and \(s_i \), the acceptance regions are defined by the rule

\[
x \in A_i \text{ if } \|x - s_i\|^2 \leq \|x - s_j\|^2
\]

Just as in the case of QPSK, the acceptance region \(A_i \) is the set of vectors \(x \) that are closest to \(s_i \).

Problem 8.3.5 Solution

From the signal constellation depicted in Problem 8.3.5, each signal \(s_{ij1} \) is below the \(x \)-axis while each signal \(s_{ij0} \) is above the \(x \)-axis. The event \(B_3 \) of an error in the third bit occurs if we transmit a signal \(s_{ij1} \) but the receiver output \(x \) is above the \(x \)-axis or if we transmit a signal \(s_{ij0} \) and the receiver output is below the \(x \)-axis. By symmetry, we need only consider the case when we transmit one of the four signals \(s_{ij1} \). In particular,

- Given \(H_{011} \) or \(H_{001} \), \(X_2 = -1 + N_2 \)
- Given \(H_{101} \) or \(H_{111} \), \(X_2 = -2 + N_2 \)

This implies

\[
P[B_3|H_{011}] = P[B_3|H_{001}] = P[-1 + N_2 > 0] = Q(1/\sigma N)
\]

\[
P[B_3|H_{101}] = P[B_3|H_{111}] = P[-2 + N_2 > 0] = Q(2/\sigma N)
\]

Assuming all four hypotheses are equally likely, the probability of an error decoding the third bit is

\[
P[B_3] = \frac{P[B_3|H_{011}] + P[B_3|H_{001}] + P[B_3|H_{101}] + P[B_3|H_{111}]}{4} = \frac{Q(1/\sigma N) + Q(2/\sigma N)}{2}
\]
Problem 8.3.6 Solution

(a) Hypothesis H_i is that $X = s_i + N$, where N is a Gaussian random vector independent of which signal was transmitted. Thus, given H_i, X is a Gaussian $(s_i, \sigma^2 I)$ random vector. Since X is two-dimensional,

$$f_{X|H_i}(x) = \frac{1}{2\pi\sigma^2} e^{-\frac{1}{2} (x-s_i)' \sigma^2 I^{-1} (x-s_i)} = \frac{1}{2\pi\sigma^2} e^{-\frac{1}{2\sigma^2} \|x-s_i\|^2}.$$ \hspace{1cm} (1)

Since the hypotheses H_i are equally likely, the MAP and ML rules are the same and achieve the minimum probability of error. In this case, from the vector version of Theorem 8.8, the MAP rule is

$$x \in A_m \text{ if } f_{X|H_m}(x) \geq f_{X|H_j}(x) \text{ for all } j.$$ \hspace{1cm} (2)

Using the conditional PDFs $f_{X|H_i}(x)$, the MAP rule becomes

$$x \in A_m \text{ if } \|x-s_m\|^2 \leq \|x-s_j\|^2 \text{ for all } j.$$ \hspace{1cm} (3)

In terms of geometry, the interpretation is that all vectors x closer to s_m than to any other signal s_j are assigned to A_m. In this problem, the signal constellation (i.e., the set of vectors s_i) is the set of vectors on the circle of radius E. The acceptance regions are the “pie slices” around each signal vector.

(b) Consider the following sketch to determine d.

Geometrically, the largest d such that $\|x-s_i\| \leq d$ defines the largest circle around s_i that can be inscribed into the pie slice A_i. By symmetry, this is the same for every A_i, hence we examine A_0. Each pie slice has angle $\theta = 2\pi/M$. Since the length of each signal vector is \sqrt{E}, the sketch shows that $\sin(\theta/2) = d/\sqrt{E}$. Thus $d = \sqrt{E} \sin(\pi/M)$.

(c) By symmetry, P_{ERR} is the same as the conditional probability of error $1 - P[A_i|H_i]$, no matter which s_i is transmitted. Let B denote a circle of radius d at the origin and let B_i denote the circle of radius d around s_i. Since $B_0 \subset A_0$,

$$P[A_0|H_0] = P[X \in A_0|H_0] \geq P[X \in B_0|H_0] = P[N \in B].$$ \hspace{1cm} (4)

Since the components of N are iid Gaussian $(0, \sigma^2)$ random variables,

$$P[N \in B] = \int_B f_{N_1,N_2}(n_1,n_2) \, dn_1 \, dn_2 = \frac{1}{2\pi\sigma^2} \int_B e^{-(n_1^2+n_2^2)/2\sigma^2} \, dn_1 \, dn_2.$$ \hspace{1cm} (5)
By changing to polar coordinates,

\[P \{ N \in B \} = \frac{1}{2\pi\sigma^2} \int_0^d \int_0^{2\pi} e^{-r^2/2\sigma^2} r \, d\theta \, dr \]

(6)

\[= \frac{1}{\sigma^2} \int_0^d r e^{-r^2/2\sigma^2} \, dr \]

(7)

\[= -e^{-r^2/2\sigma^2} \bigg|_0^d = 1 - e^{-d^2/2\sigma^2} = 1 - e^{-E\sin^2(\pi/M)/2\sigma^2} \]

(8)

Thus

\[P_{\text{err}} = 1 - P \{ A_0|H_0 \} \leq 1 - P \{ N \in B \} = e^{-E\sin^2(\pi/M)/2\sigma^2}. \]

(9)

Problem 8.3.7 Solution

(a) In Problem 8.3.4, we found that in terms of the vectors \(x \) and \(s_i \), the acceptance regions are defined by the rule

\[x \in A_i \text{ if } \|x - s_i\|^2 \leq \|x - s_j\|^2 \text{ for all } j. \]

(1)

Just as in the case of QPSK, the acceptance region \(A_i \) is the set of vectors \(x \) that are closest to \(s_i \). Graphically, these regions are easily found from the sketch of the signal constellation:

(b) For hypothesis \(A_1 \), we see that the acceptance region is

\[A_1 = \{(X_1, X_2)|0 < X_1 \leq 2, 0 < X_2 \leq 2\} \]

(2)
Given \(H_1 \), a correct decision is made if \((X_1, X_2) \in A_1 \). Given \(H_1 \), \(X_1 = 1 + N_1 \) and \(X_2 = 1 + N_2 \). Thus,

\[
P[C|H_1] = P[(X_1, X_2) \in A_1|H_1]
\]

\[
= P[0 < 1 + N_1 \leq 2, 0 < 1 + N_2 \leq 2]
\]

\[
= (P[-1 < N_1 \leq 1])^2
\]

\[
= (\Phi(1/\sigma_N) - \Phi(-1/\sigma_N))^2
\]

\[
= (2\Phi(1/\sigma_N) - 1)^2
\]

(c) Surrounding each signal \(s_i \) is an acceptance region \(A_i \) that is no smaller than the acceptance region \(A_1 \). That is,

\[
P[C|H_i] = P[(X_1, X_2) \in A_i|H_1]
\]

\[
\geq P[-1 < N_1 \leq 1, -1 < N_2 \leq 1]
\]

\[
= (P[-1 < N_1 \leq 1])^2 = P[C|H_1].
\]

This implies

\[
P[C] = \sum_{i=0}^{15} P[C|H_i] P[H_i]
\]

\[
\geq \sum_{i=0}^{15} P[C|H_i] P[H_i] = P[C|H_1] \sum_{i=0}^{15} P[H_i] = P[C|H_1]
\]

Problem 8.3.8 Solution

Let \(p_i = P[H_i] \). From Theorem 8.8, the MAP multiple hypothesis test is

\[
(x_1, x_2) \in A_i \text{ if } p_i f_{X_1, X_2|H_i} (x_1, x_2) \geq p_j f_{X_1, X_2|H_j} (x_1, x_2) \text{ for all } j
\]

From Example 8.13, the conditional PDF of \(X_1, X_2 \) given \(H_i \) is

\[
f_{X_1, X_2|H_i} (x_1, x_2) = \frac{1}{2\pi \sigma^2} e^{-[(x_1 - \sqrt{E} \cos \theta_i)^2 + (x_2 - \sqrt{E} \sin \theta_i)^2]/2\sigma^2}
\]

Using this conditional joint PDF, the MAP rule becomes

- \((x_1, x_2) \in A_i \) if for all \(j \),
 \[
 \frac{(x_1 - \sqrt{E} \cos \theta_i)^2 + (x_2 - \sqrt{E} \sin \theta_i)^2}{2\sigma^2} + \frac{(x_1 - \sqrt{E} \cos \theta_j)^2 + (x_2 - \sqrt{E} \sin \theta_j)^2}{2\sigma^2} \geq \ln \frac{p_j}{p_i}.
 \]

Expanding the squares and using the identity \(\cos^2 \theta + \sin^2 \theta = 1 \) yields the simplified rule

- \((x_1, x_2) \in A_i \) if for all \(j \),
 \[
 x_1 [\cos \theta_i - \cos \theta_j] + x_2 [\sin \theta_i - \sin \theta_j] \geq \frac{\sigma^2}{\sqrt{E}} \ln \frac{p_j}{p_i}
 \]
Note that the MAP rules define linear constraints in x_1 and x_2. Since $\theta_i = \pi/4 + i\pi/2$, we use the following table to enumerate the constraints:

<table>
<thead>
<tr>
<th></th>
<th>$\cos \theta_i$</th>
<th>$\sin \theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 0$</td>
<td>1/\sqrt{2}</td>
<td>1/\sqrt{2}</td>
</tr>
<tr>
<td>$i = 1$</td>
<td>-1/\sqrt{2}</td>
<td>1/\sqrt{2}</td>
</tr>
<tr>
<td>$i = 2$</td>
<td>-1/\sqrt{2}</td>
<td>-1/\sqrt{2}</td>
</tr>
<tr>
<td>$i = 3$</td>
<td>1/\sqrt{2}</td>
<td>-1/\sqrt{2}</td>
</tr>
</tbody>
</table>

(5)

To be explicit, to determine whether $(x_1, x_2) \in A_i$, we need to check the MAP rule for each $j \neq i$. Thus, each A_i is defined by three constraints. Using the above table, the acceptance regions are

- $(x_1, x_2) \in A_0$ if

 \[x_1 \geq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_1}{p_0} \quad x_2 \geq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_3}{p_0} \quad x_1 + x_2 \geq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_2}{p_0} \]

 (6)

- $(x_1, x_2) \in A_1$ if

 \[x_1 \leq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_1}{p_0} \quad x_2 \geq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_2}{p_1} \quad -x_1 + x_2 \geq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_3}{p_1} \]

 (7)

- $(x_1, x_2) \in A_2$ if

 \[x_1 \leq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_2}{p_3} \quad x_2 \leq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_2}{p_1} \quad x_1 + x_2 \geq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_2}{p_0} \]

 (8)

- $(x_1, x_2) \in A_3$ if

 \[x_1 \geq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_2}{p_3} \quad x_2 \leq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_3}{p_0} \quad -x_1 + x_2 \geq \frac{\sigma^2}{\sqrt{2E}} \ln \frac{p_2}{p_3} \]

 (9)

Using the parameters

\[\sigma = 0.8 \quad E = 1 \quad p_0 = 1/2 \quad p_1 = p_2 = p_3 = 1/6 \]

(10)

the acceptance regions for the MAP rule are

\[A_0 = \{(x_1, x_2) | x_1 \geq -0.497, x_2 \geq -0.497, x_1 + x_2 \geq -0.497\} \]

(11)

\[A_1 = \{(x_1, x_2) | x_1 \leq -0.497, x_2 \geq 0, -x_1 + x_2 \geq 0\} \]

(12)

\[A_2 = \{(x_1, x_2) | x_1 \leq 0, x_2 \leq 0, x_1 + x_2 \geq -0.497\} \]

(13)

\[A_3 = \{(x_1, x_2) | x_1 \geq 0, x_2 \leq -0.497, -x_1 + x_2 \geq 0\} \]

(14)

Here is a sketch of these acceptance regions:
Note that the boundary between A_1 and A_3 defined by $-x_1 + x_2 \geq 0$ plays no role because of the high value of p_0.

Problem 8.3.9 Solution

(a) First we note that

\[P^{1/2}X = \begin{bmatrix} \sqrt{p_1} \\ \vdots \\ \sqrt{p_k} \end{bmatrix} \begin{bmatrix} X_1 \\ \vdots \\ X_k \end{bmatrix} = \begin{bmatrix} \sqrt{p_1}X_1 \\ \vdots \\ \sqrt{p_k}X_k \end{bmatrix}. \tag{1} \]

Since each S_i is a column vector,

\[SP^{1/2}X = [S_1 \cdots S_k] \begin{bmatrix} \sqrt{p_1}X_1 \\ \vdots \\ \sqrt{p_k}X_k \end{bmatrix} = \sqrt{p_1}X_1S_1 + \cdots + \sqrt{p_k}X_kS_k. \tag{2} \]

Thus $Y = SP^{1/2}X + N = \sum_{i=1}^{k} \sqrt{p_i}X_iS_i + N$.

(b) Given the observation $Y = y$, a detector must decide which vector $X = [X_1 \cdots X_k]'$ was (collectively) sent by the k transmitters. A hypothesis H_j must specify whether $X_i = 1$ or $X_i = -1$ for each i. That is, a hypothesis H_j corresponds to a vector $x_j \in B_k$ which has ±1 components. Since there are 2^k such vectors, there are 2^k hypotheses which we can enumerate as H_1, \ldots, H_{2^k}. Since each X_i is independently and equally likely to be ±1, each hypothesis has probability 2^{-k}. In this case, the MAP and ML rules are the same and achieve minimum probability of error. The MAP/ML rule is

\[y \in A_m \text{ if } f_{Y|H_m}(y) \geq f_{Y|H_j}(y) \text{ for all } j. \tag{3} \]

Under hypothesis H_j, $Y = SP^{1/2}X_j + N$ is a Gaussian $(SP^{1/2}X_j, \sigma^2 I)$ random vector. The conditional PDF of Y is

\[f_{Y|H_j}(y) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2}((y-SP^{1/2}X_j)')(\sigma^2 I)^{-1}(y-SP^{1/2}X_j)} = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2}\|y-SP^{1/2}X_j\|^2}. \tag{4} \]
The MAP rule is
\[y \in A_m \text{ if } e^{-\|y - \mathbf{SP}^{1/2}x_m\|^2/2\sigma^2} \geq e^{-\|y - \mathbf{SP}^{1/2}x_j\|^2/2\sigma^2} \text{ for all } j, \] (5)
or equivalently,
\[y \in A_m \text{ if } \|y - \mathbf{SP}^{1/2}x_m\| \leq \|y - \mathbf{SP}^{1/2}x_j\| \text{ for all } j. \] (6)
That is, we choose the vector \(x^* = x_m \) that minimizes the distance \(\|y - \mathbf{SP}^{1/2}x_j\| \) among all vectors \(x_j \in B_k \). Since this vector \(x^* \) is a function of the observation \(y \), this is described by the math notation
\[x^*(y) = \arg \min_{x \in B_k} \|y - \mathbf{SP}^{1/2}x\|, \] (7)
where \(\arg \min_{x} g(x) \) returns the argument \(x \) that minimizes \(g(x) \).

(c) To implement this detector, we must evaluate \(\|y - \mathbf{SP}^{1/2}x\| \) for each \(x \in B_k \). Since there \(2^k \) vectors in \(B_k \), we have to evaluate \(2^k \) hypotheses. Because the number of hypotheses grows exponentially with the number of users \(k \), the maximum likelihood detector is considered to be computationally intractable for a large number of users \(k \).

Problem 8.3.10 Solution
A short answer is that the decorrelator cannot be the same as the optimal maximum likelihood (ML) detector. If they were the same, that means we have reduced the \(2^k \) comparisons of the optimal detector to a linear transformation followed by \(k \) single bit comparisons.

However, as this is not a satisfactory answer, we will build a simple example with \(k = 2 \) users and precessing gain \(n = 2 \) to show the difference between the ML detector and the decorrelator. In particular, suppose user 1 transmits with code vector \(\mathbf{S}_1 = [1 \ 0]' \) and user transmits with code vector \(\mathbf{S}_2 = [\cos \theta \ \sin \theta]' \). In addition, we assume that the users powers are \(p_1 = p_2 = 1 \). In this case, \(\mathbf{P} = \mathbf{I} \) and
\[\mathbf{S} = \begin{bmatrix} 1 & \cos \theta \\ 0 & \sin \theta \end{bmatrix}. \] (1)

For the ML detector, there are four hypotheses corresponding to each possible transmitted bit of each user. Using \(H_i \) to denote the hypothesis that \(\mathbf{X} = \mathbf{x}_i \), we have
\[\mathbf{X} = \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \mathbf{X} = \mathbf{x}_3 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \] (2)
\[\mathbf{X} = \mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \mathbf{X} = \mathbf{x}_4 = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \] (3)

When \(\mathbf{X} = \mathbf{x}_i \), \(\mathbf{Y} = \mathbf{y}_i + \mathbf{N} \) where \(\mathbf{y}_i = \mathbf{S}\mathbf{x}_i \). Thus under hypothesis \(H_i \), \(\mathbf{Y} = \mathbf{y}_i + \mathbf{N} \) is a Gaussian \((\mathbf{y}_i, \sigma^2 \mathbf{I})\) random vector with PDF
\[f_{\mathbf{Y}|H_i}(\mathbf{y}) = \frac{1}{2\pi\sigma^2}e^{-(\mathbf{y}-\mathbf{y}_i)'(\sigma^2 \mathbf{I})^{-1}(\mathbf{y}-\mathbf{y}_i)/2} = \frac{1}{2\pi\sigma^2}e^{-\|\mathbf{y}-\mathbf{y}_i\|^2/2\sigma^2}. \] (4)
With the four hypotheses equally likely, the MAP and ML detectors are the same and minimize the probability of error. From Theorem 8.8, this decision rule is
\[\mathbf{y} \in A_m \text{ if } f_{\mathbf{Y}|H_m}(\mathbf{y}) \geq f_{\mathbf{Y}|H_j}(\mathbf{y}) \text{ for all } j. \] (5)
This rule simplifies to

\[y \in A_m \text{ if } \|y - y_m\| \leq \|y - y_j\| \text{ for all } j. \]

(6)

It is useful to show these acceptance sets graphically. In this plot, the area around \(y_i \) is the acceptance set \(A_i \) and the dashed lines are the boundaries between the acceptance sets.

\[
\begin{align*}
 y_1 &= \begin{bmatrix} 1 + \cos \theta \\ \sin \theta \end{bmatrix} \\
 y_3 &= \begin{bmatrix} -1 + \cos \theta \\ \sin \theta \end{bmatrix} \\
 y_2 &= \begin{bmatrix} 1 - \cos \theta \\ -\sin \theta \end{bmatrix} \\
 y_4 &= \begin{bmatrix} -1 - \cos \theta \\ -\sin \theta \end{bmatrix}
\end{align*}
\]

(7)

The probability of a correct decision is

\[P[C] = \frac{1}{4} \sum_{i=1}^{4} \int_{A_i} f_{Y|H_i}(y) \, dy. \]

(9)

Even though the components of \(Y \) are conditionally independent given \(H_i \), the four integrals \(\int_{A_i} f_{Y|H_i}(y) \, dy \) cannot be represented in a simple form. Moreover, they cannot even be represented by the \(\Phi(\cdot) \) function. Note that the probability of a correct decision is the probability that the bits \(X_1 \) and \(X_2 \) transmitted by both users are detected correctly.

The probability of a bit error is still somewhat more complex. For example if \(X_1 = 1 \), then hypotheses \(H_1 \) and \(H_3 \) are equally likely. The detector guesses \(\hat{X}_1 = 1 \) if \(Y \in A_1 \cup A_3 \). Given \(X_1 = 1 \), the conditional probability of a correct decision on this bit is

\[
P[\hat{X}_1 = 1|X_1 = 1] = \frac{1}{2} P[Y \in A_1 \cup A_3|H_1] + \frac{1}{2} P[Y \in A_1 \cup A_3|H_3]
\]

\[
= \frac{1}{2} \int_{A_1 \cup A_3} f_{Y|H_1}(y) \, dy + \frac{1}{2} \int_{A_1 \cup A_3} f_{Y|H_3}(y) \, dy
\]

(10)

(11)

By comparison, the decorrelator does something simpler. Since \(S \) is a square invertible matrix,

\[
(S'S)^{-1}s' = S^{-1}(S')^{-1}s' = S^{-1} = \begin{bmatrix} 1 - \cos \theta \\ 0 \end{bmatrix}
\]

(12)

We see that the components of \(\tilde{Y} = S^{-1}Y \) are

\[
\tilde{Y}_1 = Y_1 - \frac{\cos \theta}{\sin \theta} Y_2, \quad \tilde{Y}_2 = \frac{Y_2}{\sin \theta}.
\]

(13)

Assuming (as in earlier sketch) that \(0 < \theta < \pi/2 \), the decorrelator bit decisions are

\[
\hat{X}_1 = \text{sgn}(\tilde{Y}_1) = \text{sgn} \left(Y_1 - \frac{\cos \theta}{\sin \theta} Y_2 \right)
\]

\[
\hat{X}_2 = \text{sgn}(\tilde{Y}_2) = \text{sgn} \left(\frac{Y_2}{\sin \theta} \right) = \text{sgn}(Y_2).
\]

(14)

(15)
Because we chose a coordinate system such that S_1 lies along the x-axis, the effect of the decorrelator on the rule for bit X_2 is particularly easy to understand. For bit X_2, we just check whether the vector Y is in the upper half plane. Generally, the boundaries of the decorrelator decision regions are determined by straight lines, they are easy to implement and probability of error is easy to calculate. However, these regions are suboptimal in terms of probability of error.

Problem 8.4.1 Solution

Under hypothesis H_i, the conditional PMF of X is

$$P_{X|H_i}(x) = \begin{cases} (1 - p_i)p_i^{x-1}/(1 - p_i^{20}) & x = 1, 2, \ldots, 20, \\ 0 & \text{otherwise,} \end{cases}$$

where $p_0 = 0.99$ and $p_1 = 0.9$. It follows that for $x_0 = 0, 1, \ldots, 19$ that

$$P[X > x_0|H_i] = \frac{1 - p_i}{1 - p_i^{20}} \sum_{x=x_0+1}^{20} p_i^{x-1} = \frac{1 - p_i}{1 - p_i^{20}} [p_i^{x_0} + \cdots + p_i^{19}]$$

$$= p_i^{x_0}(1 - p_i) \left[1 + p_i + \cdots + p_i^{19-x_0} \right]$$

$$= p_i^{x_0}(1 - p_i^{20-x_0}) \frac{p_i^{x_0} - p_i^{20}}{1 - p_i^{20}}$$

We note that the above formula is also correct for $x_0 = 20$. Using this formula, the false alarm and miss probabilities are

$$P_{FA} = P[X > x_0|H_0] = \frac{p_0^{x_0} - p_0^{20}}{1 - p_0^{20}},$$

$$P_{MISS} = 1 - P[X > x_0|H_1] = \frac{1 - p_1^{x_0}}{1 - p_1^{20}}.$$

The MATLAB program `rocdisc(p0,p1)` returns the false alarm and miss probabilities and also plots the ROC. Here is the program and the output for `rocdisc(0.9,0.99)`:}

```matlab
function [PFA,PMISS]=rocdisc(p0,p1);
x=0:20;
PFA= (p0."x-p0".(20))/(1-p0."x".(20));
PMISS= (1.0-(p1."x".(20)))/(1-p1."x".(20));
plot(PFA,PMISS,'k.');
xlabel('\itP_{\rm FA}');
ylabel('\itP_{\rm MISS}');
```

From the receiver operating curve, we learn that we have a fairly lousy sensor. No matter how we set the threshold x_0, either the false alarm probability or the miss probability (or both!) exceed 0.5.

Problem 8.4.2 Solution

From Example 8.7, the probability of error is

$$P_{ERR} = pQ\left(\frac{\sigma}{2v} \ln \frac{p}{1-p} + \frac{v}{\sigma}\right) + (1-p)\Phi\left(\frac{\sigma}{2v} \ln \frac{p}{1-p} - \frac{v}{\sigma}\right).$$
It is straightforward to use MATLAB to plot P_{ERR} as a function of p. The function `bperr` calculates P_{ERR} for a vector p and a scalar signal to noise ratio snr corresponding to v/σ. A second program `bperrplot(snr)` plots P_{ERR} as a function of p. Here are the programs

```
function perr=bperr(p,snr);
%Problem 8.4.2 Solution
r=log(p./(1-p))/(2*snr);
perr=(p.*(qfunction(r+snr))) ...  
+((1-p).*phi(r-snr));
```

```
function pe=bperrplot(snr);
p=0.02:0.02:0.98;
pe=bperr(p,snr);
plot(p,pe);
xlabel('\it p');
ylabel('\it P_{ERR}');
```

Here are three outputs of `bperrplot` for the requested SNR values.

In all three cases, we see that P_{ERR} is *maximum* at $p = 1/2$. When $p \neq 1/2$, the optimal (minimum probability of error) decision rule is able to exploit the one hypothesis having higher a priori probability than the other.

This gives the wrong impression that one should consider building a communication system with $p \neq 1/2$. To see this, consider the most extreme case in which the error probability goes to zero as $p \to 0$ or $p \to 1$. However, in these extreme cases, no information is being communicated. When $p = 0$ or $p = 1$, the detector can simply guess the transmitted bit. In fact, there is no need to transmit a bit; however, it becomes impossible to transmit any information.

Finally, we note that v/σ is an SNR voltage ratio. For communication systems, it is common to measure SNR as a power ratio. In particular, $v/\sigma = 10$ corresponds to a SNR of $10 \log_2(1) = 20$ dB.

Problem 8.4.3 Solution

With $v = 1.5$ and $d = 0.5$, it appeared in Example 8.14 that $T = 0.5$ was best among the values tested. However, it also seemed likely the error probability P_e would decrease for larger values of T. To test this possibility we use sqdistor with 100,000 transmitted bits by trying the following:

```
>> T=[0.4:0.1:1.0];Pe=sqdistor(1.5,0.5,100000,T);
>> [Pmin,Imin]=min(Pe);T(Imin)
ans =
   0.80000000000000
```

Thus among $\{0.4,0.5,\cdots,1.0\}$, it appears that $T = 0.8$ is best. Now we test values of T in the neighborhood of 0.8:

```
>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);
>> [Pmin,Imin]=min(Pe);T(Imin)
ans =
   0.78000000000000
```
This suggests that $T = 0.78$ is best among these values. However, inspection of the vector P_e shows that all values are quite close. If we repeat this experiment a few times, we obtain:

```matlab
>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);
>> [Pmin,Imin]=min(Pe);T(Imin)
ans =
0.78000000000000
>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);
>> [Pmin,Imin]=min(Pe);T(Imin)
ans =
0.80000000000000
>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);
>> [Pmin,Imin]=min(Pe);T(Imin)
ans =
0.76000000000000
>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);
>> [Pmin,Imin]=min(Pe);T(Imin)
ans =
0.78000000000000
```

This suggests that the best value of T is in the neighborhood of 0.78. If someone were paying you to find the best T, you would probably want to do more testing. The only useful lesson here is that when you try to optimize parameters using simulation results, you should repeat your experiments to get a sense of the variance of your results.

Problem 8.4.4 Solution

Since the a priori probabilities $P[H_0]$ and $P[H_1]$ are unknown, we use a Neyman-Pearson formulation to find the ROC. For a threshold γ, the decision rule is

$$x \in A_0 \text{ if } \frac{f_{X|H_0}(x)}{f_{X|H_1}(x)} \geq \gamma; \quad x \in A_1 \text{ otherwise.} \quad (1)$$

Using the given conditional PDFs, we obtain

$$x \in A_0 \text{ if } e^{-(8x-x^2)/16} \geq \gamma x/4; \quad x \in A_1 \text{ otherwise.} \quad (2)$$

Taking logarithms yields

$$x \in A_0 \text{ if } x^2 - 8x \geq 16 \ln(\gamma/4) + 16 \ln x; \quad x \in A_1 \text{ otherwise.} \quad (3)$$

With some more rearranging,

$$x \in A_0 \text{ if } (x - 4)^2 \geq \frac{16 \ln(\gamma/4) + 16 + 16 \ln x}{\gamma}; \quad x \in A_1 \text{ otherwise.} \quad (4)$$

When we plot the functions $f(x) = (x - 4)^2$ and $g(x) = \gamma_0 + 16 \ln x$, we see that there exist x_1 and x_2 such that $f(x_1) = g(x_1)$ and $f(x_2) = g(x_2)$. In terms of x_1 and x_2,

$$A_0 = [0, x_1] \cup [x_2, \infty), \quad A_1 = (x_1, x_2). \quad (5)$$

Using a Taylor series expansion of $\ln x$ around $x = x_0 = 4$, we can show that

$$g(x) = \gamma_0 + 16 \ln x \leq h(x) = \gamma_0 + 16(\ln 4 - 1) + 4x. \quad (6)$$

Since $h(x)$ is linear, we can use the quadratic formula to solve $f(x) = h(x)$, yielding a solution $\bar{x}_2 = 6 + \sqrt{4 + 16 \ln 4 + \gamma_0}$. One can show that $x_2 \leq \bar{x}_2$. In the example shown below corresponding to $\gamma = 1$ shown here, $x_1 = 1.95$, $x_2 = 9.5$ and $\bar{x}_2 = 6 + \sqrt{20} = 10.47$.

306
Given x_1 and x_2, the false alarm and miss probabilities are

$$P_{\text{FA}} = P[A_1|H_0] = \int_{x_1}^{x_2} \frac{1}{2} e^{-x/2} \, dx = e^{-x_1/2} - e^{-x_2/2}, \quad (7)$$

$$P_{\text{MISS}} = 1 - P[A_1|H_1] = 1 - \int_{x_1}^{x_2} \frac{x}{8} e^{-x^2/16} \, dx = 1 - e^{-x_1^2/16} + e^{-x_2^2/16} \quad (8)$$

To calculate the ROC, we need to find x_1 and x_2. Rather than find them exactly, we calculate $f(x)$ and $g(x)$ for discrete steps over the interval $[0, 1 + \bar{x}_2]$ and find the discrete values closest to x_1 and x_2. However, for these approximations to x_1 and x_2, we calculate the exact false alarm and miss probabilities. As a result, the optimal detector using the exact x_1 and x_2 cannot be worse than the ROC that we calculate.

In terms of MATLAB, we divide the work into the functions `gasroc(n)` which generates the ROC by calling `[x1,x2]=gasrange(gamma)` to calculate x_1 and x_2 for a given value of γ.

The argument n of `gasroc(n)` generates the ROC for n values of γ, ranging from from $1/20$ to 20 in multiplicative steps. Here is the resulting ROC:
After all of this work, we see that the sensor is not particularly good in the sense that no matter how we choose the thresholds, we cannot reduce both the miss and false alarm probabilities under 30 percent.

Problem 8.4.5 Solution

In the solution to Problem 8.3.6, we found that the signal constellation and acceptance regions shown in the adjacent figure. We could solve this problem by a general simulation of an M-PSK system. This would include a random sequence of data symbols, mapping symbol i to vector s_i, adding the noise vector N to produce the receiver output $X = s_i + N$.

However, we are only asked to find the probability of symbol error, but not the probability that symbol i is decoded as symbol j at the receiver. Because of the symmetry of the signal constellation and the acceptance regions, the probability of symbol error is the same no matter what symbol is transmitted.

Thus it is simpler to assume that s_0 is transmitted every time and check that the noise vector N is in the pie slice around s_0. In fact by translating s_0 to the origin, we obtain the “pie slice” geometry shown in the figure. Because the lines marking the boundaries of the pie slice have slopes $\pm \tan \theta/2$.

The pie slice region is given by the constraints

\[
N_2 \leq \tan(\theta/2) \left[N_1 + \sqrt{E} \right], \quad N_2 \geq -\tan(\theta/2) \left[N_1 + \sqrt{E} \right].
\]

We can rearrange these inequalities to express them in vector form as

\[
\begin{bmatrix}
-\tan \theta/2 & 1 \\
-\tan \theta/2 & -1
\end{bmatrix}
\begin{bmatrix}
N_1 \\
N_2
\end{bmatrix} \leq
\begin{bmatrix}
1 \\
1
\end{bmatrix} \sqrt{E} \tan \theta/2.
\]

Finally, since each N_i has variance σ^2, we define the Gaussian $(0, I)$ random vector $Z = N/\sigma$ and write our constraints as

\[
\begin{bmatrix}
-\tan \theta/2 & 1 \\
-\tan \theta/2 & -1
\end{bmatrix}
\begin{bmatrix}
Z_1 \\
Z_2
\end{bmatrix} \leq
\begin{bmatrix}
1 \\
1
\end{bmatrix} \sqrt{\gamma} \tan \theta/2,
\]

where $\gamma = E/\sigma^2$ is the signal to noise ratio of the system.

The MATLAB “simulation” simply generates many pairs $[Z_1 \ Z_2]'$ and checks what fraction meets these constraints. The function \texttt{mpsksim(M,snr,n)} simulates the M-PSK system with SNR \texttt{snr} for n bit transmissions. The script \texttt{mpsktest} graphs the symbol error probability for $M = 8, 16, 32$.

308
function Pe=mpsksim(M,snr,n);
%Problem 8.4.5 Solution:
%Pe=mpsksim(M,snr,n)
%n bit M-PSK simulation
 t=tan(pi/M);
 A=[-t 1; -t -1];
 Z=randn(2,n);
 PC=zeros(length(snr));
 for k=1:length(snr),
 B=(A*Z)<=t*sqrt(snr(k));
 PC(k)=sum(min(B))/n;
 end
 Pe=1-PC;
 mpsktest.m;
 snr=10.^((0:30)/10);
 n=500000;
 Pe8=mpsksim(8,snr,n);
 Pe16=mpsksim(16,snr,n);
 Pe32=mpsksim(32,snr,n);
 loglog(snr,Pe8,snr,Pe16,snr,Pe32);
 legend('M=8','M=16','M=32',3);

In mpsksim, each column of the matrix Z corresponds to a pair of noise variables $[Z_1 \ Z_2]'$. The code $B=(A*Z)<=t*sqrt(snr(k))$ checks whether each pair of noise variables is in the pie slice region. That is, $B(1,j)$ and $B(2,j)$ indicate if the ith pair meets the first and second constraints. Since min(B) operates on each column of B, min(B) is a row vector indicating which pairs of noise variables passed the test.

Here is the output of mpsktest:

The curves for $M = 8$ and $M = 16$ end prematurely because for high SNR, the error rate is so low that no errors are generated in 500,000 symbols. In this case, the measured P_e is zero and since $\log 0 = -\infty$, the loglog function simply ignores the zero values.

Problem 8.4.6 Solution
When the transmitted bit vector is $X = x$, the received signal vector $Y = SP^{1/2}x + N$ is a Gaussian $(SP^{1/2}x, \sigma^2 I)$ random vector with conditional PDF

$$f_{Y|x}(y|x) = \frac{1}{(2\pi\sigma^2)^{k/2}} e^{-\|y - SP^{1/2}x\|^2/2\sigma^2}.$$

The transmitted data vector x belongs to the set B_k of all binary ± 1 vectors of length k. In principle, we can enumerate the vectors in B_k as $x_0, x_1, \ldots, x_{2^k-1}$. Moreover, each possible data vector x_m represents a hypothesis. Since there are 2^k possible data vectors, there are 2^k acceptance sets A_m. The set A_m is the set of all vectors y such that the decision rule is to guess $\hat{X} = x_m$. Our normal procedure is to write a decision rule as “$y \in A_m$ if ...” however this problem has so many has many hypotheses that it is more straightforward to refer to a hypothesis $X = x_m$ by the function $\hat{x}(y)$ which returns the vector x_m when $y \in A_m$. In short, $\hat{x}(y)$ is our best guess as to which vector x was transmitted when y is received.
Because each hypotheses has a priori probability 2^{-k}, the probability of error is minimized by the maximum likelihood (ML) rule

$$\hat{x}(y) = \arg \max_{x \in B_k} f_{Y|X}(y|x).$$ \hspace{1cm} (2)

Keep in mind that $\arg \max_x g(x)$ returns the argument x that maximizes $g(x)$. In any case, the form of $f_{Y|X}(y|x)$ implies that the ML rule should minimize the negative exponent of $f_{Y|X}(y|x)$. That is, the ML rule is

$$\hat{x}(y) = \arg \min_{x \in B_k} \| y - SP^{1/2}x \|$$ \hspace{1cm} (3)

$$= \arg \min_{x \in B_k} (y - SP^{1/2}x)'(y - SP^{1/2}x)$$ \hspace{1cm} (4)

$$= \arg \min_{x \in B_k} y'y - 2y'SP^{1/2}x + x'P^{1/2}S'SP^{1/2}x$$ \hspace{1cm} (5)

Since the term $y'y$ is the same for every x, we can define the function

$$h(x) = -2y'SP^{1/2}x + x'P^{1/2}S'SP^{1/2}x,$$ \hspace{1cm} (6)

In this case, the ML rule can be expressed as $\hat{x}(y) = \arg \min_{x \in B_k} h(x)$. We use MATLAB to evaluate $h(x)$ for each $x \in B_k$. Since for $k = 10$, B_k has $2^{10} = 1024$ vectors, it is desirable to make the calculation as easy as possible. To this end, we define $w = SP^{1/2}x$ and and we write, with some abuse of notation, $h(\cdot)$ as a function of w:

$$h(w) = -2y'w + w'w$$ \hspace{1cm} (7)

Still, given y, we need to evaluate $h(w)$ for each vector w. In MATLAB, this will be convenient because we can form the matrices X and W with columns consisting of all possible vectors x and w. In MATLAB, it is easy to calculate $w'w$ by operating on the matrix W without looping through all columns w.

```matlab
function X=allbinaryseqs(n)
%See Problem 8.4.6
%X: n by 2^n matrix of all
%length n binary vectors
%Thanks to Jasvinder Singh
A=repmat([0:2^n-1], [n,1]);
P=repmat([1:n]', [1,2^n]);
X = bitget(A,P);
X=(2*X)-1;

function S=randomsignals(n,k);
%S is an n by k matrix, columns are
%random unit length signal vectors
S=(rand(n,k)>0.5);
S=((2*S)-1.0)/sqrt(n);
```

Next is a short program that generates k random signals, each of length n. Each random signal is just a binary ±1 sequence normalized to have length 1.

Next, for a set of signal vectors (spreading sequences in CDMA parlance) given by the $n \times k$ matrix S, $err=cdmasim(S,P,m)$ simulates the transmission of a frame of m symbols through a k user CDMA system with additive Gaussian noise. A “symbol,” is just a vector x corresponding to the k transmitted bits of the k users.
In addition, the function $Pe=rcdma(n,k,snr,s,m)$ runs `cdmasim` for the pairs of values of users k and SNR snr. Here is the pair of functions:

```matlab
function err=cdmasim(S,P,m);
    %err=cdmasim(P,S,m);
    % S = n x k matrix of signals
    % P = diag matrix of SNRs (power normalized by noise variance)
    % See Problem 8.4.6
    k=size(S,2); % number of users
    n=size(S,1); % processing gain
    X=allbinaryseqs(k); % all data
    Phalf=sqrt(P);
    W=S*Phalf*X;
    WW=sum(W.*W);
    err=0;
    for j=1:m,
        s=duniformrv(1,2^k,1);
        y=S*Phalf*X(:,s)+randn(n,1);
        [hmin,imin]=min(-2*y'*W+WW);
        err=err+sum(X(:,s)~=X(:,imin));
    end
```

```matlab
function Pe=rcdma(n,k,snr,s,m);
    % Pe=rcdma(n,k,snr,s,m);
    % R-CDMA simulation:
    % proc gain=n, users=k
    % rand signal set/frame
    % s frames, m symbols/frame
    % See Problem 8.4.6 Solution
    [K,SNR]=ndgrid(k,snr);
    Pe=zeros(size(SNR));
    for j=1:prod(size(SNR)),
        p=SNR(j);k=K(j);
        e=0;
        for i=1:s,
            S=randomsignals(n,k);
            e=e+cdmasim(S,p*eye(k),m);
        end
        Pe(j)=e/(s*m*k);
    end
```

In `cdmasim`, the kth diagonal element of P is the “power” p_k of user k. Technically, we assume that the additive Gaussian noise variable have variance 1, and thus p_k is actually the signal to noise ratio of user k. In addition, WW is a length 2^k row vector, with elements $w'w$ for each possible w. For each of the m random data symbols, represented by x (or $X(:,s)$ in MATLAB), `cdmasim` calculates a received signal y (y). Finally, h_{min} is the minimum $h(w)$ and i_{min} is the index of the column of W that minimizes $h(w)$. Thus i_{min} is also the index of the minimizing column of X. Finally, `cdmasim` compares $\hat{x}(y)$ and the transmitted vector x bit by bit and counts the total number of bit errors.

The function `rcdma` repeats `cdmasim` for s frames, with a random signal set for each frame. Dividing the total number of bit errors over s frames by the total number of transmitted bits, we find the bit error rate P_e. For an SNR of 4 dB and processing gain 16, the requested tests are generated with the commands

```
>> n=16;
>> k=[2 4 8 16];
>> Pe=rcdma(n,k,snr,100,1000);
>>Pe
Pe =
  0.0252   0.0272   0.0385   0.0788
```

To answer part (b), the code for the matched filter (MF) detector is much simpler because there is no need to test 2^k hypotheses for every transmitted symbol. Just as for the case of the ML detector, we define a function $err=mfcdmasim(S,P,m)$ that simulates the MF detector for m symbols for a given set of signal vectors S. In `mfcdmasim`, there is no need for looping. The mth transmitted symbol is represented by the mth column of X and the corresponding received signal is given by the mth column of Y. The matched filter processing can be applied to all m columns at once. A second function $Pe=mfrcdma(n,k,snr,s,m)$ cycles through all combinations of users k and SNR snr and calculates the bit error rate for each pair of values. Here are the functions:

```
function Pe=mfrcdma(n,k,snr,s,m);
    % Pe=mfrcdma(n,k,snr,s,m);
    % MF-CDMA simulation:
    % proc gain=n, users=k
    % rand signal set/frame
    % s frames, m symbols/frame
    % See Problem 8.4.6 Solution
    [K,SNR]=ndgrid(k,snr);
    Pe=zeros(size(SNR));
    for j=1:prod(size(SNR)),
        p=SNR(j);k=K(j);
        e=0;
        for i=1:s,
            S=randomsignals(n,k);
            y=S*p*eye(k)+randn(n,1);
            [hmin,imin]=min(-2*y'*W+WW);
            Pe(j)=e/(s*m*k);
        end
    end
```

```matlab
function Pe=mfcddasim(S,P,m);
    %err=mfcddasim(P,S,m);
    % MF-CDMA simulation:
    % proc gain=n, users=k
    % rand signal set/frame
    % See Problem 8.4.6 Solution
    k=size(S,2); % number of users
    n=size(S,1); % processing gain
    X=allbinaryseqs(k); % all data
    Phalf=sqrt(P);
    W=S*Phalf*X;
    WW=sum(W.*W);
    err=0;
    for j=1:m,
        s=duniformrv(1,2^k,1);
        y=S*Phalf*X(:,s)+randn(n,1);
        [hmin,imin]=min(-2*y'*W+WW);
        err=err+sum(X(:,s)~=X(:,imin));
    end
```

311
function err=mfcmasim(S,P,m);
%err=mfcmasim(P,S,m);
% S = nx k matrix of signals
% P= diag matrix of SNRs
% SNR=power/var(noise)
%See Problem 8.4.6b
k=size(S,2); %no. of users
n=size(S,1); %proc. gain
Phalf=sqrt(P);
X=randombinaryseqs(k,m);
Y=S*Phalf*X+randn(n,m);
XR=sign(S'*Y);
err=sum(sum(XR ~= X));

function Pe=mfcrcdma(n,k,snr,s,m);
%Pe=mfcrcdma(n,k,snr,s,m);
%R-CDMA, MF detection
% proc gain=n, users=k
% rand signal set/frame
% s frames, m symbols/frame
%See Problem 8.4.6 Solution
[K,SNR]=ndgrid(k,snr);
Pe=zeros(size(SNR));
for j=1:prod(size(SNR)),
p=SNR(j);kt=K(j);
e=0;
for i=1:s,
S=randomsignals(n,kt);
S=sign(S'*Y);
e=e+mfcmasim(S,p*eye(kt),m);
end
Pe(j)=e/(s*m*kt);
disp([snr kt e]);
end

Here is a run of mfrcdma.

>> pemf=mfcrcdma(16,k,4,1000,1000);
4 2 73936
4 4 264234
4 8 908558
4 16 2871356
>> pemf'
ans =
0.0370 0.0661 0.1136 0.1795

The following plot compares the maximum likelihood (ML) and matched filter (MF) detectors.

As the ML detector offers the minimum probability of error, it should not surprising that it has a lower bit error rate. Although the MF detector is worse, the reduction in detector complexity makes it attractive. In fact, in practical CDMA-based cellular phones, the processing gain ranges from roughly 128 to 512. In such case, the complexity of the ML detector is prohibitive and thus only matched filter detectors are used.

Problem 8.4.7 Solution
For the CDMA system of Problem 8.3.10, the received signal resulting from the transmissions of k users was given by

$$Y = SP^{1/2}X + N$$ \hspace{1cm} (1)
where S is an $n \times k$ matrix with ith column S_i, and $P^{1/2} = \text{diag}[\sqrt{p_1}, \ldots, \sqrt{p_k}]$ is a $k \times k$ diagonal matrix of received powers, and N is a Gaussian $(0, \sigma^2 I)$ Gaussian noise vector.

(a) When S has linearly independent columns, $S'S$ is invertible. In this case, the decorrelating detector applies a transformation to Y to generate

$$\tilde{Y} = (S'S)^{-1}S'Y = P^{1/2}X + \tilde{N},$$

where $\tilde{N} = (S'S)^{-1}S'N$ is still a Gaussian noise vector with expected value $E[\tilde{N}] = 0$. Decorrelation separates the signals in that the ith component of \tilde{Y} is

$$\tilde{Y}_i = \sqrt{p_i}X_i + \tilde{N}_i.$$

This is the same as a single user-receiver output of the binary communication system of Example 8.6. The single-user decision rule $\hat{X}_i = \text{sgn}(\tilde{Y}_i)$ for the transmitted bit X_i has probability of error

$$P_{e,i} = P[\tilde{Y}_i > 0|X_i = -1] = P[-\sqrt{p_i} + \tilde{N}_i > 0] = Q\left(\frac{\sqrt{p_i}}{\text{Var}[\tilde{N}_i]}\right).$$

(4)

However, since $\tilde{N} = AN$ where $A = (S'S)^{-1}S'$, Theorem 5.16 tells us that \tilde{N} has covariance matrix $C_{\tilde{N}} = AC_NA'$. We note that the general property that $(B^{-1})' = (B')^{-1}$ implies that $A' = S((S'S)'^{-1} = S(S'S)^{-1}$. These facts imply

$$C_{\tilde{N}} = (S'S)^{-1}S'\sigma^2 I S(S'S)^{-1} = \sigma^2(S'S)^{-1}.$$

(5)

Note that $S'S$ is called the correlation matrix since its i, jth entry is S_iS_j is the correlation between the signal of user i and that of user j. Thus $\text{Var}[\tilde{N}_i] = \sigma^2(S'S)^{-1}_{ii}$ and the probability of bit error for user i is for user i is

$$P_{e,i} = Q\left(\frac{\sqrt{p_i}}{\text{Var}[\tilde{N}_i]}\right).$$

(6)

To find the probability of error for a randomly chosen but, we average over the bits of all users and find that

$$P_e = \frac{1}{k}\sum_{i=1}^{k} P_{e,i} = \frac{1}{k}\sum_{i=1}^{k} Q\left(\frac{\sqrt{p_i}}{(S'S)^{-1}_{ii}}\right).$$

(7)

(b) When $S'S$ is not invertible, the detector flips a coin to decide each bit. In this case, $P_{e,i} = 1/2$ and thus $P_e = 1/2$.

(c) When S is chosen randomly, we need to average over all possible matrices S to find the average probability of bit error. However, there are 2^{kn} possible matrices S and averaging over all of them is too much work. Instead, we randomly generate m matrices S and estimate the average P_e by averaging over these m matrices.

A function berdecorr uses this method to evaluate the decorrelator BER. The code has a lot of lines because it evaluates the BER using m signal sets for each combination of users k and SNRs snr. However, because the program generates signal sets and calculates the BER associated with each, there is no need for the simulated transmission of bits. Thus the program runs quickly. Since there are only 2^n distinct columns for matrix S, it is quite
possible to generate signal sets that are not linearly independent. In this case, `berdecorr` assumes the “flip a coin” rule is used. Just to see whether this rule dominates the error probability, we also display counts of how often S is rank deficient.

Here is the (somewhat tedious) code:

```plaintext
function Pe=berdecorr(n,k,snr,m);
%Problem 8.4.7 Solution: R-CDMA with decorrelation
%proc gain=n, users=k, average Pe for m signal sets
count=zeros(1,length(k)); %counts rank<k signal sets
Pe=zeros(length(k),length(snr)); snr=snr(:)';
for mm=1:m,
    for i=1:length(k),
        S=randomsignals(n,k(i)); R=S'*S;
        if (rank(R)<k(i))
            count(i)=count(i)+1;
            Pe(i,:)=Pe(i,:)+0.5*ones(1,length(snr));
        else
            G=diag(inv(R));
            Pe(i,:)=Pe(i,:)+sum(qfunction(sqrt((1./G)*snr)))/k(i);
        end
    end
end
disp('Rank deficiency count:');disp(k);disp(count);
Pe=Pe/m;
```

Running `berdecorr` with processing gains $n = 16$ and $n = 32$ yields the following output:

```plaintext
>> k=[1 2 4 8 16 32];
>> pe16=berdecorr(16,k,4,10000);
Rank deficiency count:
   1   2   4   8  16  32
   0   2   2  12  454 10000
>> pe16'
ans =
 0.0228 0.0273 0.0383 0.0755 0.3515 0.5000
>> pe32=berdecorr(32,k,4,10000);
Rank deficiency count:
   1   2   4   8  16  32
   0   0   0   0   0   0
>> pe32'
ans =
 0.0228 0.0246 0.0290 0.0400 0.0771 0.3904
```

As you might expect, the BER increases as the number of users increases. This occurs because the decorrelator must suppress a large set of interferers. Also, in generating 10,000 signal matrices S for each value of k we see that rank deficiency is fairly uncommon, however it occasionally occurs for processing gain $n = 16$, even if $k = 4$ or $k = 8$. Finally, here is a plot of these same BER statistics for $n = 16$ and $k \in \{2, 4, 8, 16\}$. Just for comparison, on the same graph is the BER for the matched filter detector and the maximum likelihood detector found in Problem 8.4.6.
We see from the graph that the decorrelator is better than the matched filter for a small number of users. However, when the number of users k is large (relative to the processing gain n), the decorrelator suffers because it must suppress all interfering users. Finally, we note that these conclusions are specific to this scenario when all users have equal SNR. When some users have very high SNR, the decorrelator is good for the low-SNR user because it zeros out the interference from the high-SNR user.

Problem 8.4.8 Solution

Each transmitted symbol $s_{b_1b_2b_3}$ corresponds to the transmission of three bits given by the vector $b = [b_1 \ b_2 \ b_3]'$. Note that $s_{b_1b_2b_3}$ is a two dimensional vector with components $[s^{(1)}_{b_1b_2b_3} \ s^{(2)}_{b_1b_2b_3}]'$. The key to this problem is the mapping from bits to symbol components and then back to bits. From the signal constellation shown with Problem 8.3.2, we make the following observations:

- $s_{b_1b_2b_3}$ is in the right half plane if $b_2 = 0$; otherwise it is in the left half plane.
- $s_{b_1b_2b_3}$ is in the upper half plane if $b_3 = 0$; otherwise it is in the lower half plane.
- There is an inner ring and an outer ring of signals. $s_{b_1b_2b_3}$ is in the inner ring if $b_1 = 0$; otherwise it is in the outer ring.

Given a bit vector b, we use these facts by first using b_2 and b_3 to map $b = [b_1 \ b_2 \ b_3]'$ to an inner ring signal vector

$$s \in \left\{ [1 \ 1]', [-1 \ 1]', [-1 \ -1]', [1 \ -1]' \right\}.$$ \hspace{1cm} (1)

In the next step we scale s by $(1 + b_1)$. If $b_1 = 1$, then s is stretched to the outer ring. Finally, we add a Gaussian noise vector N to generate the received signal $X = s_{b_1b_2b_3} + N$.

In the solution to Problem 8.3.2, we found that the acceptance set for the hypothesis $H_{b_1b_2b_3}$ that $s_{b_1b_2b_3}$ is transmitted is the set of signal space points closest to $s_{b_1b_2b_3}$. Graphically, these acceptance sets are given in the adjacent figure. These acceptance sets correspond an inverse mapping of the received signal vector X to a bit vector guess $b = [\hat{b}_1 \ \hat{b}_2 \ \hat{b}_3]'$ using the following rules:

- $\hat{b}_2 = 1$ if $X_1 < 0$; otherwise $\hat{b}_2 = 0$.
- $\hat{b}_3 = 1$ if $X_2 < 0$; otherwise $\hat{b}_3 = 0$.
- If $|X_1| + |X_2| > 3\sqrt{2}/2$, then $\hat{b}_1 = 1$; otherwise $\hat{b}_1 = 0$.

315
We implement these steps with the function \([\text{Pe}, \text{ber}] = \text{myqam}(\text{sigma}, \text{m})\) which simulates the transmission of \(m\) symbols for each value of the vector \(\text{sigma}\). Each column of \(B\) corresponds to a bit vector \(b\). Similarly, each column of \(S\) and \(X\) corresponds to a transmitted signal \(s\) and received signal \(X\). We calculate both the symbol decision errors that are made as well as the bit decision errors. Finally, a script \(\text{myqamplot.m}\) plots the symbol error rate \(\text{Pe}\) and bit error rate \(\text{ber}\) as a function of \(\text{sigma}\). Here are the programs:

```matlab
function [Pe,ber]=myqam(sigma,m);
Pe=zeros(size(sigma)); ber=Pe;
B=reshape(bernoullirv(0.5,3*m),3,m);
%S(1,:)=(1-2*B(2,:));
%S(2,:)=(1-2*B(3,:));
S=1-2*B([2; 3],:);
S=([1;1]*(1+B(1,:))).*S;
N=randn(2,m);
for i=1:length(sigma),
    X=S+sigma(i)*N;
    BR=zeros(size(B));
    BR([2;3],:)=(X<0);
    BR(1,:)=abs(X)>(3/sqrt(2));
    E=(BR==B);
    Pe(i)=sum(max(E))/m;
    ber(i)=sum(sum(E))/(3*m);
end
%myqamplot.m
sig=10.^((0.2*(-8:0)));
[Pe,ber]=myqam(sig,1e6);
loglog(sig,Pe,'-d', ...
    sig,ber,'-s');
legend('SER','BER',4);

Note that we generate the bits and transmitted signals, and normalized noise only once. However for each value of \(\text{sigma}\), we rescale the additive noise, recalculate the received signal and receiver bit decisions. The output of \(\text{myqamplot}\) is shown in this figure:

![Graph showing symbol and bit error rates](image)

Careful reading of the figure will show that the ratio of the symbol error rate to the bit error rate is always very close to 3. This occurs because in the acceptance set for \(b_1b_2b_3\), the adjacent acceptance sets correspond to a one bit difference. Since the usual type of symbol error occurs when the vector \(X\) is in the adjacent set, a symbol error typically results in one bit being in error but two bits being received correctly. Thus the bit error rate is roughly one third the symbol error rate.

**Problem 8.4.9 Solution**

(a) For the \(M\)-PSK communication system with additive Gaussian noise, \(A_j\) denoted the hypothesis that signal \(s_j\) was transmitted. The solution to Problem 8.3.6 derived the MAP decision rule
\( x \in A_m \text{ if } \| x - s_m \|^2 \leq \| x - s_j \|^2 \text{ for all } j. \) \hspace{1cm} (1)

In terms of geometry, the interpretation is that all vectors \( x \) closer to \( s_m \) than to any other signal \( s_j \) are assigned to \( A_m \). In this problem, the signal constellation (i.e., the set of vectors \( s_i \)) is the set of vectors on the circle of radius \( E \). The acceptance regions are the “pie slices” around each signal vector.

We observe that

\[
\| x - s_j \|^2 = (x - s_j)'(x - s_j) = x'x - 2x's_j + s'_js'.
\] \hspace{1cm} (2)

Since all the signals are on the same circle, \( s'_js_j \) is the same for all \( j \). Also, \( x'x \) is the same for all \( j \). Thus

\[
\min_j \| x - s_j \|^2 = \min_j -x's_j = \max_j x's_j. \hspace{1cm} (3)
\]

Since \( x's_j = \| x \| \| s_j \| \cos \phi \) where \( \phi \) is the angle between \( x \) and \( s_j \). Thus maximizing \( x's_j \) is equivalent to minimizing the angle between \( x \) and \( s_j \).

(b) In Problem 8.4.5, we estimated the probability of symbol error without building a complete simulation of the \( M \)-PSK system. In this problem, we need to build a more complete simulation to determine the probabilities \( P_{ij} \). By symmetry, it is sufficient to transmit \( s_0 \) repeatedly and count how often the receiver guesses \( s_j \). This is done by

\begin{verbatim}
function p=mpskerr(M,snr,n);
\%
\%Problem 8.4.5 Solution:
\%
\%Pe=mpksim(M,snr,n)
\%
\n% n bit M-PSK simulation
\nt=(2*pi/M)*(0:(M-1));
\tnr=sqrt(snr)*[cos(t);sin(t)];
\nX=repmat(S(:,1),1,n)+randn(2,n);
\n[y,e]=max(S'*X);
\np=countequal(e-1,(0:(M-1)))'/n;
\end{verbatim}

Note that column \( i \) of \( S \) is the signal \( s_{i-1} \). The \( k \)th column of \( X \) corresponds to \( X_k = s_0 + N_k \), the received signal for the \( k \)th transmission. Thus \( y(k) \) corresponds to \( \max_j X'_k s_j \) and \( e(k) \) reports the receiver decision for the \( k \)th transmission. The vector \( p \) calculates the relative frequency of each receiver decision.

The next step is to translate the vector \( [P_{00} \quad P_{01} \quad \cdots \quad P_{0,M-1}]' \) (corresponding to \( p \) in MATLAB) into an entire matrix \( P \) with elements \( P_{ij} \). The symmetry of the phase rotation dictates that each row of \( P \) should be a one element cyclic rotation of the previous row. Moreover, by symmetry we observe that \( P_{01} = P_{0,M-1} \), \( P_{02} = P_{0,M-2} \) and so on. However, because \( p \) is derived from a simulation experiment, it will exhibit this symmetry only approximately.

\begin{verbatim}
function P=mpskmatrix(p);
M=length(p);
\n% symmetrical elements
r=[0.5 zeros(1,M-2)];
A=toeplitz(r)+hankel(fliplr(r));
A=[zeros(1,M-1);A];
A=[[1; zeros(M-1,1)] A];
P=toeplitz(A*(p(:)));
\end{verbatim}

Our ad hoc (and largely unjustified) solution is to take the average of estimates of probabilities that symmetry says should be identical. (Why this might be a good thing to do would make an interesting exam problem.) In \texttt{mpskmatrix(p)}, the matrix \( A \) implements the averaging. The code will become clear by examining the matrices \( A \) and the output \( P \).
(c) The next step is to determine the effect of the mapping of bits to transmission vectors $s_j$. The matrix $D$ with $i,j$th element $d_{ij}$ that indicates the number of bit positions in which the bit string assigned to $s_i$ differs from the bit string assigned to $s_j$. In this case, the integers provide a compact representation of this mapping. For example the binary mapping is

\[
\begin{array}{cccccccc}
  s_0 & s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\
  000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
\end{array}
\]

0 1 2 3 4 5 6 7

The Gray mapping is

\[
\begin{array}{cccccccc}
  s_0 & s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\
  000 & 001 & 011 & 010 & 110 & 111 & 101 & 100 \\
\end{array}
\]

0 1 3 2 6 7 5 4

Thus the binary mapping can be represented by a vector $c_1 = [0 \ 1 \ \cdots \ 7]'$ while the Gray mapping is described by $c_2 = [0 \ 1 \ 3 \ 2 \ 6 \ 7 \ 5 \ 4]'$.

The function $D=\text{mpskdist}(c)$ translates the mapping vector $c$ into the matrix $D$ with entries $d_{ij}$. The method is to generate grids $C_1$ and $C_2$ for the pairs of integers, convert each integer into a length $\log_2 M$ binary string, and then to count the number of bit positions in which each pair differs.

Given matrices $P$ and $D$, the rest is easy. We treat BER as as a finite random variable that takes on value $d_{ij}$ with probability $P_{ij}$. the expected value of this finite random variable is the expected number of bit errors. Note that the BER is a “rate” in that

$$\text{BER} = \frac{1}{M} \sum_i \sum_j P_{ij} d_{ij}. \quad (4)$$

is the expected number of bit errors per transmitted symbol.

Given the integer mapping vector $c$, we estimate the BER of the a mapping using just one more function $Pb=\text{mpskmap}(c,snr,n)$. First we calculate the matrix $D$ with elements $d_{ij}$. Next, for each value of the vector $snr$, we use $n$ transmissions to estimate the probabilities $P_{ij}$. Last, we calculate the expected number of bit errors per transmission.

(d) We evaluate the binary mapping with the following commands:

```
>> c1=0:7;
>> snr=[4 8 16 32 64];
>> Pb=mpskmap(c1,snr,1000000);
>> Pb
Pb =
 0.7640 0.4878 0.2198 0.0529 0.0038
```
Here is the performance of the Gray mapping:

\[
\begin{array}{cccccc}
0.4943 & 0.2855 & 0.1262 & 0.0306 & 0.0023 \\
\end{array}
\]

Experimentally, we observe that the BER of the binary mapping is higher than the BER of the Gray mapping by a factor in the neighborhood of 1.5 to 1.7.

In fact, this approximate ratio can be derived by a quick and dirty analysis. For high SNR, suppose that that \(s_i\) is decoded as \(s_{i+1}\) or \(s_{i-1}\) with probability \(q = P_{i,i+1} = P_{i,i-1}\) and all other types of errors are negligible. In this case, the BER formula based on this approximation corresponds to summing the matrix \(D\) for the first off-diagonals and the corner elements. Here are the calculations:

\[
\begin{array}{c}
D = \text{mpskdist}(c1) \\
\text{sum(diag(D,1))+sum(diag(D,-1))+D(1,8)+D(8,1)} \\
\text{ans} = 28 \\
\text{DG = mpskdist(c2)} \\
\text{sum(diag(DG,1))+sum(diag(DG,-1))+DG(1,8)+DG(8,1)} \\
\text{ans} = 16 \\
\end{array}
\]

Thus in high SNR, we would expect

\[
\text{BER(binary)} \approx \frac{28q}{M}, \quad \text{BER(Gray)} \approx \frac{16q}{M}.
\]

The ratio of BERs is 28/16 = 1.75. Experimentally, we found at high SNR that the ratio of BERs was 0.0038/0.0023 = 1.65, which seems to be in the right ballpark.

**Problem 8.4.10 Solution**

As this problem is a continuation of Problem 8.4.9, this solution is also a continuation. In this problem, we want to determine the error probability for each bit \(k\) in a mapping of bits to the \(M\)-PSK signal constellation. The bit error rate associated with bit \(k\) is

\[
\text{BER}(k) = \frac{1}{M} \sum_i \sum_j P_{ij} d_{ij}(k)
\]

where \(d_{ij}(k)\) indicates whether the bit strings mapped to \(s_i\) and \(s_j\) differ in bit position \(k\).

As in Problem 8.4.9, we describe the mapping by the vector of integers \(d\). For example the binary mapping is

\[
\begin{array}{cccccccc}
s_0 & s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\
000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

The Gray mapping is
Thus the binary mapping can be represented by a vector $c_1 = [0 \ 1 \ \cdots \ 7]'$ while the Gray mapping is described by $c_2 = [0 \ 1 \ 3 \ 2 \ 6 \ 7 \ 5 \ 4]'$.

The function $D=\text{mpskdbit}(c,k)$ translates the mapping vector $c$ into the matrix $D$ with entries $d_{ij}$ that indicates whether bit $k$ is in error when transmitted symbol $s_i$ is decoded by the receiver as $s_j$. The method is to generate grids $C_1$ and $C_2$ for the pairs of integers, identify bit $k$ in each integer, and then check if the integers differ in bit $k$.

Thus, there is a matrix $D$ associated with each bit position and we calculate the expected number of bit errors associated with each bit position. For each bit, the rest of the solution is the same as in Problem 8.4.9. We use the commands $p=\text{mpskerr}(M,\text{snr},n)$ and $P=\text{mpskmatrix}(p)$ to calculate the matrix $P$ which holds an estimate of each probability $P_{ij}$. Finally, using matrices $P$ and $D$, we treat BER($k$) as a finite random variable that takes on value $d_{ij}$ with probability $P_{ij}$. the expected value of this finite random variable is the expected number of bit errors.

Given the integer mapping vector $c$, we estimate the BER of the a mapping using just one more function $Pb=\text{mpskbitmap}(c,\text{snr},n)$. First we calculate the matrix $D$ with elements $d_{ij}$. Next, for a given value of $\text{snr}$, we use $n$ transmissions to estimate the probabilities $P_{ij}$. Last, we calculate the expected number of bit $k$ errors per transmission.

For an SNR of 10dB, we evaluate the two mappings with the following commands:

```
>> c1=0:7;
>> mpskbitmap(c1,10,100000)
ans =
 0.2247 0.1149 0.0577
>> c2=[0 1 3 2 6 7 5 4];
>> mpskbitmap(c2,10,100000)
ans =
 0.1140 0.0572 0.0572
```

We see that in the binary mapping, the 0.22 error rate of bit 1 is roughly double that of bit 2, which is roughly double that of bit 3. For the Gray mapping, the error rate of bit 1 is cut in half relative to the binary mapping. However, the bit error rates at each position are still not identical since the error rate of bit 1 is still double that for bit 2 or bit 3. One might surmise that careful study of the matrix $D$ might lead one to prove for the Gray map that the error rate for bit 1 is exactly double that for bits 2 and 3 ... but that would be some other homework problem.
Problem Solutions – Chapter 9

Problem 9.1.1 Solution
First we note that the event \( T > t_0 \) has probability

\[
P[T > t_0] = \int_{t_0}^{\infty} \lambda e^{-\lambda t} \, dt = e^{-\lambda t_0}.
\]

(1)

Given \( T > t_0 \), the conditional PDF of \( T \) is

\[
f_{T|T>t_0}(t) = \begin{cases} 
\frac{f_T(t)}{P[T>t_0]} & t > t_0 \\
0 & \text{otherwise}
\end{cases} = \begin{cases} 
\lambda e^{-\lambda(t-t_0)} & t > t_0, \\
0 & \text{otherwise}.
\end{cases}
\]

(2)

Given \( T > t_0 \), the minimum mean square error estimate of \( T \) is

\[
\hat{T} = E[T|T > t_0] = \int_{-\infty}^{\infty} t f_{T|T>t_0}(t) \, dt = \int_{t_0}^{\infty} \lambda t e^{-\lambda(t-t_0)} \, dt.
\]

(3)

With the substitution \( t' = t - t_0 \), we obtain

\[
\hat{T} = \int_{0}^{\infty} \lambda (t_0 + t') e^{-\lambda t'} \, dt' = t_0 \int_{0}^{\infty} \lambda e^{-\lambda t'} \, dt' + \int_{0}^{\infty} t' \lambda e^{-\lambda t'} \, dt' = t_0 + E[T].
\]

(4)

Problem 9.1.2 Solution

(a) For \( 0 \leq x \leq 1 \),

\[
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \int_{x}^{1} 6(y-x) \, dy = 3(y^2 - 6xy)|_{y=1}^{y=x} = 3(1 - 2x + x^2) = 3(1 - x)^2
\]

(2)

The complete expression for the marginal PDF of \( X \) is

\[
f_X(x) = \begin{cases} 
3(1-x)^2 & 0 \leq x \leq 1, \\
0 & \text{otherwise}.
\end{cases}
\]

(3)

(b) The blind estimate of \( X \) is

\[
\hat{x}_B = E[X] = \int_{0}^{1} 3x(1-x)^2 \, dx = \left[ \frac{3}{2} x^2 - 2x^3 + \frac{3}{4} x^4 \right]_{0}^{1} = \frac{1}{4}.
\]

(5)
(c) First we calculate

\[ P[X < 0.5] = \int_0^{0.5} f_X(x) \, dx = \int_0^{0.5} 3(1-x)^2 \, dx = -(1-x)^3\bigg|_0^{0.5} = \frac{7}{8}. \]

The conditional PDF of \( X \) given \( X < 0.5 \) is

\[ f_{X|X<0.5}(x) = \begin{cases} \frac{f_X(x)}{P[X<0.5]} & 0 \leq x < 0.5 \\ 0 & \text{otherwise} \end{cases} = \begin{cases} \frac{24}{7} (1-x)^2 & 0 \leq x < 0.5, \\ 0 & \text{otherwise}. \end{cases} \]

The minimum mean square estimate of \( X \) given \( X < 0.5 \) is

\[ E[X|X < 0.5] = \int_{-\infty}^{\infty} x f_{X|X<0.5}(x) \, dx = \int_0^{0.5} \frac{24x}{7} (1-x)^2 \, dx \]

\[ = \frac{12x^2}{7} - \frac{16x^3}{7} + \frac{6x^4}{7}\bigg|_0^{0.5} = \frac{11}{56}. \]

(d) For \( y < 0 \) or \( y > 1 \), \( f_Y(y) = 0 \). For \( 0 \leq y \leq 1 \),

\[ f_Y(y) = \int_0^y 6(y-x) \, dx = 6xy - 3x^2\bigg|_0^y = 3y^2. \]

The complete expression for the marginal PDF of \( Y \) is

\[ f_Y(y) = \begin{cases} 3y^2 & 0 \leq y \leq 1, \\ 0 & \text{otherwise}. \end{cases} \]

(c) The blind estimate of \( Y \) is

\[ \hat{y}_B = E[Y] = \int_{-\infty}^{\infty} y f_Y(y) \, dy = \int_0^{1} 3y^3 \, dy = \frac{3}{4}. \]

(f) First we calculate

\[ P[Y > 0.5] = \int_{0.5}^{\infty} f_Y(y) \, dy = \int_{0.5}^{1} 3y^2 \, dy = \frac{7}{8}. \]

The conditional PDF of \( Y \) given \( Y > 0.5 \) is

\[ f_{Y|Y>0.5}(y) = \begin{cases} \frac{f_Y(y)}{P[Y>0.5]} & y > 0.5, \\ 0 & \text{otherwise}, \end{cases} = \begin{cases} 24y^2/7 & y > 0.5, \\ 0 & \text{otherwise}. \end{cases} \]

The minimum mean square estimate of \( Y \) given \( Y > 0.5 \) is

\[ E[Y|Y > 0.5] = \int_{-\infty}^{\infty} y f_{Y|Y>0.5}(y) \, dy = \int_{0.5}^{1} \frac{24y^3}{7} \, dy = \frac{6y^4}{7}\bigg|_{0.5}^{1} = \frac{45}{56}. \]
Problem 9.1.3 Solution

(a) For $0 \leq x \leq 1$,

$$f_X (x) = \int_{-\infty}^{\infty} f_{X,Y} (x, y) \, dy = \int_{x}^{1} 2 \, dy = 2(1 - x). \quad (1)$$

The complete expression of the PDF of $X$ is

$$f_X (x) = \begin{cases} 
 2(1 - x) & 0 \leq x \leq 1, \\
 0 & \text{otherwise}.
\end{cases} \quad (2)$$

(b) The blind estimate of $X$ is

$$\hat{X}_B = E[X] = \int_{0}^{1} 2x(1 - x) \, dx = \left( x^2 - \frac{2x^3}{3} \right) \bigg|_{0}^{1} = \frac{1}{3}. \quad (3)$$

(c) First we calculate

$$P[X > 1/2] = \int_{1/2}^{1} f_X (x) \, dx = \int_{1/2}^{1} 2(1 - x) \, dx = (2x - x^2) \bigg|_{1/2}^{1} = \frac{1}{4}. \quad (4)$$

Now we calculate the conditional PDF of $X$ given $X > 1/2$.

$$f_{X|X>1/2} (x) = \begin{cases} 
 f_X (x) & x > 1/2, \\
 \frac{P[X > 1/2]}{f_X (1/2)} & 0, \\
 0 & \text{otherwise}.
\end{cases} \quad (5)$$

The minimum mean square error estimate of $X$ given $X > 1/2$ is

$$E[X|X > 1/2] = \int_{-\infty}^{\infty} xf_{X|X>1/2} (x) \, dx \quad (6)$$

$$= \int_{1/2}^{1} 8x(1 - x) \, dx = \left( 4x^2 - \frac{8x^3}{3} \right) \bigg|_{1/2}^{1} = \frac{2}{3}. \quad (7)$$

(d) For $0 \leq y \leq 1$, the marginal PDF of $Y$ is

$$f_Y (y) = \int_{-\infty}^{\infty} f_{X,Y} (x, y) \, dx = \int_{0}^{y} 2 \, dx = 2y. \quad (8)$$

The complete expression for the marginal PDF of $Y$ is

$$f_Y (y) = \begin{cases} 
 2y & 0 \leq y \leq 1, \\
 0 & \text{otherwise}.
\end{cases} \quad (9)$$

(e) The blind estimate of $Y$ is

$$\hat{y}_B = E[Y] = \int_{0}^{1} 2y^2 \, dy = \frac{2}{3}. \quad (10)$$
(f) We already know that \( P[X > 1/2] = 1/4 \). However, this problem differs from the other problems in this section because we will estimate \( Y \) based on the observation of \( X \). In this case, we need to calculate the conditional joint PDF

\[
f_{X,Y|X>1/2} (x,y) = \begin{cases} \frac{f_{X,Y}(x,y)}{P[X > 1/2]} & \text{if } x > 1/2, \\ 0 & \text{otherwise,} \end{cases}
\]

The MMSE estimate of \( Y \) given \( X > 1/2 \) is

\[
E[Y|X > 1/2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{X,Y|X>1/2}(x,y) \, dx \, dy
\]

\[
= \int_{1/2}^{1} y \left( \int_{1/2}^{y} 8 \, dx \right) \, dy
\]

\[
= \int_{1/2}^{1} y(8y - 4) \, dy = \frac{5}{6}
\]

**Problem 9.1.4 Solution**

The joint PDF of \( X \) and \( Y \) is

\[
f_{X,Y}(x,y) = \begin{cases} 6(y-x) & 0 \leq x \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}
\]

(a) The conditional PDF of \( X \) given \( Y \) is found by dividing the joint PDF by the marginal with respect to \( Y \). For \( y < 0 \) or \( y > 1 \), \( f_Y(y) = 0 \). For \( 0 \leq y \leq 1 \),

\[
f_Y(y) = \int_{0}^{y} 6(y-x) \, dx = 6xy - 3x^2|_0^y = 3y^2
\]

The complete expression for the marginal PDF of \( Y \) is

\[
f_Y(y) = \begin{cases} 3y^2 & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}
\]

(b) The minimum mean square estimator of \( X \) given \( Y = y \) is

\[
\hat{X}_M(y) = E[X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) \, dx
\]

\[
= \int_{0}^{y} \frac{6x(y-x)}{3y^2} \, dx = \frac{3x^2y - 2x^3}{3y^2}|_{x=0}^{x=y} = y/3
\]
(c) First we must find the marginal PDF for $X$. For $0 \leq x \leq 1$,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy = \int_{x}^{1} 6(y-x) \, dy = 3y^2 - 6xy \bigg|_{y=x}^{y=1}$$

$$= 3(1 - 2x + x^2) = 3(1 - x)^2$$  \hspace{1cm} (7)

The conditional PDF of $Y$ given $X$ is

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \begin{cases} \frac{2(y-x)}{1-2x+x^2} & x \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$  \hspace{1cm} (9)

(d) The minimum mean square estimator of $Y$ given $X$ is

$$\hat{Y}_M(x) = E[Y|X = x] = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) \, dy$$

$$= \int_{x}^{1} 2y(y-x) \, dy$$

$$= \frac{(2/3)y^3 - y^2x}{1 - 2x + x^2} \bigg|_{y=x}^{y=1} = \frac{2 - 3x + x^3}{3(1 - x)^2}.$$  \hspace{1cm} (12)

Perhaps surprisingly, this result can be simplified to

$$\hat{Y}_M(x) = \frac{x}{3} + \frac{2}{3}.$$  \hspace{1cm} (13)

**Problem 9.1.5 Solution**

(a) First we find the marginal PDF $f_Y(y)$. For $0 \leq y \leq 2$,

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx = \int_{0}^{y} 2 \, dx = 2y$$  \hspace{1cm} (1)

Hence, for $0 \leq y \leq 2$, the conditional PDF of $X$ given $Y$ is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \begin{cases} 1/y & 0 \leq x \leq y \\ 0 & \text{otherwise} \end{cases}$$  \hspace{1cm} (2)

(b) The optimum mean squared error estimate of $X$ given $Y = y$ is

$$\hat{x}_M(y) = E[X|Y = y] = \int_{-\infty}^{\infty} xf_{X|Y}(x|y) \, dx = \int_{0}^{y} \frac{x}{y} \, dx = y/2$$  \hspace{1cm} (3)

(c) The MMSE estimator of $X$ given $Y$ is $\hat{X}_M(Y) = E[X|Y] = Y/2$. The mean squared error is

$$e_{X,Y}^* = E[(X - \hat{X}_M(Y))^2] = E[(X - Y/2)^2] = E[X^2 - XY + Y^2/4]$$  \hspace{1cm} (4)
Of course, the integral must be evaluated.

\[ e^*_{X,Y} = \int_0^1 \int_0^y 2(x^2 - xy + y^2/4) \, dx \, dy \]

(5)

\[
= \int_0^1 (2x^3/3 - x^2y + xy^2/2) \bigg|_{x=0} \, dy
\]

(6)

\[
= \int_0^1 \frac{y^3}{6} \, dy = 1/24
\]

(7)

Another approach to finding the mean square error is to recognize that the MMSE estimator is a linear estimator and thus must be the optimal linear estimator. Hence, the mean square error of the optimal linear estimator given by Theorem 9.4 must equal \( e^*_{X,Y} \). That is, \( e^*_{X,Y} = \text{Var}[X](1 - \rho^2_{X,Y}) \). However, calculation of the correlation coefficient \( \rho_{X,Y} \) is at least as much work as direct calculation of \( e^*_{X,Y} \).

**Problem 9.2.1 Solution**

(a) The marginal PMFs of \( X \) and \( Y \) are listed below

\[
P_X(x) = \begin{cases} 
1/3 & x = -1, 0, 1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
P_Y(y) = \begin{cases} 
1/4 & y = -3, -1, 0, 1, 3 \\
0 & \text{otherwise}
\end{cases}
\]

(1)

(b) No, the random variables \( X \) and \( Y \) are not independent since

\[
P_{X,Y}(1, -3) = 0 \neq P_X(1) P_Y(-3)
\]

(2)

(c) Direct evaluation leads to

\[
E[X] = 0 \quad \text{Var}[X] = 2/3
\]

(3)

\[
E[Y] = 0 \quad \text{Var}[Y] = 5
\]

(4)

This implies

\[
\]

(5)

(d) From Theorem 9.4, the optimal linear estimate of \( X \) given \( Y \) is

\[
\hat{X}_L(Y) = \rho_{X,Y} \frac{\sigma_X}{\sigma_Y} (Y - \mu_Y) + \mu_X = \frac{7}{30} Y + 0.
\]

Therefore, \( a^* = 7/30 \) and \( b^* = 0 \).

(e) From the previous part, \( X \) and \( Y \) have correlation coefficient

\[
\rho_{X,Y} = \text{Cov}[X,Y] / \sqrt{\text{Var}[X] \text{Var}[Y]} = \sqrt{49/120}.
\]

(7)

From Theorem 9.4, the minimum mean square error of the optimum linear estimate is

\[
e^*_L = \sigma_X^2 (1 - \rho^2_{X,Y}) = \frac{2}{3} \frac{71}{120} = \frac{71}{180}.
\]

(8)
(f) The conditional probability mass function is
\[ P_{X|Y} (x|−3) = \frac{P_{X,Y} (x,−3)}{P_Y (−3)} = \begin{cases} \frac{1}{6} & \text{if } x = −1, \\ \frac{1}{12} & \text{if } x = 0, \\ \frac{1}{4} & \text{otherwise.} \end{cases} \] (9)

(g) The minimum mean square estimator of \( X \) given that \( Y = 3 \) is
\[ \hat{x}_M(−3) = E [X|Y = −3] = \sum x P_{X|Y} (x|−3) = −2/3. \] (10)

(h) The mean squared error of this estimator is
\[ \hat{e}_M(−3) = E [(X − \hat{x}_M(−3))^2|Y = −3] \]
\[ = \sum (x + 2/3)^2 P_{X|Y} (x|−3) \]
\[ = (−1/3)^2(2/3) + (2/3)^2(1/3) = 2/9. \] (13)

Problem 9.2.2 Solution

The problem statement tells us that
\[ f_V (v) = \begin{cases} \frac{1}{12} & −6 \leq v \leq 6, \\ 0 & \text{otherwise.} \end{cases} \] (1)

Furthermore, we are also told that \( R = V + X \) where \( X \) is a Gaussian \((0, \sqrt{3})\) random variable.

(a) The expected value of \( R \) is the expected value \( V \) plus the expected value of \( X \). We already know that \( X \) has zero expected value, and that \( V \) is uniformly distributed between -6 and 6 volts and therefore also has zero expected value. So
\[ E [R] = E [V + X] = E [V] + E [X] = 0. \] (2)

(b) Because \( X \) and \( V \) are independent random variables, the variance of \( R \) is the sum of the variance of \( V \) and the variance of \( X \).
\[ \text{Var}[R] = \text{Var}[V] + \text{Var}[X] = 12 + 3 = 15. \] (3)

(c) Since \( E[R] = E[V] = 0, \)
\[ \text{Cov} [V,R] = E [V R] = E [V(V + X)] = E [V^2] = \text{Var}[V]. \] (4)

(d) The correlation coefficient of \( V \) and \( R \) is
\[ \rho_{V,R} = \frac{\text{Cov} [V,R]}{\sqrt{\text{Var}[V] \text{Var}[R]}} = \frac{\text{Var}[V]}{\sqrt{\text{Var}[V] \text{Var}[R]}} = \frac{\sigma_V}{\sigma_R}. \] (5)

The LMSE estimate of \( V \) given \( R \) is
\[ \hat{V}(R) = \rho_{V,R} \frac{\sigma_V}{\sigma_R} (R − E [R]) + E [V] = \frac{\sigma_V^2}{\sigma_R^2} R = \frac{12}{15} R. \] (6)

Therefore \( a^* = 12/15 = 4/5 \) and \( b^* = 0. \)
(e) The minimum mean square error in the estimate is

$$e^* = \text{Var}[V](1 - \rho_{V,R}^2) = 12(1 - 12/15) = 12/5 \quad (7)$$

Problem 9.2.3 Solution

The solution to this problem is to simply calculate the various quantities required for the optimal linear estimator given by Theorem 9.4. First we calculate the necessary moments of $X$ and $Y$.

\[
\begin{align*}
E[X] &= -1(1/4) + 0(1/2) + 1(1/4) = 0 \\
E[X^2] &= (-1)^2(1/4) + 0^2(1/2) + 1^2(1/4) = 1/2 \\
E[Y] &= -1(17/48) + 0(17/48) + 1(14/48) = -1/16 \\
E[Y^2] &= (-1)^2(17/48) + 0^2(17/48) + 1^2(14/48) = 31/48 \\
E[XY] &= 3/16 - 0 - 0 + 1/8 = 5/16 \quad (5)
\end{align*}
\]

The variances and covariance are

\[
\begin{align*}
\text{Var}[X] &= E[X^2] - (E[X])^2 = 1/2 \quad (6) \\
\text{Var}[Y] &= E[Y^2] - (E[Y])^2 = 493/768 \quad (7) \\
\text{Cov}[X,Y] &= E[XY] - E[X]E[Y] = 5/16 \quad (8) \\
\rho_{X,Y} &= \frac{\text{Cov}[X,Y]}{\sqrt{\text{Var}[X]\text{Var}[Y]}} = \frac{5\sqrt{6}}{\sqrt{493}} \quad (9)
\end{align*}
\]

By reversing the labels of $X$ and $Y$ in Theorem 9.4, we find that the optimal linear estimator of $Y$ given $X$ is

\[
\hat{Y}_L(X) = \rho_{X,Y} \frac{\sigma_Y}{\sigma_X} (X - E[X]) + E[Y] = \frac{5}{8}X - \frac{1}{16} \quad (10)
\]

The mean square estimation error is

$$e^*_L = \text{Var}[Y](1 - \rho_{X,Y}^2) = 343/768 \quad (11)$$

Problem 9.2.4 Solution

These four joint PMFs are actually related to each other. In particular, completing the row sums and column sums shows that each random variable has the same marginal PMF. That is,

\[
P_X(x) = P_Y(x) = P_U(x) = P_V(x) = P_S(x) = P_T(x) = P_Q(x) = P_R(x) \quad (1)
\]

This implies

\[
\]

and that

\[
\begin{align*}
\end{align*}
\]

Since each random variable has zero expected value, the second moment equals the variance. Also, the standard deviation of each random variable is $\sqrt{2/3}$. These common properties will make it much easier to answer the questions.

328
(a) Random variables $X$ and $Y$ are independent since for all $x$ and $y$,

$$P_{X,Y}(x, y) = P_X(x) P_Y(y)$$

Since each other pair of random variables has the same marginal PMFs as $X$ and $Y$ but a different joint PMF, all of the other pairs of random variables must be dependent. Since $X$ and $Y$ are independent, $\rho_{X,Y} = 0$. For the other pairs, we must compute the covariances.

$$\text{Cov}[U, V] = E[UV] = (1/3)(-1) + (1/3)(-1) = -2/3$$

$$\text{Cov}[S, T] = E[ST] = 1/6 - 1/6 + 0 + -1/6 + 1/6 = 0$$

$$\text{Cov}[Q, R] = E[QR] = 1/12 - 1/6 - 1/6 + 1/12 = -1/6$$

The correlation coefficient of $U$ and $V$ is

$$\rho_{U,V} = \frac{\text{Cov}[U, V]}{\sqrt{\text{Var}[U] \text{Var}[V]}} = \frac{-2/3}{\sqrt{2/3 \cdot 2/3}} = -1$$

In fact, since the marginal PMF’s are the same, the denominator of the correlation coefficient will be $2/3$ in each case. The other correlation coefficients are

$$\rho_{S,T} = \frac{\text{Cov}[S, T]}{2/3} = 0 \quad \rho_{Q,R} = \frac{\text{Cov}[Q, R]}{2/3} = -1/4$$

(b) From Theorem 9.4, the least mean square linear estimator of $U$ given $V$ is

$$\hat{U}_L(V) = \rho_{U,V} \frac{\sigma_U}{\sigma_V} (V - E[V]) + E[U] = \rho_{U,V} V = -V$$

Similarly for the other pairs, all expected values are zero and the ratio of the standard deviations is always 1. Hence,

$$\hat{X}_L(Y) = \rho_{X,Y} Y = 0$$

$$\hat{S}_L(T) = \rho_{S,T} T = 0$$

$$\hat{Q}_L(R) = \rho_{Q,R} R = -R/4$$

From Theorem 9.4, the mean square errors are

$$e^*_L(X, Y) = \text{Var}[X](1 - \rho_{X,Y}^2) = 2/3$$

$$e^*_L(U, V) = \text{Var}[U](1 - \rho_{U,V}^2) = 0$$

$$e^*_L(S, T) = \text{Var}[S](1 - \rho_{S,T}^2) = 2/3$$

$$e^*_L(Q, R) = \text{Var}[Q](1 - \rho_{Q,R}^2) = 5/8$$

**Problem 9.2.5 Solution**

To solve this problem, we use Theorem 9.4. The only difficulty is in computing $E[X]$, $E[Y]$, $\text{Var}[X]$, $\text{Var}[Y]$, and $\rho_{X,Y}$. First we calculate the marginal PDFs

$$f_X(x) = \int_x^1 2(y + x) \, dy = y^2 + 2xy \bigg|_{y=x} = 1 + 2x - 3x^2$$

$$f_Y(y) = \int_0^y 2(y + x) \, dx = 2xy + x^2 \bigg|_{x=y} = 3y^2$$
The first and second moments of \( X \) are
\[
E[X] = \int_0^1 (x + 2x^2 - 3x^3) \, dx = \frac{x^2}{2} + 2x^3/3 - 3x^4/4\bigg|_0^1 = 5/12 
\]
(3)
\[
E[X^2] = \int_0^1 (x^2 + 2x^3 - 3x^4) \, dx = \frac{x^3}{3} + x^4/2 - 3x^5/5\bigg|_0^1 = 7/30 
\]
(4)
The first and second moments of \( Y \) are
\[
E[Y] = \int_0^1 3y^3 \, dy = 3/4, \quad E[Y^2] = \int_0^1 3y^4 \, dy = 3/5. 
\]
(5)
Thus, \( X \) and \( Y \) each have variance
\[
\text{Var}[X] = E[X^2] - (E[X])^2 = \frac{129}{2160}, \quad \text{Var}[Y] = E[Y^2] - (E[Y])^2 = \frac{3}{80}. 
\]
(6)
To calculate the correlation coefficient, we first must calculate the correlation
\[
E[XY] = \int_0^1 \int_0^y 2xy(x + y) \, dx \, dy 
\]
(7)
\[
= \int_0^1 \left[ 2x^3y + x^2y^2 \right]_{x=0}^{y=1} dy = \int_0^1 \frac{5y^4}{3} \, dy = 1/3 
\]
(8)
Hence, the correlation coefficient is
\[
\rho_{X,Y} = \frac{\text{Cov}[X,Y]}{\sqrt{\text{Var}[X]\text{Var}[Y]}} \frac{E[XY] - E[X]E[Y]}{\sqrt{\text{Var}[X]\text{Var}[Y]}} = \frac{5}{\sqrt{129}} 
\]
(9)
Finally, we use Theorem 9.4 to combine these quantities in the optimal linear estimator.
\[
\hat{X}_L(Y) = \rho_{X,Y} \frac{\sigma_X}{\sigma_Y} (Y - E[Y]) + E[X] 
\]
(10)
\[
= \frac{5}{\sqrt{129}} \frac{\sqrt{129}}{9} (Y - \frac{3}{4}) + \frac{5}{12} = \frac{5}{9} Y. 
\]
(11)

**Problem 9.2.6 Solution**
The linear mean square estimator of \( X \) given \( Y \) is
\[
\hat{X}_L(Y) = \left( \frac{E[XY] - \mu_X \mu_Y}{\text{Var}[Y]} \right) (Y - \mu_Y) + \mu_X. 
\]
(1)
To find the parameters of this estimator, we calculate
\[
f_Y(y) = \int_0^y 6(y-x) \, dx = 6xy - 3x^2\bigg|_0^y = 3y^2 \quad (0 \leq y \leq 1) 
\]
(2)
\[
f_X(x) = \int_x^1 6(y-x) \, dy = \begin{cases} 
3(1 + -2x + x^2) & 0 \leq x \leq 1, \\
0 & \text{otherwise}.
\end{cases} 
\]
(3)
The moments of \( X \) and \( Y \) are
\[
E[Y] = \int_0^1 3y^3 \, dy = 3/4, \quad E[X] = \int_0^1 3x(1 - 2x + x^2) \, dx = 1/4 
\]
(4)
\[
E[Y^2] = \int_0^1 3y^4 \, dy = 3/5, \quad E[X^2] = \int_0^1 3x^2(1 - 2x + x^2) \, dx = 1/10 
\]
(5)
The correlation between $X$ and $Y$ is

$$E[XY] = 6 \int_0^1 \int_x^1 xy(y-x) \, dy \, dx = 1/5 \quad (6)$$

Putting these pieces together, the optimal linear estimate of $X$ given $Y$ is

$$\hat{X}_L(Y) = \left( \frac{1/5 - 3/16}{3/5 - (3/4)^2} \right) \left( Y - \frac{3}{4} \right) + \frac{1}{4} = \frac{Y}{3} \quad (7)$$

**Problem 9.2.7 Solution**

We are told that random variable $X$ has a second order Erlang distribution

$$f_X(x) = \begin{cases} \lambda xe^{-\lambda x} & x \geq 0 \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

We also know that given $X = x$, random variable $Y$ is uniform on $[0,x]$ so that

$$f_{Y|X}(y|x) = \begin{cases} \frac{1}{x} & 0 \leq y \leq x \\ 0 & \text{otherwise} \end{cases} \quad (2)$$

(a) Given $X = x$, $Y$ is uniform on $[0,x]$. Hence $E[Y|X = x] = x/2$. Thus the minimum mean square estimate of $Y$ given $X$ is

$$\hat{Y}_M(X) = E[Y|X] = X/2 \quad (3)$$

(b) The minimum mean square estimate of $X$ given $Y$ can be found by finding the conditional probability density function of $X$ given $Y$. First we find the joint density function.

$$f_{X,Y}(x,y) = f_{Y|X}(y|x) \cdot f_X(x) = \begin{cases} \lambda e^{-\lambda x} & 0 \leq y \leq x \\ 0 & \text{otherwise} \end{cases} \quad (4)$$

Now we can find the marginal of $Y$

$$f_Y(y) = \int_y^\infty \lambda e^{-\lambda x} \, dx = \begin{cases} e^{-\lambda y} & y \geq 0 \\ 0 & \text{otherwise} \end{cases} \quad (5)$$

By dividing the joint density by the marginal density of $Y$ we arrive at the conditional density of $X$ given $Y$.

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \begin{cases} \lambda e^{-\lambda(x-y)} & x \geq y \\ 0 & \text{otherwise} \end{cases} \quad (6)$$

Now we are in a position to find the minimum mean square estimate of $X$ given $Y$. Given $Y = y$, the conditional expected value of $X$ is

$$E[X|Y = y] = \int_y^\infty \lambda xe^{-\lambda(x-y)} \, dx \quad (7)$$

Making the substitution $u = x - y$ yields

$$E[X|Y = y] = \int_0^\infty \lambda (u + y)e^{-\lambda u} \, du \quad (8)$$
We observe that if $U$ is an exponential random variable with parameter $\lambda$, then

$$E [X|Y = y] = E [U + y] = \frac{1}{\lambda} + y$$  \hspace{1cm} (9)

The minimum mean square error estimate of $X$ given $Y$ is

$$\hat{X}_M(Y) = E [X|Y] = \frac{1}{\lambda} + Y$$  \hspace{1cm} (10)

(c) Since the MMSE estimate of $Y$ given $X$ is the linear estimate $\hat{Y}_M(X) = X/2$, the optimal linear estimate of $Y$ given $X$ must also be the MMSE estimate. That is, $\hat{Y}_L(X) = X/2$.

(d) Since the MMSE estimate of $X$ given $Y$ is the linear estimate $\hat{X}_M(Y) = Y + 1/\lambda$, the optimal linear estimate of $X$ given $Y$ must also be the MMSE estimate. That is, $\hat{X}_L(Y) = Y + 1/\lambda$.

**Problem 9.2.8 Solution**

From the problem statement, we learn the following facts:

$$f_{R}(r) = \begin{cases} e^{-r} & r \geq 0, \\ 0 & \text{otherwise,} \end{cases} \quad f_{X|R}(x|r) = \begin{cases} re^{-rx} & x \geq 0, \\ 0 & \text{otherwise.} \end{cases}$$  \hspace{1cm} (1)

Note that $f_{X,R}(x,r) > 0$ for all non-negative $X$ and $R$. Hence, for the remainder of the problem, we assume both $X$ and $R$ are non-negative and we omit the usual “zero otherwise” considerations.

(a) To find $\hat{r}_M(X)$, we need the conditional PDF

$$f_{R|X}(r|x) = \frac{f_{X|R}(x|r) f_{R}(r)}{f_{X}(x)}.$$  \hspace{1cm} (2)

The marginal PDF of $X$ is

$$f_{X}(x) = \int_{0}^{\infty} f_{X|R}(x|r) f_{R}(r) \, dr = \int_{0}^{\infty} re^{-(x+1)r} \, dr$$  \hspace{1cm} (3)

We use the integration by parts formula $\int u \, dv = uv - \int v \, du$ by choosing $u = r$ and $dv = e^{-(x+1)r} \, dr$. Thus $v = -e^{-(x+1)r}/(x+1)$ and

$$f_{X}(x) = \left. \frac{-r}{x+1} e^{-(x+1)r} \right|_{0}^{\infty} + \frac{1}{x+1} \int_{0}^{\infty} e^{-(x+1)r} \, dr = \frac{-1}{(x+1)^2} e^{-(x+1)r} \bigg|_{0}^{\infty} = \frac{1}{(x+1)^2}$$  \hspace{1cm} (4)

Now we can find the conditional PDF of $R$ given $X$.

$$f_{R|X}(r|x) = \frac{f_{X|R}(x|r) f_{R}(r)}{f_{X}(x)} = (x+1)^2 re^{-(x+1)r}$$  \hspace{1cm} (5)

By comparing, $f_{R|X}(r|x)$ to the Erlang PDF shown in Appendix A, we see that given $X = x$, the conditional PDF of $R$ is an Erlang PDF with parameters $n = 1$ and $\lambda = x + 1$. This implies

$$E [R|X = x] = \frac{1}{x+1} \quad \text{Var} [R|X = x] = \frac{1}{(x+1)^2}$$  \hspace{1cm} (6)

Hence, the MMSE estimator of $R$ given $X$ is

$$\hat{r}_M(X) = E [R|X] = \frac{1}{X+1}$$  \hspace{1cm} (7)
(b) The MMSE estimate of $X$ given $R = r$ is $E[X|R = r]$. From the initial problem statement, we know that given $R = r$, $X$ is exponential with expected value $1/r$. That is, $E[X|R = r] = 1/r$. Another way of writing this statement is $\hat{x}_M(R) = E[X|R] = 1/R$. (8)

(c) Note that the expected value of $X$ is

$$E[X] = \int_0^\infty x f_X(x) \, dx = \int_0^\infty \frac{x}{(x+1)^2} \, dx = \infty$$

Because $E[X]$ doesn’t exist, the LMSE estimate of $X$ given $R$ doesn’t exist.

(d) Just as in part (c), because $E[X]$ doesn’t exist, the LMSE estimate of $R$ given $X$ doesn’t exist.

**Problem 9.2.9 Solution**

(a) As a function of $a$, the mean squared error is


(1)

Setting $de/da|_{a=a^*} = 0$ yields

$$a^* = \frac{E[XY]}{E[Y^2]}$$

(2)

(b) Using $a = a^*$, the mean squared error is

$$e^* = E[X^2] - \frac{(E[XY])^2}{E[Y^2]}$$

(3)

(c) We can write the LMSE estimator given in Theorem 9.4 in the form

$$\hat{x}_L(\hat{Y}) = \rho_{X,Y} \frac{\sigma_X}{\sigma_Y} \hat{Y} - b$$

(4)

where

$$b = \rho_{X,Y} \frac{\sigma_X}{\sigma_Y} E[Y] - E[X]$$

(5)

When $b = 0$, $\hat{X}(Y)$ is the LMSE estimate. Note that the typical way that $b = 0$ occurs when $E[X] = E[Y] = 0$. However, it is possible that the right combination of expected values, variances, and correlation coefficient can also yield $b = 0$. 

---

333
Problem 9.3.1 Solution
In this case, the joint PDF of $X$ and $R$ is
\[
f_{X,R}(x, r) = f_{X|R}(x|r) f_R(r) = \begin{cases} 
\frac{1}{r_0 \sqrt{128\pi}} e^{-(x+40+40 \log_{10} r)^2/128} & 0 \leq r \leq r_0, \\
0 & \text{otherwise.}
\end{cases}
\] (1)

From Theorem 9.6, the MAP estimate of $R$ given $X = x$ is the value of $r$ that maximizes $f_{X|R}(x|r) f_R(r)$. Since $R$ has a uniform PDF over $[0, 1000]$,
\[
\hat{r}_{\text{MAP}}(x) = \arg \max_{0 \leq r \leq 1000} f_{X|R}(x|r) f_R(r) = \arg \max_{0 \leq r \leq 1000} f_{X|R}(x|r)
\] (2)

Hence, the maximizing value of $r$ is the same as for the ML estimate in Quiz 9.3 unless the maximizing $r$ exceeds 1000 m. In this case, the maximizing value is $r = 1000$ m. From the solution to Quiz 9.3, the resulting ML estimator is
\[
\hat{r}_{\text{ML}}(x) = \begin{cases} 
1000 & x < -160 \\
(0.1)10^{-x/40} & x \geq -160
\end{cases}
\] (3)

Problem 9.3.2 Solution
From the problem statement we know that $R$ is an exponential random variable with expected value $1/\mu$. Therefore it has the following probability density function.
\[
f_R(r) = \begin{cases} 
\mu e^{-\mu r} & r \geq 0 \\
0 & \text{otherwise}
\end{cases}
\] (1)

It is also known that, given $R = r$, the number of phone calls arriving at a telephone switch, $N$, is a Poisson ($\alpha = rT$) random variable. So we can write the following conditional probability mass function of $N$ given $R$.
\[
P_{N|R}(n|r) = \begin{cases} 
\frac{(rT)^n e^{-rT}}{n!} & n = 0, 1, \ldots \\
0 & \text{otherwise}
\end{cases}
\] (2)

(a) The minimum mean square error estimate of $N$ given $R$ is the conditional expected value of $N$ given $R = r$. This is given directly in the problem statement as $r$.
\[
\hat{N}_M(r) = E[N|R=r] = rT
\] (3)

(b) The maximum a posteriori estimate of $N$ given $R$ is simply the value of $n$ that will maximize $P_{N|R}(n|r)$. That is,
\[
\hat{n}_{MAP}(r) = \arg \max_{n \geq 0} P_{N|R}(n|r) = \arg \max_{n \geq 0} (rT)^n e^{-rT}/n!
\] (4)

Usually, we set a derivative to zero to solve for the maximizing value. In this case, that technique doesn’t work because $n$ is discrete. Since $e^{-rT}$ is a common factor in the maximization, we can define $g(n) = (rT)^n /n!$ so that $\hat{n}_{MAP} = \arg \max_n g(n)$. We observe that
\[
g(n) = \frac{rT}{n} g(n-1)
\] (5)

this implies that for $n \leq rT$, $g(n) \geq g(n-1)$. Hence the maximizing value of $n$ is the largest $n$ such that $n \leq rT$. That is, $\hat{n}_{MAP} = \lfloor rT \rfloor$. 

334
(c) The maximum likelihood estimate of $N$ given $R$ selects the value of $n$ that maximizes $f_{R|N=n}(r)$, the conditional PDF of $R$ given $N$. When dealing with situations in which we mix continuous and discrete random variables, it’s often helpful to start from first principles. In this case,

$$f_{R|N}(r|n) \, dr = P[r < R \leq r + dr|N = n]$$

$$= \frac{P[r < R \leq r + dr, N = n]}{P[N = n]}$$

$$= \frac{P[N = |R = r]}{P[N = n]} P[r < R \leq r + dr]$$

In terms of PDFs and PMFs, we have

$$f_{R|N}(r|n) = \frac{P_{N|R}(n|r) f_R(r)}{P_N(n)}$$

To find the value of $n$ that maximizes $f_{R|N}(r|n)$, we need to find the denominator $P_N(n)$.

$$P_N(n) = \int_{-\infty}^{\infty} P_{N|R}(n|r) f_R(r) \, dr$$

$$= \int_0^{\infty} (rT)^n e^{-rT} \frac{\mu e^{-\mu r}}{n!} dr$$

$$= \frac{\mu T^n}{n!(\mu + T)} \int_0^{\infty} r^n(\mu + T)e^{-(\mu+T)r} \, dr$$

$$= \frac{\mu T^n}{n!(\mu + T)} [E[X^n]]$$

where $X$ is an exponential random variable with expected value $1/(\mu + T)$. There are several ways to derive the $n$th moment of an exponential random variable including integration by parts. In Example 6.5, the MGF is used to show that $E[X^n] = n!/(\mu + T)^n$. Hence, for $n \geq 0$,

$$P_N(n) = \frac{\mu T^n}{(\mu + T)^{n+1}}$$

Finally, the conditional PDF of $R$ given $N$ is

$$f_{R|N}(r|n) = \frac{P_{N|R}(n|r) f_R(r)}{P_N(n)} = \frac{(rT)^n e^{-rT}}{n!} \frac{\mu e^{-\mu r}}{(\mu + T)^{n+1}}$$

$$= \frac{((\mu + T)r)^n e^{-(\mu+T)r}}{n!}$$

The ML estimate of $N$ given $R$ is

$$\hat{n}_{ML}(r) = \arg \max_{n \geq 0} f_{R|N}(r|n) = \arg \max_{n \geq 0} (\mu + T)[(\mu + T)r] e^{-(\mu+T)r}$$

This maximization is exactly the same as in the previous part except $rT$ is replaced by $(\mu + T)r$. The maximizing value of $n$ is $\hat{n}_{ML} = \lfloor (\mu + T)r \rfloor$. 

335
Problem 9.3.3 Solution
Both parts (a) and (b) rely on the conditional PDF of $R$ given $N = n$. When dealing with situations in which we mix continuous and discrete random variables, it’s often helpful to start from first principles.

$$f_{R|N}(r|n) \, dr = P[r < R \leq r + dr|N = n] = \frac{P[r < R \leq r + dr, N = n]}{P[N = n]}$$  \hspace{1cm} (1)

$$= \frac{P[N = n|R = r] \, P[r < R \leq r + dr]}{P[N = n]}$$  \hspace{1cm} (2)

In terms of PDFs and PMFs, we have

$$f_{R|N}(r|n) = \frac{P_{N|R}(n|r) \, f_{R}(r)}{P_{N}(n)}$$  \hspace{1cm} (3)

To find the value of $n$ that maximizes $f_{R|N}(r|n)$, we need to find the denominator $P_{N}(n)$.

$$P_{N}(n) = \int_{-\infty}^{\infty} P_{N|R}(n|r) \, f_{R}(r) \, dr$$  \hspace{1cm} (4)

$$= \int_{0}^{\infty} \frac{(rT)^{n}e^{-rT}}{n!} \mu e^{-\mu r} \, dr$$  \hspace{1cm} (5)

$$= \frac{\mu T^{n}}{n!(\mu + T)} \int_{0}^{\infty} r^{n}(\mu + T)e^{-(\mu + T)r} \, dr = \frac{\mu T^{n}}{n!(\mu + T)} E[X^{n}]$$  \hspace{1cm} (6)

where $X$ is an exponential random variable with expected value $1/(\mu + T)$. There are several ways to derive the $n$th moment of an exponential random variable including integration by parts. In Example 6.5, the MGF is used to show that $E[X^{n}] = n!/(\mu + T)^{n}$. Hence, for $n \geq 0$,

$$P_{N}(n) = \frac{\mu T^{n}}{(\mu + T)^{n+1}}$$  \hspace{1cm} (7)

Finally, the conditional PDF of $R$ given $N$ is

$$f_{R|N}(r|n) = \frac{P_{N|R}(n|r) \, f_{R}(r)}{P_{N}(n)} = \frac{(rT)^{n}e^{-rT}}{n!} \mu e^{-\mu r} = \frac{(\mu + T)^{n+1}r^{n}e^{-(\mu + T)r}}{n!}$$  \hspace{1cm} (8)

(a) The MMSE estimate of $R$ given $N = n$ is the conditional expected value $E[R|N = n]$. Given $N = n$, the conditional PDF of $R$ is that of an Erlang random variable or order $n + 1$. From Appendix A, we find that $E[R|N = n] = (n + 1)/(\mu + T)$. The MMSE estimate of $R$ given $N$ is

$$\hat{R}_{M}(N) = E[R|N] = \frac{N + 1}{\mu + T}$$  \hspace{1cm} (9)

(b) The MAP estimate of $R$ given $N = n$ is the value of $r$ that maximizes $f_{R|N}(r|n)$.

$$\hat{R}_{MAP}(n) = \arg \max_{r \geq 0} f_{R|N}(r|n) = \arg \max_{r \geq 0} \frac{(\mu + T)^{n+1}r^{n}e^{-(\mu + T)r}}{n!}$$  \hspace{1cm} (10)

By setting the derivative with respect to $r$ to zero, we obtain the MAP estimate

$$\hat{R}_{MAP}(n) = \frac{n}{\mu + T}$$  \hspace{1cm} (11)
(c) The ML estimate of $R$ given $N = n$ is the value of $R$ that maximizes $P_{N|R}(n|r)$. That is,
\[ \hat{R}_{\text{ML}}(n) = \arg \max_{r \geq 0} \frac{(rT)^n e^{-rT}}{n!} \]  

Setting the derivative with respect to $r$ to zero yields
\[ \hat{R}_{\text{ML}}(n) = \frac{n}{T} \]  

**Problem 9.3.4 Solution**

This problem is closely related to Example 9.7.

(a) Given $Q = q$, the conditional PMF of $K$ is
\[ P_{K|Q}(k|q) = \begin{cases} \binom{n}{k} q^k (1 - q)^{n-k} & k = 0, 1, \ldots, n \\ 0 & \text{otherwise} \end{cases} \]  

The ML estimate of $Q$ given $K = k$ is
\[ \hat{Q}_{\text{ML}}(k) = \arg \max_{0 \leq q \leq 1} P_{Q|K}(q|k) \]  

Differentiating $P_{Q|K}(q|k)$ with respect to $q$ and setting equal to zero yields
\[ \frac{dP_{Q|K}(q|k)}{dq} = \binom{n}{k} (kq^{k-1}(1 - q)^{n-k} - (n-k)q^{k}(1-q)^{n-k-1}) = 0 \]  

The maximizing value is $q = k/n$ so that
\[ \hat{Q}_{\text{ML}}(K) = \frac{K}{n} \]  

(b) To find the PMF of $K$, we average over all $q$.
\[ P_{K}(k) = \int_{-\infty}^{\infty} P_{K|Q}(k|q) f_{Q}(q) \, dq = \int_{0}^{1} \binom{n}{k} q^k (1 - q)^{n-k} \, dq \]  

We can evaluate this integral by expressing it in terms of the integral of a beta PDF. Since $\beta(k+1, n-k+1) = \frac{(n+1)!}{k!(n-k)!}$, we can write
\[ P_{K}(k) = \frac{1}{n+1} \int_{0}^{1} \beta(k+1, n-k+1)q^{k}(1-q)^{n-k} \, dq = \frac{1}{n+1} \]  

That is, $K$ has the uniform PMF
\[ P_{K}(k) = \begin{cases} 1/(n + 1) & k = 0, 1, \ldots, n \\ 0 & \text{otherwise} \end{cases} \]  

Hence, $E[K] = n/2$.

(c) The conditional PDF of $Q$ given $K = k$ is
\[ f_{Q|K}(q|k) = \frac{P_{K|Q}(k|q) f_{Q}(q)}{P_{K}(k)} = \begin{cases} \frac{(n+1)!}{k!(n-k)!} q^{k}(1-q)^{n-k} & 0 \leq q \leq 1 \\ 0 & \text{otherwise} \end{cases} \]  

That is, given $K = k$, $Q$ has a beta $(k + 1, n - k + 1)$ PDF.

(d) The MMSE estimate of $Q$ given $K = k$ is the conditional expectation $E[Q|K = k]$. From the beta PDF described in Appendix A, $E[Q|K = k] = (k + 1)/(n + 2)$. The MMSE estimator is
\[ \hat{Q}_{M}(K) = E[Q|K] = \frac{K + 1}{n + 2} \]
Problem 9.4.1 Solution

From the problem statement, we learn for vectors \( \mathbf{X} = [X_1 \ X_2 \ X_3]' \) and \( \mathbf{Y} = [Y_1 \ Y_2]' \) that

\[
E[\mathbf{X}] = 0, \quad \mathbf{R}_X = \begin{bmatrix}
1 & 3/4 & 1/2 \\
3/4 & 1 & 3/4 \\
1/2 & 3/4 & 1
\end{bmatrix}, \quad \mathbf{Y} = \mathbf{A}\mathbf{X} = \begin{bmatrix} 1 & 0 \\
0 & 1 \\
1 & 1 \end{bmatrix} \mathbf{X}.
\]  

(a) Since \( E[\mathbf{Y}] = \mathbf{A}E[\mathbf{X}] = 0 \), we can apply Theorem 9.7(a) which states that the minimum mean square error estimate of \( X_1 \) is \( \hat{X}_1(\mathbf{Y}) = \hat{\mathbf{a}}'\mathbf{Y} \) where \( \hat{\mathbf{a}} = \mathbf{R}_Y^{-1}\mathbf{R}_{YX_1} \). The rest of the solution is just calculation. (We note that even in the case of a \( 3 \times 3 \) matrix, its convenient to use MATLAB with \texttt{format rat} mode to perform the calculations and display the results as nice fractions.) From Theorem 5.13,

\[
\mathbf{R}_Y = \mathbf{A}\mathbf{R}_X\mathbf{A}' = \begin{bmatrix} 1 & 1 & 0 \\
0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3/4 & 1/2 \\
3/4 & 1 & 3/4 \\
1/2 & 3/4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\
0 & 1 \\
1 & 1 \end{bmatrix} = \begin{bmatrix} 7/2 & 3 \\
3 & 7/2 \end{bmatrix}. \tag{2}
\]

In addition, since \( \mathbf{R}_{YX_1} = E[\mathbf{Y}\mathbf{X}_1] = E[\mathbf{A}\mathbf{X}\mathbf{X}_1] = \mathbf{A}E[\mathbf{XX}_1], \)

\[
\mathbf{R}_{YX_1} = \mathbf{A} \begin{bmatrix} E[\mathbf{X}_1^2] \\
E[\mathbf{X}_2\mathbf{X}_1] \\
E[\mathbf{X}_3\mathbf{X}_1] \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{R}_X(1,1) \\
\mathbf{R}_X(2,1) \\
\mathbf{R}_X(3,1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\
0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\
3/4 & 1/2 \end{bmatrix} = \begin{bmatrix} 7/4 \\
5/4 \end{bmatrix}. \tag{3}
\]

Finally,

\[
\hat{\mathbf{a}} = \mathbf{R}_Y^{-1}\mathbf{R}_{YX_1} = \begin{bmatrix} 14/13 & -12/13 \\
-12/13 & 14/13 \end{bmatrix} \begin{bmatrix} 7/4 \\
5/4 \end{bmatrix} = \frac{1}{26} \begin{bmatrix} 19 \\
-7 \end{bmatrix}. \tag{4}
\]

Thus the linear MMSE estimator of \( X_1 \) given \( \mathbf{Y} \) is

\[
\hat{X}_1(\mathbf{Y}) = \hat{\mathbf{a}}'\mathbf{Y} = \frac{19}{26}Y_1 - \frac{7}{26}Y_2 = 0.7308Y_1 - 0.2692Y_2. \tag{5}
\]

(b) By Theorem 9.7(c), the mean squared error of the optimal estimator is

\[
e_L^* = \text{Var}[X_1] - \hat{\mathbf{a}}'\mathbf{R}_{YX_1} \tag{6}
\]

\[
= \mathbf{R}_X(1,1) - \mathbf{R}'_{YX_1}\mathbf{R}_Y^{-1}\mathbf{R}_{YX_1} \tag{7}
\]

\[
= 1 - \begin{bmatrix} 7/4 & 5/4 \end{bmatrix} \begin{bmatrix} 14/13 & -12/13 \\
-12/13 & 14/13 \end{bmatrix} \begin{bmatrix} 7/4 \\
5/4 \end{bmatrix} = \frac{3}{52} \tag{8}
\]

(c) We can estimate random variable \( X_1 \) based on the observation of random variable \( Y_1 \) using Theorem 9.4. Note that Theorem 9.4 is just a special case of Theorem 9.8 in which the observation is a random vector. In any case, from Theorem 9.4, the optimum linear estimate is \( \hat{X}_1(Y_1) = a^*Y_1 + b^* \) where

\[
a^* = \frac{\text{Cov}[X_1,Y_1]}{\text{Var}[Y_1]}, \quad b^* = \mu_{X_1} - a^*\mu_{Y_1}. \tag{9}
\]

Since \( Y_1 = X_1 + X_2 \), we see that

\[
\mu_{X_1} = E[X_1] = 0, \quad \mu_{Y_1} = E[Y_1] = E[X_1] + E[X_2] = 0. \tag{10}
\]

338
These facts, along with $R_X$ and $R_Y$ from part (a), imply
\[
\begin{align*}
\text{Cov} [X_1, Y_1] &= E [X_1 Y_1] \\
&= E [X_1 (X_1 + X_2)] = R_X(1,1) + R_X(1,2) = 7/4, \\
\text{Var}[Y_1] &= E [Y_1^2] = R_Y(1,1) = 7/2
\end{align*}
\] (11)

Thus
\[
a^* = \frac{\text{Cov} [X_1, Y_1]}{\text{Var} [Y_1]} = \frac{7/4}{7/2} = \frac{1}{2}, \quad b^* = \mu_{X_1} - a^* \mu_{Y_1} = 0.
\] (14)

Thus the optimum linear estimate of $X_1$ given $Y_1$ is
\[
\hat{X}_1(Y_1) = \frac{1}{2} Y_1.
\] (15)

From Theorem 9.4(b), the mean square error of this estimator is
\[
e^*_L = \sigma_X^2 (1 - \rho_{X_1,Y_1})
\] (16)

Since $X_1$ and $Y_1$ have zero expected value, $\sigma_X^2 = R_X(1,1) = 1$ and $\sigma_{Y_1}^2 = R_Y(1,1) = 7/2$. Also, since $\text{Cov}[X_1, Y_1] = 7/4$, we see that
\[
\rho_{X_1,Y_1} = \frac{\text{Cov} [X_1, Y_1]}{\sigma_X \sigma_{Y_1}} = \frac{7/4}{\sqrt{7/2}} = \sqrt{\frac{7}{8}}.
\] (17)

Thus $e^*_L = 1 - (\sqrt{7/8})^2 = 1/8$. Note that $1/8 > 3/52$. As we would expect, the estimate of $X_1$ based on just $Y_1$ has larger mean square error than the estimate based on both $Y_1$ and $Y_2$.

**Problem 9.4.2 Solution**

From the problem statement, we learn for vectors $X = [X_1 \quad X_2 \quad X_3]'$ and $W = [W_1 \quad W_2]'$ that
\[
E [X] = 0, \quad R_X = \begin{bmatrix} 1 & 3/4 & 1/2 \\
3/4 & 1 & 3/4 \\
1/2 & 3/4 & 1 \end{bmatrix}, \quad E [W] = 0, \quad R_W = \begin{bmatrix} 0.1 & 0 \\
0 & 0.1 \end{bmatrix}
\] (1)

In addition,
\[
Y = \begin{bmatrix} Y_1 \\
Y_2 \end{bmatrix} = AX + W = \begin{bmatrix} 1 & 1 & 0 \\
0 & 1 & 1 \end{bmatrix} X + W.
\] (2)

(a) Since $E[Y] = AE[X] = 0$, we can apply Theorem 9.7(a) which states that the minimum mean square error estimate of $X_1$ is $\hat{X}_1(Y) = \tilde{a}'Y$ where $\tilde{a} = R_Y^{-1}R_{YX_1}$. First we find $R_Y$.
\[
R_Y = E [YY'] = E [ (AX + W)(AX + W)' ]
\] (3)
\[
= E [ (AX + W)(X'A' + W') ]
\] (4)
\[
\] (5)

Since $X$ and $W$ are independent, $E[WX'] = 0$ and $E[XW'] = 0$. This implies
\[
R_Y = AE [XX'] A' + E [WW']
\] (6)
\[
= AR_X A' + R_W
\] (7)
\[
= \begin{bmatrix} 1 & 1 & 0 \\
0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3/4 & 1/2 \\
3/4 & 1 & 3/4 \\
1/2 & 3/4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\
1 & 1 \\
0 & 1 \end{bmatrix} + \begin{bmatrix} 0.1 & 0 \\
0 & 0.1 \end{bmatrix} = \begin{bmatrix} 3.6 & 3 \\
3 & 3.6 \end{bmatrix}.
\] (8)
Once again, independence of $W$ and $X_1$ yields
\[ R_{YX_1} = E [YX_1] = E [(AX + W)X_1] = AE [XX_1]. \] (9)

This implies
\[ R_{YX_1} = A \begin{bmatrix} E [X_1^2] \\ E [X_2X_1] \\ E [X_3X_1] \end{bmatrix} = A \begin{bmatrix} R_X(1,1) \\ R_X(2,1) \\ R_X(3,1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 3/4 & 1/2 \end{bmatrix} = \begin{bmatrix} 7/4 \\ 5/4 \end{bmatrix}. \] (10)

Putting these facts together, we find that
\[ \hat{a} = R_Y^{-1}R_{YX_1} = \begin{bmatrix} 10/11 & -25/33 \\ -25/33 & 10/11 \end{bmatrix} \begin{bmatrix} 7/4 \\ 5/4 \end{bmatrix} = \frac{1}{132} \begin{bmatrix} 85 \\ -25 \end{bmatrix}. \] (11)

Thus the linear MMSE estimator of $X_1$ given $Y$ is
\[ \hat{X}_1(Y) = \hat{a}'Y = \frac{85}{132} Y_1 - \frac{25}{132} Y_2 = 0.6439 Y_1 - 0.1894 Y_2. \] (12)

(b) By Theorem 9.7(c), the mean squared error of the optimal estimator is
\[ e_L^* = \text{Var}[X_1] - \hat{a}'R_{YX_1} \]
\[ = R_X(1,1) - R_{YX_1}R_Y^{-1}R_{YX_1} \]
\[ = 1 - \begin{bmatrix} 7/4 & 5/4 \end{bmatrix} \begin{bmatrix} 10/11 & -25/33 \\ -25/33 & 10/11 \end{bmatrix} \begin{bmatrix} 7/4 \\ 5/4 \end{bmatrix} = \frac{29}{264} = 0.1098. \] (15)

In Problem 9.4.1, we solved essentially the same problem but the observations $Y$ were not subjected to the additive noise $W$. In comparing the estimators, we see that the additive noise perturbs the estimator somewhat but not dramatically because the correlation structure of $X$ and the mapping $A$ from $X$ to $Y$ remains unchanged. On the other hand, in the noiseless case, the resulting mean square error was about half as much, $3/52 = 0.0577$ versus 0.1098.

(c) We can estimate random variable $X_1$ based on the observation of random variable $Y_1$ using Theorem 9.4. Note that Theorem 9.4 is a special case of Theorem 9.8 in which the observation is a random vector. In any case, from Theorem 9.4, the optimum linear estimate is $\hat{X}_1(Y_1) = a^*Y_1 + b^*$ where
\[ a^* = \frac{\text{Cov}[X_1, Y_1]}{\text{Var}[Y_1]}, \quad b^* = \mu_{X_1} - a^* \mu_{Y_1}. \] (16)

Since $E[X_1] = \mu_{X_1} = 0$ and $Y_1 = X_1 + X_2 + W_1$, we see that
\[ \mu_{Y_1} = E[Y_1] = E[X_1] + E[X_2] + E[W_1] = 0. \] (17)

These facts, along with independence of $X_1$ and $W_1$, imply
\[ \text{Cov}[X_1, Y_1] = E[X_1 Y_1] = E[X_1 (X_1 + X_2 + W_1)] \]
\[ = R_X(1,1) + R_X(1,2) = 7/4. \] (18)

In addition, using $R_Y$ from part (a), we see that
\[ \text{Var}[Y_1] = E[Y_1^2] = R_Y(1,1) = 3.6. \] (20)
Thus

\[ a^* = \frac{\text{Cov}[X_1, Y_1]}{\text{Var}[Y_1]} = \frac{7/4}{3.6} = \frac{35}{72}, \quad b^* = \mu_{X_1} - a^*\mu_{Y_1} = 0. \]  

(21)

Thus the optimum linear estimate of \( X_1 \) given \( Y_1 \) is

\[ \hat{X}_1(Y_1) = \frac{35}{72}Y_1. \]  

(22)

From Theorem 9.4(b), the mean square error of this estimator is

\[ e_L^* = \sigma_X^2(1 - \rho_{X_1,Y_1}) \]  

(23)

Since \( X_1 \) and \( Y_1 \) have zero expected value, \( \sigma_X^2 = R_X(1,1) = 1 \) and \( \sigma_Y^2 = R_Y(1,1) = 3.6 \).

Thus \( \rho_{X_1,Y_1} = \frac{\text{Cov}[X_1, Y_1]}{\sigma_X\sigma_Y} = \frac{7/4}{\sqrt{3.6}} = \frac{\sqrt{490}}{24}. \)  

(24)

Thus \( e_L^* = 1 - (490/24^2) = 0.1493. \) As we would expect, the estimate of \( X_1 \) based on just \( Y_1 \) has larger mean square error than the estimate based on both \( Y_1 \) and \( Y_2 \).

**Problem 9.4.3 Solution**

From the problem statement, we learn for vectors \( \mathbf{X} = [X_1 \quad X_2 \quad X_3]' \) and \( \mathbf{W} = [W_1 \quad W_2]' \) that

\[
E[\mathbf{X}] = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad R_X = \begin{bmatrix} 1 & 3/4 & 1/2 \\ 3/4 & 1 & 1/2 \\ 1/2 & 3/4 & 1 \end{bmatrix}, \quad E[\mathbf{W}] = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad R_W = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}
\]  

(1)

In addition, from Theorem 5.12,

\[
C_X = R_X - \mu_X\mu_X' = \begin{bmatrix} 1 & 3/4 & 1/2 \\ 3/4 & 1 & 1/2 \\ 1/2 & 3/4 & 1 \end{bmatrix} - \begin{bmatrix} -0.1 \\ 0 \\ 0.1 \end{bmatrix} = \begin{bmatrix} 0.99 & 0.75 & 0.51 \\ 0.75 & 1.0 & 0.75 \\ 0.51 & 0.75 & 0.99 \end{bmatrix}
\]  

(2)

and

\[
Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = AX + W = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} X + W.
\]  

(4)

(a) Since \( E[\mathbf{X}] \) is nonzero, we use Theorem 9.8 which states that the minimum mean square error estimate of \( X_1 \) is \( \hat{X}_1(Y) = \hat{a}'Y + \hat{b} \) where \( \hat{a} = C_Y^{-1}C_{YX_1} \) and \( \hat{b} = E[X_1] - \hat{a}'E[Y] \).

First we find \( R_Y \). Since \( E[Y] = AE[\mathbf{X}] + E[\mathbf{W}] = AE[\mathbf{X}] \),

\[
C_Y = E[(Y - E[Y])(Y - E[Y])']
\]  

(5)

\[
= E[(A(X - E[X]) + W)(A(X - E[X]) + W)']
\]  

(6)

\[
= E[(A(X - E[X]) + W)((X - E[X])'A' + W')]
\]  

(7)

\[
= AE[(X - E[X])(X - E[X])']A' + E[W(X - E[X])']A' + AE[(X - E[X])W'] + E[WW']
\]  

(8)
By Theorem 9.8(c), the mean square error of the optimal estimator is

\[ E[\hat{X} - X]^2 = 0 \] and \[ E[(X - E[X])W'] = 0. \] This implies

\[
C_Y = AC_XA' + RW
\] (9)

\[
= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0.99 & 0.75 & 0.51 \\ 0.75 & 1.0 & 0.75 \\ 0.51 & 0.75 & 0.99 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix} = \begin{bmatrix} 3.59 & 3.01 \\ 3.01 & 3.59 \end{bmatrix}. \] (10)

Once again, independence of \( W \) and \( X_1 \) yields \( E[W(X_1 - E[X_1])] = 0 \), implying

\[
C_{YX_1} = E[(Y - E[Y])(X_1 - E[X_1])]
\] (11)

\[
= E[(A(X - E[X]) + W)(X_1 - E[X_1])]
\] (12)

\[
= AE[(X - E[X])(X_1 - E[X_1])]
\] (13)

\[
= A \begin{bmatrix} C_X(1, 1) \\ C_X(2, 1) \\ C_X(3, 1) \end{bmatrix}
\] (14)

Finally,

\[
\hat{a} = C_Y^{-1}C_{YX_1} = \begin{bmatrix} 0.9378 & -0.7683 \\ -0.7683 & 0.9378 \end{bmatrix} \begin{bmatrix} -0.1 \\ -0.1 \end{bmatrix} = \begin{bmatrix} 0.6411 \\ -0.1865 \end{bmatrix} \] (15)

Next, we find that

\[
E[Y] = AE[X] = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -0.1 \\ 0 \\ 0.1 \end{bmatrix} = \begin{bmatrix} -0.1 \\ 0.1 \end{bmatrix}. \] (16)

This implies

\[
\hat{b} = E[X_1] - \hat{a}'E[Y] = -0.1 - \begin{bmatrix} 0.6411 & -0.1865 \end{bmatrix} \begin{bmatrix} -0.1 \\ 0.1 \end{bmatrix} = -0.0172 \] (17)

Thus the linear MMSE estimator of \( X_1 \) given \( Y \) is

\[
\hat{X}_1(Y) = \hat{a}'Y + \hat{b} = 0.6411Y_1 - 0.1865Y_2 + 0.0172. \] (18)

We note that although \( E[X] = 0.1 \), the estimator's offset is only 0.0172. This is because the change in \( E[X] \) is also included in the change in \( E[Y] \).

(b) By Theorem 9.8(c), the mean square error of the optimal estimator is

\[
e_L^* = \text{Var}[X_1] - \hat{a}'C_{YX_1}
\] (19)

\[
= C_X(1, 1) - C_{YX_1}'C_Y^{-1}C_{YX_1}
\] (20)

\[
= 0.99 - [1.7400 \ 1.2600] \begin{bmatrix} 0.9378 & -0.7863 \\ -0.7863 & 0.9378 \end{bmatrix} \begin{bmatrix} 1.7400 \\ 1.2600 \end{bmatrix} = 0.1096. \] (21)

(c) We can estimate random variable \( X_1 \) based on the observation of random variable \( Y_1 \) using Theorem 9.4. Note that Theorem 9.4 is a special case of Theorem 9.8 in which the observation is a random vector. In any case, from Theorem 9.4, the optimum linear estimate is \( \hat{X}_1(Y_1) = a^*Y_1 + b^* \) where

\[
a^* = \frac{\text{Cov}[X_1, Y_1]}{\text{Var}[Y_1]}, \quad b^* = \mu_X - a^*\mu_Y, \] (22)

342
First we note that $E[X_1] = \mu_{X_1} = -0.1$. Second, since $Y_1 = X_1 + X_2 + W_1$ and $E[W_1] = 0$, we see that
\begin{align*}
\mu_{Y_1} &= E[Y_1] = E[X_1] + E[X_2] + E[W_1] \\
&= E[X_1] + E[X_2] \\
&= -0.1
\end{align*}
(23)
(24)
(25)

These facts, along with independence of $X_1$ and $W_1$, imply
\begin{align*}
\text{Cov}[X_1, Y_1] &= E[(X_1 - E[X_1])(Y_1 - E[Y_1])] \\
&= E[(X_1 - E[X_1])(X_1 - E[X_1]) + (X_2 - E[X_2]) + W_1)] \\
&= C_{X}(1,1) + C_{X}(1,2) = 1.74
\end{align*}
(26)
(27)
(28)

In addition, using $C_Y$ from part (a), we see that
\begin{align*}
\text{Var}[Y_1] &= E[Y_1^2] = C_Y(1,1) = 3.59.
\end{align*}
(29)

Thus
\begin{align*}
a^* &= \frac{\text{Cov}[X_1, Y_1]}{\text{Var}[Y_1]} = \frac{1.74}{3.59} = 0.4847, \\
b^* &= \mu_{X_1} - a^* \mu_{Y_1} = -0.0515.
\end{align*}
(30)

Thus the optimum linear estimate of $X_1$ given $Y_1$ is
\begin{align*}
\hat{X}_1(Y_1) &= 0.4847Y_1 - 0.0515.
\end{align*}
(31)

From Theorem 9.4(b), the mean square error of this estimator is
\begin{align*}
e_L^* &= \sigma_{X_1}^2(1 - \rho_{X_1,Y_1}^2)
\end{align*}
(32)

Note that $\sigma_{X_1}^2 = R_X(1,1) = 0.99$ and $\sigma_{Y_1}^2 = R_Y(1,1) = 3.59$. Also, since $\text{Cov}[X_1, Y_1] = 1.74$, we see that
\begin{align*}
\rho_{X_1,Y_1} &= \frac{\text{Cov}[X_1, Y_1]}{\sigma_{X_1} \sigma_{Y_1}} = \frac{1.74}{\sqrt{(0.99)(3.59)}} = 0.923.
\end{align*}
(33)

Thus $e_L^* = 0.99(1 - (0.923)^2) = 0.1466$. As we would expect, the estimate of $X_1$ based on just $Y_1$ has larger mean square error than the estimate based on both $Y_1$ and $Y_2$.

**Problem 9.4.4 Solution**

From Theorem 9.7(a), we know that the minimum mean square error estimate of $X$ given $Y$ is $\hat{X}_L(Y) = \hat{a}^* Y$, where $\hat{a} = R_Y^{-1} R_{YX}$. In this problem, $Y$ is simply a scalar $Y$ and $\hat{a}$ is a scalar $\hat{a}$. Since $E[Y] = 0$,
\begin{align*}
R_Y &= E[YY'] = E[Y^2] = \sigma_Y^2.
\end{align*}
(1)

Similarly,
\begin{align*}
R_{YX} &= E[XY] = E[X] = \text{Cov}[X,Y].
\end{align*}
(2)

It follows that
\begin{align*}
\hat{a} = R_Y^{-1} R_{YX} = (\sigma_Y^2)^{-1} \text{Cov}[X,Y] = \frac{\sigma_X}{\sigma_Y} \frac{\text{Cov}[X,Y]}{\sigma_X \sigma_Y} = \frac{\sigma_X}{\sigma_Y} \rho_{X,Y}.
\end{align*}
(3)
Problem 9.4.5 Solution
In this problem, we view $Y = [X_1 \ X_2]'$ as the observation and $X = X_3$ as the variable we wish to estimate. Since $E[X] = 0$, we can use Theorem 9.7(a) to find the minimum mean square error estimate $\hat{X}_L(Y) = \hat{a}'Y$ where $\hat{a} = R_Y^{-1}R_{YX}$.

(a) In this case,
\[ R_Y = E[YY'] = \begin{bmatrix} E[X_1^2] & E[X_1X_2] \\ E[X_1X_2] & E[X_2^2] \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} = \begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix}. \]  
Similarly,
\[ R_{YX} = E[XY] = E\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}X_3 = \begin{bmatrix} E[X_1X_3] \\ E[X_2X_3] \end{bmatrix} = \begin{bmatrix} r_{13} \\ r_{23} \end{bmatrix} = \begin{bmatrix} 0.64 \\ -0.8 \end{bmatrix}. \]
Thus
\[ \hat{a} = R_Y^{-1}R_{YX} = \begin{bmatrix} 25/9 & 20/9 \\ 20/9 & 25/9 \end{bmatrix}^{-1} \begin{bmatrix} 0.64 \\ -0.8 \end{bmatrix} = \begin{bmatrix} 0 \\ -0.8 \end{bmatrix}. \]  
The optimum linear estimator of $X_3$ given $X_1$ and $X_2$ is
\[ \hat{X}_3 = -0.8X_2. \]  
The fact that this estimator depends only on $X_2$ while ignoring $X_1$ is an example of a result to be proven in Problem 9.4.6.

(b) By Theorem 9.7(c), the mean squared error of the optimal estimator is
\[ e^*_L = \text{Var}[X_3] - \hat{a}'R_{YX} = 1 - \begin{bmatrix} 0 & -0.8 \end{bmatrix} \begin{bmatrix} 0.64 \\ -0.8 \end{bmatrix} = 0.36 \]  

(c) In the previous part, we found that the optimal linear estimate of $X_3$ based on the observation of random variables $X_1$ and $X_2$ employed only $X_2$. Hence this same estimate, $\hat{X}_3 = -0.8X_2$, is the optimal linear estimate of $X_3$ just using $X_2$. (This can be derived using Theorem 9.4, if you wish to do more algebra.)

(d) Since the estimator is the same, the mean square error is still $e^*_L = 0.36$.

Problem 9.4.6 Solution
For this problem, let $Y = [X_1 \ X_2 \ \ldots \ \ X_{n-1}]'$ and let $X = X_n$. Since $E[Y] = 0$ and $E[X] = 0$, Theorem 9.7(a) tells us that the minimum mean square linear estimate of $X$ given $Y$ is $\hat{X}_n(Y) = \hat{a}'Y$, where $\hat{a} = R_Y^{-1}R_{YX}$. This implies that $\hat{a}$ is the solution to
\[ R_Y \hat{a} = R_{YX}. \]  

Note that
\[ R_Y = E[YY'] = \begin{bmatrix} 1 & c & \cdots & c^{n-2} \\ c & c^2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & c \\ c^{n-2} & \cdots & c & 1 \end{bmatrix}, \quad R_{YX} = E\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_{n-1} \end{bmatrix}X_n = \begin{bmatrix} c^{n-1} \\ \vdots \\ c \end{bmatrix}. \]  

344
We see that the last column of $cR_Y$ equals $R_{YX}$. Equivalently, if $\hat{a} = [0 \cdots 0 c]'$, then $R_Y\hat{a} = R_{YX}$. It follows that the optimal linear estimator of $X_n$ given $Y$ is

$$\hat{X}_n(Y) = \hat{a}'Y = cX_{n-1},$$

(3)

which completes the proof of the claim.

The mean square error of this estimate is

$$e_L^* = E \left[ (X_n - cX_{n-1})^2 \right]$$

(4)

$$= R_X(n, n) - cR_X(n, n - 1) - cR_X(n - 1, n) + c^2R_X(n - 1, n - 1)$$

(5)

$$= 1 - 2c^2 + c^2 = 1 - c^2$$

(6)

When $c$ is close to 1, $X_{n-1}$ and $X_n$ are highly correlated and the estimation error will be small.

**Comment:** We will see in Chapter 11 that correlation matrices with this structure arise frequently in the study of wide sense stationary random sequences. In fact, if you read ahead, you will find that the claim we just proved is the essentially the same as that made in Theorem 11.10.

**Problem 9.4.7 Solution**

(a) In this case, we use the observation $Y$ to estimate each $X_i$. Since $E[X_i] = 0$,

$$E[Y] = \sum_{j=1}^{k} E[X_j] \sqrt{p_j}S_j + E[N] = 0.$$  

(1)

Thus, Theorem 9.7(a) tells us that the MMSE linear estimate of $X_i$ is $\hat{X}_i(Y) = \hat{a}'Y$ where $\hat{a} = R_Y^{-1}R_{YX_i}$. First we note that

$$R_{YX_i} = E[YY_i] = E \left[ \left( \sum_{j=1}^{k} X_j \sqrt{p_j}S_j + N \right)X_i \right]$$

(2)

Since $N$ and $X_i$ are independent, $E[NX_i] = E[N]E[X_i] = 0$. Because $X_i$ and $X_j$ are independent for $i \neq j$, $E[X_iX_j] = E[X_i]E[X_j] = 0$ for $i \neq j$. In addition, $E[X_i^2] = 1$, and it follows that

$$R_{YX_i} = \sum_{j=1}^{k} E[X_jX_i] \sqrt{p_j}S_j + E[NX_i] = \sqrt{p_i}S_i.$$  

(3)

For the same reasons,

$$R_Y = E[YY'] = E \left[ \left( \sum_{j=1}^{k} \sqrt{p_j}X_jS_j + N \right) \left( \sum_{l=1}^{k} \sqrt{p_l}X_lS'_l + N' \right) \right]$$

(4)

$$= \sum_{j=1}^{k} \sum_{l=1}^{k} \sqrt{p_jp_l}E[X_jX_l]S_jS'_l$$

$$+ \sum_{j=1}^{k} \sqrt{p_j} E[X_jN]S_j + \sum_{l=1}^{k} \sqrt{p_l} E[X_lN']S'_l + E[NN']$$

(5)

$$= \sum_{j=1}^{k} p_jS_jS'_j + \sigma^2I$$

(6)
Now we use a linear algebra identity. For a matrix $S$ with columns $S_1, S_2, \ldots, S_k$, and a diagonal matrix $P = \text{diag}[p_1, p_2, \ldots, p_k]$,

$$\sum_{j=1}^{k} p_j S_j S'_j = SPS'. \quad (7)$$

Although this identity may be unfamiliar, it is handy in manipulating correlation matrices. (Also, if this is unfamiliar, you may wish to work out an example with $k = 2$ vectors of length 2 or 3.) Thus,

$$R_Y = SPS' + \sigma^2 I, \quad (8)$$

and

$$\hat{a} = R_Y^{-1} R_Y X_i = (SPS' + \sigma^2 I)^{-1} \sqrt{p_i} S_i.$$

Recall that if $C$ is symmetric, then $C^{-1}$ is also symmetric. This implies the MMSE estimate of $X_i$ given $Y$ is

$$\hat{X}_i(Y) = \hat{a}' Y = \sqrt{p_i} S'_i (SPS' + \sigma^2 I)^{-1} Y \quad (10)$$

(b) We observe that $V = (SPS' + \sigma^2 I)^{-1} Y$ is a vector that does not depend on which bit $X_i$ that we want to estimate. Since $\hat{X}_i = \sqrt{p_i} S'_i V$, we can form the vector of estimates

$$\hat{X} = \begin{bmatrix} \hat{X}_1 \\ \vdots \\ \hat{X}_k \end{bmatrix} = \begin{bmatrix} \sqrt{p_1} S'_1 V \\ \vdots \\ \sqrt{p_k} S'_k V \end{bmatrix} = \begin{bmatrix} \sqrt{p_1} \\ \vdots \\ \sqrt{p_k} \end{bmatrix} \begin{bmatrix} S'_1 \\ \vdots \\ S'_k \end{bmatrix} V \quad (11)$$

$$= P^{1/2} S' V \quad (12)$$

$$= P^{1/2} S' (SPS' + \sigma^2 I)^{-1} Y \quad (13)$$

**Problem 9.5.1 Solution**

This problem can be solved using the function `mse` defined in Example 9.10. All we need to do is define the correlation structure of the vector $X = [X_1 \cdots X_{21}]'$. Just as in Example 9.10, we do this by defining just the first row of the correlation matrix. Here are the commands we need, and the resulting plot.

```
r1=sinc(0.1*(0:20)); mse(r1);
hold on;
r5=sinc(0.5*(0:20)); mse(r5);
r9=sinc(0.9*(0:20)); mse(r9);
```

Although the plot lacks labels, there are three curves for the mean square error $\text{MSE}(n)$ corresponding to $\phi_0 \in \{0.1, 0.5, 0.9\}$. Keep in mind that $\text{MSE}(n)$ is the MSE of the linear estimate of $X_{21}$ using random variables $X_1, \ldots, X_n$.

If you run the commands, you’ll find that the $\phi_0 = 0.1$ yields the lowest mean square error while $\phi_0 = 0.9$ results in the highest mean square error. When $\phi_0 = 0.1$, random variables $X_n$ for $n = 10, 11, \ldots, 20$ are increasingly correlated with $X_{21}$. The result is that the MSE starts to
The result is the MSE is simply worse as $\phi_0$ increases. For example, when $\phi_0 = 0.9$, even $X_{20}$ has only a small correlation with $X_{21}$. We only get a good estimate of $X_{21}$ at time $n = 21$ when we observe $X_{21} + W_{21}$.

**Problem 9.5.2 Solution**

This problem can be solved using the function `mse` defined in Example 9.10. All we need to do is define the correlation structure of the vector $\mathbf{X} = [X_1 \cdots X_{21}]'$. Just as in Example 9.10, we do this by defining just the first row $r$ of the correlation matrix. Here are the commands we need, and the resulting plots.

All three cases report similar results for the mean square error (MSE). The reason is that in all three cases, $X_1$ and $X_{21}$ are completely correlated; that is, $\rho_{X_1,X_{21}} = 1$. As a result, $X_1 = X_{21}$ so that at time $n = 1$, the observation is

$$Y_1 = X_1 + W_1 = X_{21} + W_1.$$  

The MSE at time $n = 1$ is 0.1, corresponding to the variance of the additive noise. Subsequent improvements in the estimates are the result of making other measurements of the form $Y_n = X_n + W_n$ where $X_n$ is highly correlated with $X_{21}$. The result is a form of averaging of the additive noise, which effectively reduces its variance.

The choice of $\phi_0$ changes the values of $n$ for which $X_n$ and $X_{21}$ are highly correlated. However, in all three cases, there are several such values of $n$ and the result in all cases is an improvement in the MSE due to averaging the additive noise.

**Problem 9.5.3 Solution**

The solution to this problem is almost the same as the solution to Example 9.10, except perhaps the MATLAB code is somewhat simpler. As in the example, let $\mathbf{W}^{(n)}$, $\mathbf{X}^{(n)}$, and $\mathbf{Y}^{(n)}$ denote the vectors, consisting of the first $n$ components of $\mathbf{W}$, $\mathbf{X}$, and $\mathbf{Y}$. Just as in Examples 9.8 and 9.10, independence of $\mathbf{X}^{(n)}$ and $\mathbf{W}^{(n)}$ implies that the correlation matrix of $\mathbf{Y}^{(n)}$ is

$$\mathbf{R}_{\mathbf{Y}^{(n)}} = E \left[ (\mathbf{X}^{(n)} + \mathbf{W}^{(n)}) (\mathbf{X}^{(n)} + \mathbf{W}^{(n)})' \right] = \mathbf{R}_{\mathbf{X}^{(n)}} + \mathbf{R}_{\mathbf{W}^{(n)}}$$  

Note that $\mathbf{R}_{\mathbf{X}^{(n)}}$ and $\mathbf{R}_{\mathbf{W}^{(n)}}$ are the $n \times n$ upper-left submatrices of $\mathbf{R}_{\mathbf{X}}$ and $\mathbf{R}_{\mathbf{W}}$. In addition,

$$\mathbf{R}_{\mathbf{Y}^{(n)}} = E \begin{bmatrix} X_1 + W_1 \\ \vdots \\ X_n + W_n \end{bmatrix} \begin{bmatrix} r_0 \\ \vdots \\ r_{n-1} \end{bmatrix}.$$
Compared to the solution of Example 9.10, the only difference in the solution is in the reversal of the vector \( \mathbf{R}_{\mathbf{Y}^{(n)} \mathbf{X}} \). The optimal filter based on the first \( n \) observations is \( \hat{\mathbf{a}}^{(n)} = \mathbf{R}_{\mathbf{Y}^{(n)} \mathbf{X}}^{-1} \mathbf{R}_{\mathbf{Y}^{(n)} \mathbf{X}} \), and the mean square error is
\[
e_{L}^{*} = \text{Var}[X_1] - (\hat{\mathbf{a}}^{(n)})' \mathbf{R}_{\mathbf{Y}^{(n)} \mathbf{X}}.
\] (3)

The program `mse953.m` simply calculates the mean square error \( e_{L}^{*} \). The input is the vector \( \mathbf{r} \) corresponding to the vector \([r_0 \, \cdots \, r_{20}]\), which holds the first row of the Toeplitz correlation matrix \( \mathbf{R}_{\mathbf{X}} \). Note that \( \mathbf{R}_{\mathbf{X}^{(n)}} \) is the Toeplitz matrix whose first row is the first \( n \) elements of \( \mathbf{r} \).

To plot the mean square error as a function of the number of observations, \( n \), we generate the vector \( \mathbf{r} \) and then run `mse953(r)`. For the requested cases (a) and (b), the necessary MATLAB commands and corresponding mean square estimation error output as a function of \( n \) are shown here:

In comparing the results of cases (a) and (b), we see that the mean square estimation error depends strongly on the correlation structure given by \( r_{|i-j|} \). For case (a), \( Y_1 \) is a noisy observation of \( X_1 \) and is highly correlated with \( X_1 \). The MSE at \( n = 1 \) is just the variance of \( W_1 \). Additional samples of \( Y_n \) mostly help to average the additive noise. Also, samples \( X_n \) for \( n \geq 10 \) have very little correlation with \( X_1 \). Thus for \( n \geq 10 \), the samples of \( Y_n \) result in almost no improvement in the estimate of \( X_1 \).

In case (b), \( Y_1 = X_1 + W_1 \), just as in case (a), is simply a noisy copy of \( X_1 \) and the estimation error is due to the variance of \( W_1 \). On the other hand, for case (b), \( X_5, X_9, X_{13} \) and \( X_{17} \) and \( X_{21} \) are completely correlated with \( X_1 \). Other samples also have significant correlation with \( X_1 \). As a result, the MSE continues to go down with increasing \( n \).

**Problem 9.5.4 Solution**

When the transmitted bit vector is \( \mathbf{X} \), the received signal vector \( \mathbf{Y} = \mathbf{S} \mathbf{P}^{1/2} \mathbf{X} + \mathbf{N} \). In Problem 9.4.7, we found that the linear MMSE estimate of the vector \( \mathbf{X} \) is
\[
\hat{\mathbf{X}} = \mathbf{P}^{1/2} \mathbf{S}' (\mathbf{S} \mathbf{P} \mathbf{S}' + \sigma^2 \mathbf{I})^{-1} \mathbf{Y}.
\] (1)

As indicated in the problem statement, the evaluation of the LMSE detector follows the approach outlined in Problem 8.4.6. Thus the solutions are essentially the same.
The transmitted data vector $\mathbf{x}$ belongs to the set $B_k$ of all binary $\pm 1$ vectors of length $k$. This short program generates $k$ random signals, each of length $n$. Each random signal is a binary $\pm 1$ sequence normalized to length 1.

The evaluation of the LMSE detector is most similar to evaluation of the matched filter (MF) detector in Problem 8.4.6. We define a function $\text{err}=\text{lmsecdmasim}(S,P,m)$ that simulates the LMSE detector for $m$ symbols for a given set of signal vectors $S$. In $\text{lmsecdmasim}$, there is no need for looping. The $m$th transmitted symbol is represented by the $m$th column of $X$ and the corresponding received signal is given by the $m$th column of $Y$. The matched filter processing can be applied to all $m$ columns at once. A second function $\text{Pe}=\text{lmsecdma}(n,k,\text{snr},s,m)$ cycles through all combination of users $k$ and SNR $\text{snr}$ and calculates the bit error rate for each pair of values.

Here are the functions:

```matlab
function e=lmsecdmasim(S,P,m);
% S = nxk matrix of signals
% P = diag matrix of SNRs
% SNR = power/var (noise)
% e = sum of bit errors
k=size(S,2); %no. of users
n=size(S,1); %proc. gain
P2=sqrt(P);
X=randombinaryseqs(k,m);
Y=S*P2*X+randn(n,m);
L=P2*S'*inv((S*P*S')+eye(n));
XR=sign(L*Y);
e=sum(sum(XR ~= X));
```

```matlab
function Pe=lmsecdma(n,k,snr,s,m);
% Pe = LMSE detector, users=k
% proc gain = n, rand signals/frame
% s frames, m symbols/frame
% See Problem 9.5.4 Solution
[K,SNR]=ndgrid(k,snr);
Pe=zeros(size(SNR));
for j=1:prod(size(SNR)),
p=SNR(j);kt=K(j); e=0;
for i=1:s,
S=randomsignals(n,kt);
e=e+lmsecdmasim(S,p*eye(kt),m);
end
Pe(j)=e/(s*m*kt);
disp([snr kt e]);
end
```

Here is a run of $\text{lmsecdma}$.

```matlab
>> pelmse = lmsecdma(32,k,4,1000,1000);
4 2 48542
4 4 109203
4 8 278266
4 16 865358
4 32 3391488
>> pelmse'
ans =
0.0243 0.0273 0.0348 0.0541 0.1060
```

For processing gain $n = 32$, the maximum likelihood detector is too complex for my version of MATLAB to run quickly. Instead we can compare the LMSE detector to the matched filter (MF) detector of Problem 8.4.6 and the decorrelator of Problem 8.4.7 with the following script:

```matlab
k=[2 4 8 16 32];
pemf = mfrcdma(32,k,4,1000,1000);
pedec=berdecorr(32,k,4,10000);
pelmse = lmsecdma(32,k,4,1000,1000);
plot(k,pemf,'-d',k,pedec,'-s',k,pelmse);
legend('MF','DEC','LMSE',2);
axis([0 32 0 0.5]);
```

349
The resulting plot resembles

Compared to the matched filter and the decorrelator, the linear pre-processing of the LMSE detector offers an improvement in the bit error rate. Recall that for each bit $X_i$, the decorrelator zeroes out the interference from all users $j \neq i$ at the expense of enhancing the receiver noise. When the number of users is small, the decorrelator works well because the cost of suppressing other users is small. When the number of users equals the processing gain, the decorrelator works poorly because the noise is greatly enhanced. By comparison, the LMSE detector applies linear processing that results in an output that minimizes the mean square error between the output and the original transmitted bit. It works about as well as the decorrelator when the number of users is small. For a large number of users, it still works better than the matched filter detector.
Problem Solutions – Chapter 10

Problem 10.2.1 Solution

- In Example 10.3, the daily noontime temperature at Newark Airport is a discrete time, continuous value random process. However, if the temperature is recorded only in units of one degree, then the process was would be discrete value.
- In Example 10.4, the number of active telephone calls is discrete time and discrete value.
- The dice rolling experiment of Example 10.5 yields a discrete time, discrete value random process.
- The QPSK system of Example 10.6 is a continuous time and continuous value random process.

Problem 10.2.2 Solution

The sample space of the underlying experiment is \( S = \{s_0, s_1, s_2, s_3\} \). The four elements in the sample space are equally likely. The ensemble of sample functions is \( \{x(t, s_i)\vert i = 0, 1, 2, 3\} \) where

\[
x(t, s_i) = \cos(2\pi f_0 t + \pi/4 + i\pi/2) \quad (0 \leq t \leq T)
\]

(1)

For \( f_0 = 5/T \), this ensemble is shown below.

![Ensemble of sample functions](image)

Problem 10.2.3 Solution

The eight possible waveforms correspond to the bit sequences

\[
\{(0, 0, 0), (1, 0, 0), (1, 1, 0), \ldots, (1, 1, 1)\}
\]

(1)

The corresponding eight waveforms are:
Problem 10.2.4 Solution
The statement is false. As a counterexample, consider the rectified cosine waveform \( X(t) = \text{R}|\cos 2\pi ft| \) of Example 10.9. When \( t = \pi/2 \), then \( \cos 2\pi ft = 0 \) so that \( X(\pi/2) = 0 \). Hence \( X(\pi/2) \) has PDF
\[
f_{X(\pi/2)}(x) = \delta(x)
\] (1)
That is, \( X(\pi/2) \) is a discrete random variable.

Problem 10.3.1 Solution
In this problem, we start from first principles. What makes this problem fairly straightforward is that the ramp is defined for all time. That is, the ramp doesn’t start at time \( t = W \).

\[
P[X(t) \leq x] = P[t - W \leq x] = P[W \geq t - x]
\] (1)
Since \( W \geq 0 \), if \( x \geq t \) then \( P[W \geq t - x] = 1 \). When \( x < t \),
\[
P[W \geq t - x] = \int_{t-x}^{\infty} f_W(w) \, dw = e^{-(t-x)}
\] (2)
Combining these facts, we have
\[
F_{X(t)}(x) = P[W \geq t - x] = \begin{cases} 
  e^{-(t-x)} & x < t \\
  1 & t \leq x
\end{cases}
\] (3)
We note that the CDF contain no discontinuities. Taking the derivative of the CDF \( F_{X(t)}(x) \) with respect to \( x \), we obtain the PDF
\[
f_{X(t)}(x) = \begin{cases} 
  e^{x-t} & x < t \\
  0 & \text{otherwise}
\end{cases}
\] (4)
Problem 10.3.2 Solution

(a) Each resistor has frequency $W$ in Hertz with uniform PDF

$$f_R(r) = \begin{cases} 
0.025 & 9980 \leq r \leq 1020 \\
0 & \text{otherwise}
\end{cases}$$

The probability that a test yields a one part in $10^4$ oscillator is

$$p = P[9999 \leq W \leq 10001] = \int_{9999}^{10001} (0.025) \, dr = 0.05$$

(b) To find the PMF of $T_1$, we view each oscillator test as an independent trial. A success occurs on a trial with probability $p$ if we find a one part in $10^4$ oscillator. The first one part in $10^4$ oscillator is found at time $T_1 = t$ if we observe failures on trials $1, \ldots, t - 1$ followed by a success on trial $t$. Hence, just as in Example 2.11, $T_1$ has the geometric PMF

$$P_{T_1}(t) = \begin{cases} 
(1 - p)^{t-1}p & t = 1, 2, \ldots \\
9 & \text{otherwise}
\end{cases}$$

A geometric random variable with success probability $p$ has mean $1/p$. This is derived in Theorem 2.5. The expected time to find the first good oscillator is $E[T_1] = 1/p = 20$ minutes.

(c) Since $p = 0.05$, the probability the first one part in $10^4$ oscillator is found in exactly 20 minutes is $P_{T_1}(20) = (0.95)^{19}(0.05) = 0.0189$.

(d) The time $T_5$ required to find the 5th one part in $10^4$ oscillator is the number of trials needed for 5 successes. $T_5$ is a Pascal random variable. If this is not clear, see Example 2.15 where the Pascal PMF is derived. When we are looking for 5 successes, the Pascal PMF is

$$P_{T_5}(t) = \begin{cases} 
t^{t-1}p^5(1-p)^{t-5} & t = 5, 6, \ldots \\
0 & \text{otherwise}
\end{cases}$$

Looking up the Pascal PMF in Appendix A, we find that $E[T_5] = 5/p = 100$ minutes. The following argument is a second derivation of the mean of $T_5$. Once we find the first one part in $10^4$ oscillator, the number of additional trials needed to find the next one part in $10^4$ oscillator once again has a geometric PMF with mean $1/p$ since each independent trial is a success with probability $p$. Similarly, the time required to find 5 one part in $10^4$ oscillators is the sum of five independent geometric random variables. That is,

$$T_5 = K_1 + K_2 + K_3 + K_4 + K_5$$

where each $K_i$ is identically distributed to $T_1$. Since the expectation of the sum equals the sum of the expectations,

$$E[T_5] = E[K_1 + K_2 + K_3 + K_4 + K_5] = 5E[K_i] = 5/p = 100$$
Problem 10.3.3 Solution
Once we find the first one part in 10^4 oscillator, the number of additional tests needed to find the next one part in 10^4 oscillator once again has a geometric PMF with mean 1/p since each independent trial is a success with probability p. That is T_2 = T_1 + T' where T' is independent and identically distributed to T_1. Thus,

\[ E[T_2|T_1 = 3] = E[T_1|T_1 = 3] + E[T'|T_1 = 3] \]
\[ = 3 + E[T'] = 23 \text{ minutes.} \]

Problem 10.3.4 Solution
Since the problem states that the pulse is delayed, we will assume T ≥ 0. This problem is difficult because the answer will depend on t. In particular, for t < 0, \( P[X(t) > x] = 1 \). For x ≥ 1, \( P[X(t) > x] = 0 \). Lastly, for 0 ≤ x < 1,

\[ P[X(t) > x] = P[e^{-(t-T)}u(t-T) > x] \]
\[ = P[t + \ln x < T \leq t] \]
\[ = F_T(t) - F_T(t + \ln x) \]

Note that condition T ≤ t is needed to make sure that the pulse doesn’t arrive after time t. The other condition T > t + ln x ensures that the pulse didn’t arrive too early and already decay too much. We can express these facts in terms of the CDF of X(t).

\[ F_{X(t)}(x) = 1 - P[X(t) > x] = \begin{cases} 
0 & x < 0 \\
1 + F_T(t + \ln x) - F_T(t) & 0 \leq x < 1 \\
1 & x \geq 1 
\end{cases} \]

We can take the derivative of the CDF to find the PDF. However, we need to keep in mind that the CDF has a jump discontinuity at x = 0. In particular, since ln0 = -∞,

\[ F_{X(t)}(0) = 1 + F_T(-\infty) - F_T(t) = 1 - F_T(t) \]

Hence, when we take a derivative, we will see an impulse at x = 0. The PDF of X(t) is

\[ f_{X(t)}(x) = \begin{cases} 
(1 - F_T(t))\delta(x) + f_T(t + \ln x) & 0 \leq x < 1 \\
0 & \text{otherwise}
\end{cases} \]

Problem 10.4.1 Solution
Each \( Y_k \) is the sum of two identical independent Gaussian random variables. Hence, each \( Y_k \) must have the same PDF. That is, the \( Y_k \) are identically distributed. Next, we observe that the sequence of \( Y_k \) is independent. To see this, we observe that each \( Y_k \) is composed of two samples of \( X_k \) that are unused by any other \( Y_j \) for \( j \neq k \).

Problem 10.4.2 Solution
Each \( W_n \) is the sum of two identical independent Gaussian random variables. Hence, each \( W_n \) must have the same PDF. That is, the \( W_n \) are identically distributed. However, since \( W_{n-1} \) and
\( \text{In both use } X_{n-1} \text{ in their averaging, } W_{n-1} \text{ and } W_n \text{ are dependent. We can verify this observation by calculating the covariance of } W_{n-1} \text{ and } W_n. \) First, we observe that for all \( n, \)

\[
E[W_n] = (E[X_n] + E[X_{n-1}])/2 = 30
\]

Next, we observe that \( W_{n-1} \) and \( W_n \) have covariance

\[
\text{Cov}[W_{n-1}, W_n] = E[W_{n-1}W_n] - E[W_{n-1}]E[W_n]
\]

\[
= \frac{1}{4}E[(X_{n-1} + X_{n-2})(X_n + X_{n-1})] - 900
\]

We observe that for \( n \neq m, E[X_nX_m] = E[X_n]E[X_m] = 900 \) while

\[
E[X_n^2] = \text{Var}[X_n] + (E[X_n])^2 = 916
\]

Thus,

\[
\text{Cov}[W_{n-1}, W_n] = \frac{900 + 916 + 900 + 900}{4} - 900 = 4
\]

Since \( \text{Cov}[W_{n-1}, W_n] \neq 0, W_n \) and \( W_{n-1} \) must be dependent.

**Problem 10.4.3 Solution**

The number \( Y_k \) of failures between successes \( k-1 \) and \( k \) is exactly \( y \geq 0 \) iff after success \( k-1 \), there are \( y \) failures followed by a success. Since the Bernoulli trials are independent, the probability of this event is \((1 - p)^y p \). The complete PMF of \( Y_k \) is

\[
P_{Y_k}(y) = \begin{cases} 
(1 - p)^y p & \text{for } y = 0, 1, \ldots \\
0 & \text{otherwise}
\end{cases}
\]

Since this argument is valid for all \( k \) including \( k = 1 \), we can conclude that \( Y_1, Y_2, \ldots \) are identically distributed. Moreover, since the trials are independent, the failures between successes \( k-1 \) and \( k \) and the number of failures between successes \( k' - 1 \) and \( k' \) are independent. Hence, \( Y_1, Y_2, \ldots \) is an iid sequence.

**Problem 10.5.1 Solution**

This is a very straightforward problem. The Poisson process has rate \( \lambda = 4 \) calls per second. When \( t \) is measured in seconds, each \( N(t) \) is a Poisson random variable with mean \( 4t \) and thus has PMF

\[
P_{N(t)}(n) = \begin{cases} 
\frac{(4t)^n}{n!} e^{-4t} & \text{for } n = 0, 1, 2, \ldots \\
0 & \text{otherwise}
\end{cases}
\]

Using the general expression for the PMF, we can write down the answer for each part.

(a) \( P_{N(1)}(0) = 4^0 e^{-4}/0! = e^{-4} \approx 0.0183. \)

(b) \( P_{N(1)}(4) = 4^4 e^{-4}/4! = 32e^{-4}/3 \approx 0.1954. \)

(c) \( P_{N(2)}(2) = 8^2 e^{-8}/2! = 32e^{-8} \approx 0.0107. \)
Problem 10.5.2 Solution
Following the instructions given, we express each answer in terms of $N(m)$ which has PMF

$$P_{N(m)}(n) = \begin{cases} (6m)^n e^{-6m}/n! & n = 0, 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

(a) The probability of no queries in a one minute interval is $P_{N(1)}(0) = 6^0 e^{-6}/0! = 0.00248$.

(b) The probability of exactly 6 queries arriving in a one minute interval is $P_{N(1)}(6) = 6^6 e^{-6}/6! = 0.161$.

(c) The probability of exactly three queries arriving in a one-half minute interval is $P_{N(0.5)}(3) = 3^3 e^{-3}/3! = 0.224$.

Problem 10.5.3 Solution
Since there is always a backlog an the service times are iid exponential random variables, The time between service completions are a sequence of iid exponential random variables. that is, the service completions are a Poisson process. Since the expected service time is 30 minutes, the rate of the Poisson process is $\lambda = 1/30$ per minute. Since $t$ hours equals 60t minutes, the expected number serviced is $\lambda(60t)$ or $2t$. Moreover, the number serviced in the first $t$ hours has the Poisson PMF

$$P_{N(t)}(n) = \begin{cases} (2t)^n e^{-2t}/n! & n = 0, 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

Problem 10.5.4 Solution
Since $D(t)$ is a Poisson process with rate 0.1 drops/day, the random variable $D(t)$ is a Poisson random variable with parameter $\alpha = 0.1t$. The PMF of $D(t)$, the number of drops after $t$ days, is

$$P_{D(t)}(d) = \begin{cases} (0.1t)^d e^{-0.1t}/d! & d = 0, 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

Problem 10.5.5 Solution
Note that it matters whether $t \geq 2$ minutes. If $t \leq 2$, then any customers that have arrived must still be in service. Since a Poisson number of arrivals occur during $(0, t]$,

$$P_{N(t)}(n) = \begin{cases} (\lambda t)^n e^{-\lambda t}/n! & n = 0, 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (0 \leq t \leq 2) \quad (1)$$

For $t \geq 2$, the customers in service are precisely those customers that arrived in the interval $(t-2, t]$. The number of such customers has a Poisson PMF with mean $\lambda[t - (t - 2)] = 2\lambda$. The resulting PMF of $N(t)$ is

$$P_{N(t)}(n) = \begin{cases} (2\lambda)^n e^{-2\lambda}/n! & n = 0, 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases} \quad (t \geq 2) \quad (2)$$
Problem 10.5.6 Solution
The time $T$ between queries are independent exponential random variables with PDF

$$f_T(t) = \begin{cases} (1/8)e^{-t/8} & t \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

From the PDF, we can calculate for $t > 0$,

$$P[T \geq t] = \int_0^t f_T(t') \, dt' = e^{-t/8}$$

Using this formula, each question can be easily answered.

(a) $P[T \geq 4] = e^{-4/8} \approx 0.951$.

(b)

$$P[T \geq 13 | T \geq 5] = \frac{P[T \geq 13, T \geq 5]}{P[T \geq 5]} = \frac{e^{-13/8}}{e^{-5/8}} = e^{-1} \approx 0.368$$

(c) Although the time between queries are independent exponential random variables, $N(t)$ is not exactly a Poisson random process because the first query occurs at time $t = 0$. Recall that in a Poisson process, the first arrival occurs some time after $t = 0$. However $N(t) - 1$ is a Poisson process of rate 8. Hence, for $n = 0, 1, 2, \ldots$,

$$P[N(t) - 1 = n] = (t/8)^n e^{-t/8} / n!$$

Thus, for $n = 1, 2, \ldots$, the PMF of $N(t)$ is

$$P_{N(t)}(n) = P[N(t) - 1 = n - 1] = (t/8)^{n-1} e^{-t/8} / (n-1)!$$

The complete expression of the PMF of $N(t)$ is

$$P_{N(t)}(n) = \begin{cases} (t/8)^{n-1} e^{-t/8} / (n-1)! & n = 1, 2, \ldots \\ 0 & \text{otherwise} \end{cases}$$

Problem 10.5.7 Solution
This proof is just a simplified version of the proof given for Theorem 10.3. The first arrival occurs at time $X_1 > x \geq 0$ iff there are no arrivals in the interval $(0, x]$. Hence, for $x \geq 0$,

$$P[X_1 > x] = P[N(x) = 0] = (\lambda x)^0 e^{-\lambda x} / 0! = e^{-\lambda x}$$

Since $P[X_1 \leq x] = 0$ for $x < 0$, the CDF of $X_1$ is the exponential CDF

$$F_{X_1}(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \geq 0 \end{cases}$$
Problem 10.5.8 Solution

(a) For \( X_i = -\ln U_i \), we can write

\[
P [X_i > x] = P [-\ln U_i > x] = P [\ln U_i \leq -x] = P [U_i \leq e^{-x}]
\]

(1)

When \( x < 0 \), \( e^{-x} > 1 \) so that \( P[U_i \leq e^{-x}] = 1 \). When \( x \geq 0 \), we have \( 0 < e^{-x} \leq 1 \), implying \( P[U_i \leq e^{-x}] = e^{-x} \). Combining these facts, we have

\[
P [X_i > x] = \begin{cases} 
1 & x < 0 \\
e^{-x} & x \geq 0 
\end{cases}
\]

(2)

This permits us to show that the CDF of \( X_i \) is

\[
F_{X_i}(x) = 1 - P [X_i > x] = \begin{cases} 
0 & x < 0 \\
1 - e^{-x} & x \geq 0 
\end{cases}
\]

(3)

We see that \( X_i \) has an exponential CDF with mean 1.

(b) Note that \( N = n \) iff

\[
\prod_{i=1}^{n} U_i \geq e^{-t} > \prod_{i=1}^{n+1} U_i
\]

(4)

By taking the logarithm of both inequalities, we see that \( N = n \) iff

\[
\sum_{i=1}^{n} \ln U_i \geq -t > \sum_{i=1}^{n+1} \ln U_i
\]

(5)

Next, we multiply through by \(-1\) and recall that \( X_i = -\ln U_i \) is an exponential random variable. This yields \( N = n \) iff

\[
\sum_{i=1}^{n} X_i \leq t < \sum_{i=1}^{n+1} X_i
\]

(6)

Now we recall that a Poisson process \( N(t) \) of rate 1 has independent exponential interarrival times \( X_1, X_2, \ldots \). That is, the \( i \)th arrival occurs at time \( \sum_{j=1}^{i} X_j \). Moreover, \( N(t) = n \) iff the first \( n \) arrivals occur by time \( t \) but arrival \( n + 1 \) occurs after time \( t \). Since the random variable \( N(t) \) has a Poisson distribution with mean \( t \), we can write

\[
P \left[ \sum_{i=1}^{n} X_i \leq t < \sum_{i=1}^{n+1} X_i \right] = P [N(t) = n] = \frac{t^n e^{-t}}{n!}.
\]

(7)

Problem 10.6.1 Solution

Customers entering (or not entering) the casino is a Bernoulli decomposition of the Poisson process of arrivals at the casino doors. By Theorem 10.6, customers entering the casino are a Poisson process of rate \( 100/2 = 50 \) customers/hour. Thus in the two hours from 5 to 7 PM, the number, \( N \), of customers entering the casino is a Poisson random variable with expected value \( \alpha = 2 \cdot 50 = 100 \). The PMF of \( N \) is

\[
P_N(n) = \begin{cases} 
100^n e^{-100} / n! & n = 0, 1, 2, \ldots \\
0 & \text{otherwise}
\end{cases}
\]

(1)
Problem 10.6.2 Solution
In an interval \([t, t + \Delta]\) with an infinitesimal \(\Delta\), let \(A_i\) denote the event of an arrival of the process \(N_i(t)\). Also, let \(A = A_1 \cup A_2\) denote the event of an arrival of either process. Since \(N_i(t)\) is a Poisson process, the alternative model says that \(P[A_i] = \lambda_i \Delta\). Also, since \(N_1(t) + N_2(t)\) is a Poisson process, the proposed Poisson process model says

\[
P[A] = (\lambda_1 + \lambda_2) \Delta
\]  

(1)

Lastly, the conditional probability of a type 1 arrival given an arrival of either type is

\[
P[A_1|A] = \frac{P[A_1A]}{P[A]} = \frac{P[A_1]}{P[A]} = \frac{\lambda_1 \Delta}{(\lambda_1 + \lambda_2) \Delta} = \frac{\lambda_1}{\lambda_1 + \lambda_2}
\]

(2)

This solution is something of a cheat in that we have used the fact that the sum of Poisson processes is a Poisson process without using the proposed model to derive this fact.

Problem 10.6.3 Solution
We start with the case when \(t \geq 2\). When each service time is equally likely to be either 1 minute or 2 minutes, we have the following situation. Let \(M_1\) denote those customers that arrived in the interval \((t - 1, 1]\). All \(M_1\) of these customers will be in the bank at time \(t\) and \(M_1\) is a Poisson random variable with mean \(\lambda\).

Let \(M_2\) denote the number of customers that arrived during \((t - 2, t - 1]\). Of course, \(M_2\) is Poisson with expected value \(\lambda\). We can view each of the \(M_2\) customers as flipping a coin to determine whether to choose a 1 minute or a 2 minute service time. Only those customers that chooses a 2 minute service time will be in service at time \(t\). Let \(M_2'\) denote those customers choosing a 2 minute service time. It should be clear that \(M_2'\) is a Poisson number of Bernoulli random variables. Theorem 10.6 verifies that using Bernoulli trials to decide whether the arrivals of a rate \(\lambda\) Poisson process should be counted yields a Poisson process of rate \(p \lambda\). A consequence of this result is that a Poisson number of Bernoulli (success probability \(p\)) random variables has Poisson PMF with mean \(p \lambda\). In this case, \(M_2'\) is Poisson with mean \(\lambda/2\). Moreover, the number of customers in service at time \(t\) is \(N(t) = M_1 + M_2'\). Since \(M_1\) and \(M_2'\) are independent Poisson random variables, their sum \(N(t)\) also has a Poisson PMF. This was verified in Theorem 6.9. Hence \(N(t)\) is Poisson with mean \(E[N(t)] = E[M_1] + E[M_2'] = 3 \lambda/2\). The PMF of \(N(t)\) is

\[
P_{N(t)}(n) = \begin{cases} (3\lambda/2)^n e^{-3\lambda/2}/n! & n = 0, 1, 2, \ldots \quad (t \geq 2) \\ 0 & \text{otherwise} \end{cases}
\]

(1)

Now we can consider the special cases arising when \(t < 2\). When \(0 \leq t < 1\), every arrival is still in service. Thus the number in service \(N(t)\) equals the number of arrivals and has the PMF

\[
P_{N(t)}(n) = \begin{cases} (\lambda t)^n e^{-\lambda t}/n! & n = 0, 1, 2, \ldots \quad (0 \leq t \leq 1) \\ 0 & \text{otherwise} \end{cases}
\]

(2)

When \(1 \leq t < 2\), let \(M_1\) denote the number of customers in the interval \((t - 1, t]\). All \(M_1\) customers arriving in that interval will be in service at time \(t\). The \(M_2\) customers arriving in the interval \((0, t - 1]\) must each flip a coin to decide one a 1 minute or two minute service time. Only those customers choosing the two minute service time will be in service at time \(t\). Since \(M_2\) has a Poisson PMF with mean \(\lambda(t - 1)\), the number \(M_2'\) of those customers in the system at time \(t\) has a Poisson PMF with mean \(\lambda(t - 1)/2\). Finally, the number of customers in service at time \(t\) has a Poisson
independent events because they consider non-overlapping periods of the Poisson process. Thus, the PMF of $N(t)$ becomes
\[
P_{N(t)}(n) = \begin{cases} 
(\lambda(t+1)/2)^n e^{-\lambda(t+1)/2} / n! & n = 0, 1, 2, \ldots \\
0 & \text{otherwise}
\end{cases} (1 \leq t \leq 2) \quad (3)
\]

**Problem 10.6.4 Solution**

Since the arrival times $S_1, \ldots, S_n$ are ordered in time and since a Poisson process cannot have two simultaneous arrivals, the conditional PDF $f_{S_1, \ldots, S_n|N}(S_1, \ldots, S_n|n)$ is nonzero only if $s_1 < s_2 < \cdots < s_n < T$. In this case, consider an arbitrarily small $\Delta$; in particular, $\Delta < \min_i(s_{i+1} - s_i)/2$ implies that the intervals $(s_i, s_i + \Delta]$ are non-overlapping. We now find the joint probability
\[
P[s_1 < S_1 \leq s_1 + \Delta, \ldots, s_n < S_n \leq s_n + \Delta, N = n]
\]
that each $S_i$ is in the interval $(s_i, s_i + \Delta]$ and that $N = n$. This joint event implies that there were zero arrivals in each interval $(s_i + \Delta, s_{i+1}]$. That is, over the interval $[0, T]$, the Poisson process has exactly one arrival in each interval $(s_i, s_i + \Delta]$ and zero arrivals in the time period $T - \bigcup_{i=1}^n (s_i, s_i + \Delta]$. The collection of intervals in which there was no arrival had a total duration of $T - n\Delta$. Note that the probability of exactly one arrival in the interval $(s_i, s_i + \Delta]$ is $\lambda \Delta e^{-\lambda \Delta}$ and the probability of zero arrivals in a period of duration $T - n\Delta$ is $e^{-\lambda(T-n\Delta)}$. In addition, the event of one arrival in each interval $(s_i, s_i + \Delta]$ and zero events in the period of length $T - n\Delta$ are independent events because they consider non-overlapping periods of the Poisson process. Thus,
\[
P[s_1 < S_1 \leq s_1 + \Delta, \ldots, s_n < S_n \leq s_n + \Delta, N = n] = \left(\frac{\lambda \Delta e^{-\lambda \Delta}}{n!}\right)^n e^{-\lambda(T-n\Delta)}
\]
\[
= (\lambda \Delta)^n e^{-\lambda T} \quad (1)
\]

Since $P[N = n] = (\lambda T)^n e^{-\lambda T} / n!$, we see that
\[
P[s_1 < S_1 \leq s_1 + \Delta, \ldots, s_n < S_n \leq s_n + \Delta|N = n] = \frac{P[s_1 < S_1 \leq s_1 + \Delta, \ldots, s_n < S_n \leq s_n + \Delta, N = n]}{P[N = n]}
\]
\[
= \frac{(\lambda \Delta)^n e^{-\lambda T}}{(\lambda T)^n e^{-\lambda T} / n!}
\]
\[
= \frac{n!}{T^n} \Delta^n \quad (4)
\]

Finally, for infinitesimal $\Delta$, the conditional PDF of $S_1, \ldots, S_n$ given $N = n$ satisfies
\[
f_{S_1, \ldots, S_n|N}(s_1, \ldots, s_n|n) \Delta^n = P[s_1 < S_1 \leq s_1 + \Delta, \ldots, s_n < S_n \leq s_n + \Delta|N = n]
\]
\[
= \frac{n!}{T^n} \Delta^n \quad (6)
\]

Since the conditional PDF is zero unless $s_1 < s_2 < \cdots < s_n \leq T$, it follows that
\[
f_{S_1, \ldots, S_n|N}(s_1, \ldots, s_n|n) = \begin{cases} 
n! / T^n & 0 \leq s_1 < \cdots < s_n \leq T, \\
0 & \text{otherwise.}
\end{cases} \quad (8)
\]

If it seems that the above argument had some “hand-waving,” we now do the derivation of $P[s_1 < S_1 \leq s_1 + \Delta, \ldots, s_n < S_n \leq s_n + \Delta|N = n]$ in somewhat excruciating detail. (Feel free to skip the following if you were satisfied with the earlier explanation.)
For the interval \((s, t]\), we use the shorthand notation \(0_{(s, t]}\) and \(1_{(s, t]}\) to denote the events of 0 arrivals and 1 arrival respectively. This notation permits us to write

\[
P[s_1 < S_1 \leq s_1 + \Delta, \ldots, s_n < S_n \leq s_n + \Delta, N = n] = P[0_{(0, s_1]}1_{(s_1, s_1+\Delta]}0_{(s_1+\Delta, s_2]}1_{(s_2, s_2+\Delta]} \cdots 1_{(s_n, s_n+\Delta]}0_{(s_n+\Delta, T]}]
\]

\[
(9)
\]

The set of events \(0_{(0, s_1]}, 0_{(s_n+\Delta, T]}\), and for \(i = 1, \ldots, n-1\), \(0_{(s_i+\Delta, s_{i+1}]}\) and \(1_{(s_i, s_i+\Delta]}\) are independent because each event depend on the Poisson process in a time interval that overlaps none of the other time intervals. In addition, since the Poisson process has rate \(\lambda\), \(P[0_{(s, t]}] = e^{-\lambda(t-s)}\) and \(P[1_{(s_i, s_i+\Delta]}] = (\lambda\Delta)e^{-\lambda\Delta}\). Thus,

\[
P[s_1 < S_1 \leq s_1 + \Delta, \ldots, s_n < S_n \leq s_n + \Delta, N = n] = P[0_{(0, s_1]}] P[1_{(s_1, s_1+\Delta]}] P[0_{(s_1+\Delta, s_2]}] \cdots P[1_{(s_n, s_n+\Delta]}] P[0_{(s_n+\Delta, T]}]
\]

\[
(10)
\]

\[
e^{-\lambda s_1} \left(\lambda\Delta e^{-\lambda\Delta}\right) e^{-\lambda(s_2-s_1-\Delta)} \cdots \left(\lambda\Delta e^{-\lambda\Delta}\right) e^{-\lambda(T-s_n-\Delta)}
\]

\[
(11)
\]

\[
(\lambda\Delta)^n e^{-\lambda T}
\]

\[
(12)
\]

**Problem 10.7.1 Solution**

From the problem statement, the change in the stock price is \(X(8) - X(0)\) and the standard deviation of \(X(8) - X(0)\) is \(1/2\) point. In other words, the variance of \(X(8) - X(0)\) is \(\text{Var}[X(8) - X(0)] = 1/4\). By the definition of Brownian motion, \(\text{Var}[X(8) - X(0)] = 8\alpha\). Hence \(\alpha = 1/32\).

**Problem 10.7.2 Solution**

We need to verify that \(Y(t) = X(ct)\) satisfies the conditions given in Definition 10.10. First we observe that \(Y(0) = X(c \cdot 0) = X(0) = 0\). Second, we note that since \(X(t)\) is Brownian motion process implies that \(Y(t) - Y(s) = X(ct) - X(cs)\) is a Gaussian random variable. Further, \(X(ct) - X(cs)\) is independent of \(X(t')\) for all \(t' \leq cs\). Equivalently, we can say that \(X(ct) - X(cs)\) is independent of \(X(\tau t)\) for all \(\tau \leq s\). In other words, \(Y(t) - Y(s)\) is independent of \(Y(\tau)\) for all \(\tau \leq s\). Thus \(Y(t)\) is a Brownian motion process.

**Problem 10.7.3 Solution**

First we observe that \(Y_n = X_n - X_{n-1} = X(n) - X(n-1)\) is a Gaussian random variable with mean zero and variance \(\alpha\). Since this fact is true for all \(n\), we can conclude that \(Y_1, Y_2, \ldots\) are identically distributed. By Definition 10.10 for Brownian motion, \(Y_n = X(n) - X(n-1)\) is independent of \(X(m)\) for any \(m \leq n-1\). Hence \(Y_n\) is independent of \(Y_m = X(m) - X(m-1)\) for any \(m \leq n-1\). Equivalently, \(Y_1, Y_2, \ldots\) is a sequence of independent random variables.

**Problem 10.7.4 Solution**

Recall that the vector \(X\) of increments has independent components \(X_n = W_n - W_{n-1}\). Alternatively, each \(W_n\) can be written as the sum

\[
W_1 = X_1
\]

\[
W_2 = X_1 + X_2
\]

\[
\vdots
\]

\[
W_k = X_1 + X_2 + \cdots + X_k.
\]
In terms of matrices, $W = AX$ where $A$ is the lower triangular matrix

$$A = \begin{bmatrix} 1 & & & \\ 1 & 1 & & \\ & \ddots & \ddots & \\ 1 & \cdots & \cdots & 1 \end{bmatrix}. \quad (4)$$

Since $E[W] = AE[X] = 0$, it follows from Theorem 5.16 that

$$f_W(w) = \frac{1}{|\det(A)|} f_X(A^{-1}w). \quad (5)$$

Since $A$ is a lower triangular matrix, $\det(A) = 1$, the product of its diagonal entries. In addition, reflecting the fact that each $X_n = W_n - W_{n-1}$,

$$A^{-1} = \begin{bmatrix} 1 & 1 & & & \\ -1 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \ddots \\ 0 & \cdots & 0 & 1 & 1 \end{bmatrix} \quad \text{and} \quad A^{-1}W = \begin{bmatrix} W_1 \\ W_2 - W_1 \\ W_3 - W_2 \\ \vdots \\ W_k - W_{k-1} \end{bmatrix}. \quad (6)$$

Combining these facts with the observation that $f_X(x) = \prod_{n=1}^k f_{X_n}(x_n)$, we can write

$$f_W(w) = f_X(A^{-1}w) = \prod_{n=1}^k f_{X_n}(w_n - w_{n-1}), \quad (7)$$

which completes the missing steps in the proof of Theorem 10.8.

**Problem 10.8.1 Solution**

The discrete time autocovariance function is

$$C_X[m, k] = E[(X_m - \mu_X)(X_{m+k} - \mu_X)] \quad (1)$$

for $k = 0$, $C_X[m, 0] = \text{Var}[X_m] = \sigma_X^2$. For $k \neq 0$, $X_m$ and $X_{m+k}$ are independent so that

$$C_X[m, k] = E[(X_m - \mu_X)] E[(X_{m+k} - \mu_X)] = 0 \quad (2)$$

Thus the autocovariance of $X_n$ is

$$C_X[m, k] = \begin{cases} \sigma_X^2 & k = 0 \\ 0 & k \neq 0 \end{cases} \quad (3)$$

**Problem 10.8.2 Solution**


(a) The mean is $\mu_X(t) = E[t - W] = t - E[W] = t - 1$.

(b) The autocovariance is

$$C_X(t, \tau) = E[X(t)X(t + \tau)] - \mu_X(t)\mu_X(t + \tau) \quad (1)$$

$$= E[(t - W)(t + \tau - W)] - (t - 1)(t + \tau - 1) \quad (2)$$

$$= t(t + \tau) - E[2(t + \tau)W] + E[W^2] - t(t + \tau) + 2t + \tau - 1 \quad (3)$$

$$= -(2t + \tau)E[W] + 2 + 2t + \tau - 1 \quad (4)$$

$$= 1 \quad (5)$$
Problem 10.8.3 Solution
In this problem, the daily temperature process results from

\[ C_n = 16 \left[ 1 - \cos \frac{2\pi n}{365} \right] + 4X_n \]  

where \( X_n \) is an iid random sequence of \( N[0, 1] \) random variables. The hardest part of this problem is distinguishing between the process \( C_n \) and the covariance function \( C_C[k] \).

(a) The expected value of the process is

\[ E[C_n] = 16E \left[ 1 - \cos \frac{2\pi n}{365} \right] + 4E[X_n] = 16 \left[ 1 - \cos \frac{2\pi n}{365} \right] \]  

(b) The autocovariance of \( C_n \) is

\[ C_C[m, k] = E \left[ \left( C_m - 16 \left[ 1 - \cos \frac{2\pi m}{365} \right] \right) \left( C_m + k - 16 \left[ 1 - \cos \frac{2\pi (m + k)}{365} \right] \right) \right] \]  

\[ = 16E(X_mX_{m+k}) = \begin{cases} 16 & k = 0 \\ 0 & \text{otherwise} \end{cases} \]  

(c) A model of this type may be able to capture the mean and variance of the daily temperature. However, one reason this model is overly simple is because day to day temperatures are uncorrelated. A more realistic model might incorporate the effects of “heat waves” or “cold spells” through correlated daily temperatures.

Problem 10.8.4 Solution
By repeated application of the recursion \( C_n = C_{n-1}/4 + 4X_n \), we obtain

\[ C_n = \frac{C_{n-2}}{4} + 4 \left[ \frac{X_{n-1}}{2} + X_n \right] \]  

\[ = \frac{C_{n-3}}{8} + 4 \left[ \frac{X_{n-2}}{4} + \frac{X_{n-1}}{2} + X_n \right] \]  

\[ C_0 = \frac{1}{2^n} + 4 \left[ \frac{X_1}{2^{n-1}} + \frac{X_2}{2^{n-2}} + \cdots + X_n \right] = \frac{C_0}{2^n} + 4 \sum_{i=1}^{n} \frac{X_i}{2^{n-i}} \]  

(a) Since \( C_0, X_1, X_2, \ldots \) all have zero mean,

\[ E[C_n] = E[C_0] = 4 \sum_{i=1}^{n} E[X_i] = 0 \]  

(b) The autocovariance is

\[ C_C[m, k] = E \left[ \left( \frac{C_0}{2^n} + 4 \sum_{i=1}^{n} \frac{X_i}{2^{n-i}} \right) \left( \frac{C_0}{2^m + k} + 4 \sum_{j=1}^{m+k} \frac{X_j}{2^{m+k-j}} \right) \right] \]
Since \( C_0, X_1, X_2, \ldots \) are independent (and zero mean), \( E[C_0 X_i] = 0 \). This implies

\[
C_C[m, k] = \frac{E[C_0^2]}{2^{2m+k}} + 16 \sum_{i=1}^{m} \sum_{j=1}^{m+k} \frac{E[X_i X_j]}{2^{m-i}2^{m+k-j}}
\]  
\( (7) \)

For \( i \neq j \), \( E[X_i X_j] = 0 \) so that only the \( i = j \) terms make any contribution to the double sum. However, at this point, we must consider the cases \( k \geq 0 \) and \( k < 0 \) separately. Since each \( X_i \) has variance 1, the autocovariance for \( k \geq 0 \) is

\[
C_C[m, k] = \frac{1}{2^{2m+k}} + 16 \sum_{i=1}^{m} \frac{1}{2^{2m+k-2i}}
\]
\( (8) \)

\[
= \frac{1}{2^{2m+k}} + 16 \frac{1}{2^k} \sum_{i=1}^{m} (1/4)^{m-i}
\]
\( (9) \)

\[
= \frac{1}{2^{2m+k}} + \frac{16}{2^k} \left[ \frac{1 - (1/4)^m}{3/4} \right]
\]
\( (10) \)

For \( k < 0 \), we can write

\[
C_C[m, k] = \frac{E[C_0^2]}{2^{2m+k}} + 16 \sum_{i=1}^{m} \sum_{j=1}^{m+k} \frac{E[X_i X_j]}{2^{m-i}2^{m+k-j}}
\]
\( (11) \)

\[
= \frac{1}{2^{2m+k}} + 16 \sum_{i=1}^{m+k} \frac{1}{2^{2m+k-2i}}
\]
\( (12) \)

\[
= \frac{1}{2^{2m+k}} + 16 \frac{1}{2^k} \sum_{i=1}^{m+k} (1/4)^{m+k-i}
\]
\( (13) \)

\[
= \frac{1}{2^{2m+k}} + \frac{16}{2^k} \left[ \frac{1 - (1/4)^{m+k}}{3/4} \right]
\]
\( (14) \)

A general expression that’s valid for all \( m \) and \( k \) is

\[
C_C[m, k] = \frac{1}{2^{2m+k}} + 16 \frac{1 - (1/4)^{\min(m,m+k)}}{2^k \cdot 3/4}
\]
\( (15) \)

(c) Since \( E[C_i] = 0 \) for all \( i \), our model has a mean daily temperature of zero degrees Celsius for the entire year. This is not a reasonable model for a year.

(d) For the month of January, a mean temperature of zero degrees Celsius seems quite reasonable. we can calculate the variance of \( C_n \) by evaluating the covariance at \( n = m \). This yields

\[
\text{Var}[C_n] = \frac{1}{4^n} + \frac{16}{4^n} \frac{4^n(4^n - 1)}{3}
\]
\( (16) \)

Note that the variance is upper bounded by

\[
\text{Var}[C_n] \leq \frac{64}{3}
\]
\( (17) \)

Hence the daily temperature has a standard deviation of \( 8/\sqrt{3} \approx 4.6 \) degrees. Without actual evidence of daily temperatures in January, this model is more difficult to discredit.
Problem 10.8.5 Solution
This derivation of the Poisson process covariance is almost identical to the derivation of the Brownian motion autocovariance since both rely on the use of independent increments. From the definition of the Poisson process, we know that \( \mu_N(t) = \lambda t \). When \( \tau \geq 0 \), we can write

\[
C_N(t, \tau) = E[N(t)N(t+\tau)] - (\lambda t)[\lambda(t+\tau)]
\]

By the definition of the Poisson process, \( N(t+\tau) - N(t) \) is the number of arrivals in the interval \([t, t+\tau] \) and is independent of \( N(t) \) for \( \tau > 0 \). This implies

\[
E[N(t)[N(t+\tau) - N(t)]] = E[N(t)]E[N(t+\tau) - N(t)] = \lambda t[\lambda(t+\tau) - \lambda t]
\]

Note that since \( N(t) \) is a Poisson random variable, \( \text{Var}[N(t)] = \lambda t \). Hence

\[
E[N^2(t)] = \text{Var}[N(t)] + (E[N(t)])^2 = \lambda t + (\lambda t)^2
\]

Therefore, for \( \tau \geq 0 \),

\[
C_N(t, \tau) = \lambda t[\lambda(t+\tau) - \lambda t] + \lambda t + (\lambda t)^2 - \lambda^2 t(t + \tau) = \lambda t
\]

If \( \tau < 0 \), then we can interchange the labels \( t \) and \( t+\tau \) in the above steps to show \( C_N(t, \tau) = \lambda(t+\tau) \).

Problem 10.9.1 Solution
For an arbitrary set of samples \( Y(t_1), \ldots, Y(t_k) \), we observe that \( Y(t_j) = X(t_j + a) \). This implies

\[
\hat{f}_Y(t_1), \ldots, Y(t_k)(y_1, \ldots, y_k) = \hat{f}_X(t_1+a), \ldots, X(t_k+a)(y_1, \ldots, y_k)
\]

Thus,

\[
\hat{f}_Y(t_1+\tau), \ldots, Y(t_k+\tau)(y_1, \ldots, y_k) = \hat{f}_X(t_1+\tau+a), \ldots, X(t_k+\tau+a)(y_1, \ldots, y_k)
\]

Since \( X(t) \) is a stationary process,

\[
\hat{f}_X(t_1+\tau+a), \ldots, X(t_k+\tau+a)(y_1, \ldots, y_k) = \hat{f}_X(t_1+a), \ldots, X(t_k+a)(y_1, \ldots, y_k)
\]

This implies

\[
\hat{f}_Y(t_1+\tau), \ldots, Y(t_k+\tau)(y_1, \ldots, y_k) = \hat{f}_X(t_1+a), \ldots, X(t_k+a)(y_1, \ldots, y_k)
\]

We can conclude that \( Y(t) \) is a stationary process.
Problem 10.9.2 Solution
For an arbitrary set of samples $Y(t_1), \ldots, Y(t_k)$, we observe that $Y(t_j) = X(at_j)$. This implies

$$f_Y(t_1, \ldots, t_k)(y_1, \ldots, y_k) = f_X(at_1, \ldots, at_k)(y_1, \ldots, y_k)$$

(1)

Thus,

$$f_Y(t_1+\tau, \ldots, t_k+\tau)(y_1, \ldots, y_k) = f_X(at_1+a\tau, \ldots, at_k+a\tau)(y_1, \ldots, y_k)$$

(2)

We see that a time offset of $\tau$ for the $Y(t)$ process corresponds to an offset of time $\tau' = a\tau$ for the $X(t)$ process. Since $X(t)$ is a stationary process,

$$f_Y(t_1+\tau, \ldots, t_k+\tau)(y_1, \ldots, y_k) = f_Y(t_1, \ldots, t_k)(y_1, \ldots, y_k)$$

(3)

$$= f_X(at_1, \ldots, at_k)(y_1, \ldots, y_k)$$

(4)

$$= f_Y(t_1, \ldots, t_k)(y_1, \ldots, y_k)$$

(5)

We can conclude that $Y(t)$ is a stationary process.

Problem 10.9.3 Solution
For a set of time samples $n_1, \ldots, n_m$ and an offset $k$, we note that $Y_{n_i+k} = X((n_i+k)\Delta)$. This implies

$$f_{Y_{n_1+k}, \ldots, Y_{n_m+k}}(y_1, \ldots, y_m) = f_{X((n_1+k)\Delta), \ldots, X((n_m+k)\Delta)}(y_1, \ldots, y_m)$$

(1)

Since $X(t)$ is a stationary process,

$$f_{X((n_1+k)\Delta), \ldots, X((n_m+k)\Delta)}(y_1, \ldots, y_m) = f_{X(n_1\Delta), \ldots, X(n_m\Delta)}(y_1, \ldots, y_m)$$

(2)

Since $X(n_i\Delta) = Y_{n_i}$, we see that

$$f_{Y_{n_1+k}, \ldots, Y_{n_m+k}}(y_1, \ldots, y_m) = f_{Y_{n_1}, \ldots, Y_{n_m}}(y_1, \ldots, y_m)$$

(3)

Hence $Y_n$ is a stationary random sequence.

Problem 10.9.4 Solution
Since $Y_n = X_{kn}$,

$$f_{Y_{n_1+l}, \ldots, Y_{n_m+l}}(y_1, \ldots, y_m) = f_{X_{kn_1+kl}, \ldots, X_{kn_m+kl}}(y_1, \ldots, y_m)$$

(1)

Stationarity of the $X_n$ process implies

$$f_{X_{kn_1+kl}, \ldots, X_{kn_m+kl}}(y_1, \ldots, y_m) = f_{X_{kn_1}, \ldots, X_{kn_m}}(y_1, \ldots, y_m)$$

(2)

$$= f_{Y_{n_1}, \ldots, Y_{n_m}}(y_1, \ldots, y_m).$$

(3)

We combine these steps to write

$$f_{Y_{n_1+l}, \ldots, Y_{n_m+l}}(y_1, \ldots, y_m) = f_{Y_{n_1}, \ldots, Y_{n_m}}(y_1, \ldots, y_m).$$

(4)

Thus $Y_n$ is a stationary process.

Comment: The first printing of the text asks whether $Y_n$ is wide stationary if $X_n$ is wide sense stationary. This fact is also true; however, since wide sense stationarity isn’t addressed until the next section, the problem was corrected to ask about stationarity.
Problem 10.9.5 Solution
Given $A = a$, $Y(t) = aX(t)$ which is a special case of $Y(t) = aX(t) + b$ given in Theorem 10.10. Applying the result of Theorem 10.10 with $b = 0$ yields

$$f_{Y(t_1),...,Y(t_n)}(y_1,\ldots,y_n|a) = \frac{1}{a^n} f_{X(t_1),...,X(t_n)} \left( \frac{y_1}{a}, \ldots, \frac{y_n}{a} \right)$$  \hspace{1cm} (1)$$

Integrating over the PDF $f_A(a)$ yields

$$f_{Y(t_1),...,Y(t_n)}(y_1,\ldots,y_n) = \int_0^\infty f_{Y(t_1),...,Y(t_n)|A}(y_1,\ldots,y_n|a) f_A(a) \, da$$  \hspace{1cm} (2)$$

$$= \int_0^\infty \frac{1}{a^n} f_{X(t_1),...,X(t_n)} \left( \frac{y_1}{a}, \ldots, \frac{y_n}{a} \right) f_A(a) \, da$$  \hspace{1cm} (3)$$

This complicated expression can be used to find the joint PDF of $Y(t_1 + \tau),\ldots,Y(t_n + \tau)$:

$$f_{Y(t_1+\tau),...,Y(t_n+\tau)}(y_1,\ldots,y_n) = \int_0^\infty \frac{1}{a^n} f_{X(t_1+\tau),...,X(t_n+\tau)} \left( \frac{y_1}{a}, \ldots, \frac{y_n}{a} \right) f_A(a) \, da$$  \hspace{1cm} (4)$$

Since $X(t)$ is a stationary process, the joint PDF of $X(t_1 + \tau),\ldots,X(t_n + \tau)$ is the same as the joint PDF of $X(t_1),\ldots,X(t_n)$. Thus

$$f_{Y(t_1+\tau),...,Y(t_n+\tau)}(y_1,\ldots,y_n) = \int_0^\infty \frac{1}{a^n} f_{X(t_1+\tau),...,X(t_n+\tau)} \left( \frac{y_1}{a}, \ldots, \frac{y_n}{a} \right) f_A(a) \, da$$  \hspace{1cm} (5)$$

$$= \int_0^\infty \frac{1}{a^n} f_{X(t_1),...,X(t_n)} \left( \frac{y_1}{a}, \ldots, \frac{y_n}{a} \right) f_A(a) \, da$$  \hspace{1cm} (6)$$

$$= f_{Y(t_1),...,Y(t_n)}(y_1,\ldots,y_n)$$  \hspace{1cm} (7)$$

We can conclude that $Y(t)$ is a stationary process.

Problem 10.9.6 Solution
Since $g(\cdot)$ is an unspecified function, we will work with the joint CDF of $Y(t_1 + \tau),\ldots,Y(t_n + \tau)$. To show $Y(t)$ is a stationary process, we will show that for all $\tau$,

$$F_{Y(t_1+\tau),...,Y(t_n+\tau)}(y_1,\ldots,y_n) = F_{Y(t_1),...,Y(t_n)}(y_1,\ldots,y_n)$$  \hspace{1cm} (1)$$

By taking partial derivatives with respect to $y_1,\ldots,y_n$, it should be apparent that this implies that the joint PDF $f_{Y(t_1+\tau),...,Y(t_n+\tau)}(y_1,\ldots,y_n)$ will not depend on $\tau$. To proceed, we write

$$F_{Y(t_1+\tau),...,Y(t_n+\tau)}(y_1,\ldots,y_n) = P \left[ Y(t_1 + \tau) \leq y_1, \ldots, Y(t_n + \tau) \leq y_n \right]$$  \hspace{1cm} (2)$$

$$= P \left[ g(X(t_1 + \tau)) \leq y_1, \ldots, g(X(t_n + \tau)) \leq y_n \right]_{A_{\tau}}$$  \hspace{1cm} (3)$$

In principle, we can calculate $P[A_{\tau}]$ by integrating $f_{X(t_1+\tau),...,X(t_n+\tau)}(x_1,\ldots,x_n)$ over the region corresponding to event $A_{\tau}$. Since $X(t)$ is a stationary process,

$$f_{X(t_1+\tau),...,X(t_n+\tau)}(x_1,\ldots,x_n) = f_{X(t_1),...,X(t_n)}(x_1,\ldots,x_n)$$  \hspace{1cm} (4)$$

This implies $P[A_{\tau}]$ does not depend on $\tau$. In particular,

$$F_{Y(t_1+\tau),...,Y(t_n+\tau)}(y_1,\ldots,y_n) = P[A_{\tau}]$$  \hspace{1cm} (5)$$

$$= P \left[ g(X(t_1)) \leq y_1, \ldots, g(X(t_n)) \leq y_n \right]$$  \hspace{1cm} (6)$$

$$= F_{Y(t_1),...,Y(t_n)}(y_1,\ldots,y_n)$$  \hspace{1cm} (7)$$
Problem 10.10.1 Solution
The autocorrelation function $R_X(\tau) = \delta(\tau)$ is mathematically valid in the sense that it meets the conditions required in Theorem 10.12. That is,

\begin{align*}
R_X(\tau) &= \delta(\tau) \geq 0 \\
R_X(\tau) &= \delta(\tau) = \delta(-\tau) = R_X(-\tau) \\
R_X(\tau) &\leq R_X(0) = \delta(0)
\end{align*}

However, for a process $X(t)$ with the autocorrelation $R_X(\tau) = \delta(\tau)$, Definition 10.16 says that the average power of the process is

$$E[X^2(t)] = R_X(0) = \delta(0) = \infty$$

Processes with infinite average power cannot exist in practice.

Problem 10.10.2 Solution
Since $Y(t) = A + X(t)$, the mean of $Y(t)$ is

$$E[Y(t)] = E[A] + E[X(t)] = E[A] + \mu_X$$

The autocorrelation of $Y(t)$ is

\begin{align*}
R_Y(t, \tau) &= E[(A + X(t))(A + X(t + \tau))] \\
&= E[A^2] + E[A]E[X(t)] + AE[X(t + \tau)] + E[X(t)X(t + \tau)] \\
&= E[A^2] + 2E[A]\mu_X + R_X(\tau)
\end{align*}

We see that neither $E[Y(t)]$ nor $R_Y(t, \tau)$ depend on $t$. Thus $Y(t)$ is a wide sense stationary process.

Problem 10.10.3 Solution
In this problem, we find the autocorrelation $R_W(t, \tau)$ when

$$W(t) = X \cos 2\pi f_0 t + Y \sin 2\pi f_0 t,$$

and $X$ and $Y$ are uncorrelated random variables with $E[X] = E[Y] = 0$.

We start by writing

\begin{align*}
R_W(t, \tau) &= E[W(t)W(t + \tau)] \\
&= E[(X \cos 2\pi f_0 t + Y \sin 2\pi f_0 t)(X \cos 2\pi f_0 (t + \tau) + Y \sin 2\pi f_0 (t + \tau))].
\end{align*}

Since $X$ and $Y$ are uncorrelated, $E[XY] = E[X]E[Y] = 0$. Thus, when we expand $E[W(t)W(t + \tau)]$ and take the expectation, all of the $XY$ cross terms will be zero. This implies

$$R_W(t, \tau) = E[X^2] \cos 2\pi f_0 t \cos 2\pi f_0 (t + \tau) + E[Y^2] \sin 2\pi f_0 t \sin 2\pi f_0 (t + \tau).$$

Since $E[X] = E[Y] = 0$,

\begin{align*}
E[X^2] &= \text{Var}[X] - (E[X])^2 = \sigma^2, \\
E[Y^2] &= \text{Var}[Y] - (E[Y])^2 = \sigma^2.
\end{align*}

In addition, from Math Fact B.2, we use the formulas

\begin{align*}
\cos A \cos B &= \frac{1}{2} [\cos(A - B) + \cos(A + B)] \\
\sin A \sin B &= \frac{1}{2} [\cos(A - B) - \cos(A + B)]
\end{align*}
to write
\[ R_W(t, \tau) = \frac{\sigma^2}{2} (\cos 2\pi f_0 \tau + \cos 2\pi f_0(2t + \tau)) + \frac{\sigma^2}{2} (\cos 2\pi f_0 \tau - \cos 2\pi f_0(2t + \tau)) \] (8)
\[ = \sigma^2 \cos 2\pi f_0 \tau \] (9)

Thus \( R_W(t, \tau) = R_W(\tau) \). Since
\[ E[W(t)] = E[X] \cos 2\pi f_0 t + E[Y] \sin 2\pi f_0 t = 0 , \] (10)
we can conclude that \( W(t) \) is a wide sense stationary process. However, we note that if \( E[X^2] \neq E[Y^2] \), then the \( \cos 2\pi f_0(2t + \tau) \) terms in \( R_W(t, \tau) \) would not cancel and \( W(t) \) would not be wide sense stationary.

**Problem 10.10.4 Solution**

(a) In the problem statement, we are told that \( X(t) \) has average power equal to 1. By Definition 10.16, the average power of \( X(t) \) is \( E[X^2(t)] = 1 \).

(b) Since \( \Theta \) has a uniform PDF over \([0, 2\pi]\),
\[ f_\Theta(\theta) = \begin{cases} 1/(2\pi) & 0 \leq \theta \leq 2\pi \\ 0 & \text{otherwise} \end{cases} \] (1)
The expected value of the random phase cosine is
\[ E[\cos(2\pi f_c t + \Theta)] = \int_{-\infty}^{\infty} \cos(2\pi f_c t + \theta) f_\Theta(\theta) d\theta \] (2)
\[ = \int_{0}^{2\pi} \cos(2\pi f_c t + \theta) \frac{1}{2\pi} d\theta \] (3)
\[ = \frac{1}{2\pi} \sin(2\pi f_c t + \theta) \bigg|_{0}^{2\pi} \] (4)
\[ = \frac{1}{2\pi} (\sin(2\pi f_c t + 2\pi) - \sin(2\pi f_c t)) = 0 \] (5)

(c) Since \( X(t) \) and \( \Theta \) are independent,
\[ E[Y(t)] = E[X(t) \cos(2\pi f_c t + \Theta)] = E[X(t)] E[\cos(2\pi f_c t + \Theta)] = 0 \] (6)
Note that the mean of \( Y(t) \) is zero no matter what the mean of \( X(t) \) since the random phase cosine has zero mean.

(d) Independence of \( X(t) \) and \( \Theta \) results in the average power of \( Y(t) \) being
\[ E[Y^2(t)] = E[X^2(t) \cos^2(2\pi f_c t + \Theta)] \] (7)
\[ = E[X^2(t)] E[\cos^2(2\pi f_c t + \Theta)] \] (8)
\[ = E[\cos^2(2\pi f_c t + \Theta)] \] (9)
Note that we have used the fact from part (a) that \( X(t) \) has unity average power. To finish the problem, we use the trigonometric identity \( \cos^2 \phi = (1 + \cos 2\phi)/2 \). This yields
\[ E[Y^2(t)] = E \left[ \frac{1}{2} (1 + \cos(2\pi(2f_c)t + \Theta)) \right] = 1/2 \] (10)
Note that \( E[\cos(2\pi(2f_c)t + \Theta)] = 0 \) by the argument given in part (b) with \( 2f_c \) replacing \( f_c \).
Problem 10.10.5 Solution
This proof simply parallels the proof of Theorem 10.12. For the first item, $R_X[0] = R_X[m, 0] = E[X_m^2]$. Since $X_m^2 \geq 0$, we must have $E[X_m^2] \geq 0$. For the second item, Definition 10.13 implies that

$$R_X[k] = R_X[m, k] = E[X_m X_{m+k}] = E[X_{m+k} X_m] = R_X[m+k, -k] \quad (1)$$

Since $X_m$ is wide sense stationary, $R_X[m+k, -k] = R_X[-k]$. The final item requires more effort. First, we note that when $X_m$ is wide sense stationary, $\text{Var}[X_m] = C_X[0]$, a constant for all $t$. Second, Theorem 4.17 says that

$$|C_X[m, k]| \leq \sigma_X \sigma_{X_{m+k}} = C_X[0] . \quad (2)$$

Note that $C_X[m, k] \leq |C_X[m, k]|$, and thus it follows that

$$C_X[m, k] \leq \sigma_X \sigma_{X_{m+k}} = C_X[0] , \quad (3)$$

(This little step was unfortunately omitted from the proof of Theorem 10.12.) Now for any numbers $a, b, c$, if $a \leq b$ and $c \geq 0$, then $(a + c)^2 \leq (b + c)^2$. Choosing $a = C_X[m, k]$, $b = C_X[0]$, and $c = \mu_X^2$ yields

$$(C_X[m, m + k] + \mu_X^2)^2 \leq (C_X[0] + \mu_X^2)^2 \quad (4)$$

In the above expression, the left side equals $(R_X[k])^2$ while the right side is $(R_X[0])^2$, which proves the third part of the theorem.

Problem 10.10.6 Solution
The solution to this problem is essentially the same as the proof of Theorem 10.13 except integrals are replaced by sums. First we verify that $X_m$ is unbiased:

$$E[\overline{X}_m] = \frac{1}{2m+1} E \left[ \sum_{n=-m}^m X_n \right] \quad (1)$$

$$= \frac{1}{2m+1} \sum_{n=-m}^m E[X_n] = \frac{1}{2m+1} \sum_{n=-m}^m \mu_X = \mu_X \quad (2)$$

To show consistency, it is sufficient to show that $\lim_{m \to \infty} \text{Var}[\overline{X}_m] = 0$. First, we observe that $\overline{X}_m - \mu_X = \frac{1}{2m+1} \sum_{n=-m}^m (X_n - \mu_X)$. This implies

$$\text{Var}[\overline{X}(T)] = E \left[ \left( \frac{1}{2m+1} \sum_{n=-m}^m (X_n - \mu_X) \right)^2 \right] \quad (3)$$

$$= E \left[ \frac{1}{(2m+1)^2} \left( \sum_{n=-m}^m (X_n - \mu_X) \right) \left( \sum_{n'=-m}^m (X_{n'} - \mu_X) \right) \right] \quad (4)$$

$$= \frac{1}{(2m+1)^2} \sum_{n=-m}^m \sum_{n'=-m}^m E[(X_n - \mu_X)(X_{n'} - \mu_X)] \quad (5)$$

$$= \frac{1}{(2m+1)^2} \sum_{n=-m}^m \sum_{n'=-m}^m C_X[n' - n] . \quad (6)$$
We note that
\[
\sum_{n'=-m}^{m} C_X [n' - n] \leq \sum_{n'=-m}^{m} |C_X [n' - n]| \leq \sum_{n'=-\infty}^{\infty} |C_X [n' - n]| = \sum_{k=-\infty}^{\infty} |C_X (k)| < \infty. \tag{7}
\]

Hence there exists a constant $K$ such that
\[
\text{Var}[X_m] \leq \frac{1}{(2m+1)^2} \sum_{n=-m}^{m} K = \frac{K}{2m+1}. \tag{9}
\]

Thus $\lim_{m \to \infty} \text{Var}[X_m] \leq \lim_{m \to \infty} \frac{K}{2m+1} = 0$.

**Problem 10.11.1 Solution**

(a) Since $X(t)$ and $Y(t)$ are independent processes,
\[
E [W(t)] = E [X(t)Y(t)] = E [X(t)] E [Y(t)] = \mu_X \mu_Y. \tag{1}
\]

In addition,
\[
R_W (t, \tau) = E [W(t)W(t + \tau)] = E [X(t)Y(t)]E [X(t + \tau)Y(t + \tau)] = E [X(t)] E [X(t + \tau)] E [Y(t)] E [Y(t + \tau)] = R_X (\tau) R_Y (\tau) \tag{5}
\]

We can conclude that $W(t)$ is wide sense stationary.

(b) To examine whether $X(t)$ and $W(t)$ are jointly wide sense stationary, we calculate
\[
R_{WX} (t, \tau) = E [W(t)X(t + \tau)] = E [X(t)Y(t)] E [X(t + \tau)]. \tag{6}
\]

By independence of $X(t)$ and $Y(t)$,
\[
R_{WX} (t, \tau) = E [X(t)X(t + \tau)] E [Y(t)] = \mu_x R_X (\tau). \tag{7}
\]

Since $W(t)$ and $X(t)$ are both wide sense stationary and since $R_{WX} (t, \tau)$ depends only on the time difference $\tau$, we can conclude from Definition 10.18 that $W(t)$ and $X(t)$ are jointly wide sense stationary.

**Problem 10.11.2 Solution**

To show that $X(t)$ and $X_i(t)$ are jointly wide sense stationary, we must first show that $X_i(t)$ is wide sense stationary and then we must show that the cross correlation $R_{XX_i} (t, \tau)$ is only a function of the time difference $\tau$. For each $X_i(t)$, we have to check whether these facts are implied by the fact that $X(t)$ is wide sense stationary.
(a) Since $E[X_1(t)] = E[X(t + a)] = \mu_X$ and

\begin{align*}
R_{X_1}(t, \tau) &= E[X_1(t)X_1(t + \tau)] \\
&= E[X(t + a)X(t + \tau + a)] \\
&= R_X(\tau),
\end{align*}

we have verified that $X_1(t)$ is wide sense stationary. Now we calculate the cross correlation

\begin{align*}
R_{XX_1}(t, \tau) &= E[X(t)X_1(t + \tau)] \\
&= E[X(t)X(t + \tau + a)] \\
&= R_X(\tau + a).
\end{align*}

Since $R_{XX_1}(t, \tau)$ depends on the time difference $\tau$ but not on the absolute time $t$, we conclude that $X(t)$ and $X_1(t)$ are jointly wide sense stationary.

(b) Since $E[X_2(t)] = E[X(at)] = \mu_X$ and

\begin{align*}
R_{X_2}(t, \tau) &= E[X_2(t)X_2(t + \tau)] \\
&= E[X(at)X(a(t + \tau))] \\
&= E[X(at)X(at + a\tau)] = R_X(a\tau),
\end{align*}

we have verified that $X_2(t)$ is wide sense stationary. Now we calculate the cross correlation

\begin{align*}
R_{XX_2}(t, \tau) &= E[X(t)X_2(t + \tau)] \\
&= E[X(t)X(a(t + \tau))] \\
&= R_X((a - 1)t + \tau).
\end{align*}

Except for the trivial case when $a = 1$ and $X_2(t) = X(t)$, $R_{XX_2}(t, \tau)$ depends on both the absolute time $t$ and the time difference $\tau$, we conclude that $X(t)$ and $X_2(t)$ are not jointly wide sense stationary.

**Problem 10.11.3 Solution**

(a) $Y(t)$ has autocorrelation function

\begin{align*}
R_Y(t, \tau) &= E[Y(t)Y(t + \tau)] \\
&= E[X(t - t_0)X(t + \tau - t_0)] \\
&= R_X(\tau),
\end{align*}

(b) The cross correlation of $X(t)$ and $Y(t)$ is

\begin{align*}
R_{XY}(t, \tau) &= E[X(t)Y(t + \tau)] \\
&= E[X(t)X(t + \tau - t_0)] \\
&= R_X(\tau - t_0).
\end{align*}

(c) We have already verified that $R_Y(t, \tau)$ depends only on the time difference $\tau$. Since $E[Y(t)] = E[X(t - t_0)] = \mu_X$, we have verified that $Y(t)$ is wide sense stationary.

(d) Since $X(t)$ and $Y(t)$ are wide sense stationary and since we have shown that $R_{XY}(t, \tau)$ depends only on $\tau$, we know that $X(t)$ and $Y(t)$ are jointly wide sense stationary.

**Comment:** This problem is badly designed since the conclusions don’t depend on the specific $R_X(\tau)$ given in the problem text. (Sorry about that!)
Problem 10.12.1 Solution
Writing \( Y(t + \tau) = \int_0^{t+\tau} N(v) \, dv \) permits us to write the autocorrelation of \( Y(t) \) as

\[
R_Y(t, \tau) = E[Y(t)Y(t + \tau)] = E\left[ \int_0^t \int_0^{t+\tau} N(u)N(v) \, dv \, du \right] \quad (1)
\]

\[
= \int_0^t \int_0^{t+\tau} E[N(u)N(v)] \, dv \, du \quad (2)
\]

\[
= \int_0^t \int_0^{t+\tau} \alpha \delta(u - v) \, dv \, du. \quad (3)
\]

At this point, it matters whether \( \tau \geq 0 \) or \( \tau < 0 \). When \( \tau \geq 0 \), then \( v \) ranges from \( 0 \) to \( t + \tau \) and at some point in the integral over \( v \) we will have \( v = u \). That is, when \( \tau \geq 0 \),

\[
R_Y(t, \tau) = \int_0^t \alpha \, du = \alpha t. \quad (4)
\]

When \( \tau < 0 \), then we must reverse the order of integration. In this case, when the inner integral is over \( u \), we will have \( u = v \) at some point so that

\[
R_Y(t, \tau) = \int_0^{t+\tau} \int_0^t \alpha \delta(u - v) \, du \, dv = \int_0^{t+\tau} \alpha \, dv = \alpha(t + \tau). \quad (5)
\]

Thus we see the autocorrelation of the output is

\[
R_Y(t, \tau) = \alpha \min\{t, t + \tau\}. \quad (6)
\]

Perhaps surprisingly, \( R_Y(t, \tau) \) is what we found in Example 10.19 to be the autocorrelation of a Brownian motion process. In fact, Brownian motion is the integral of the white noise process.

Problem 10.12.2 Solution
Let \( \mu_i = E[X(t_i)] \).

(a) Since \( C_X(t_1, t_2 - t_1) = \rho \sigma_1 \sigma_2 \), the covariance matrix is

\[
C = \begin{bmatrix}
C_X(t_1, t_2) & C_X(t_1, t_2 - t_1) \\
C_X(t_2, t_1 - t_2) & C_X(t_2, 0)
\end{bmatrix} = \begin{bmatrix}
\sigma_1^2 & \rho \sigma_1 \sigma_2 \\
\rho \sigma_1 \sigma_2 & \sigma_2^2
\end{bmatrix} \quad (1)
\]

Since \( C \) is a \( 2 \times 2 \) matrix, it has determinant \(|C| = \sigma_1^2 \sigma_2^2 (1 - \rho^2)\).

(b) It is easy to verify that

\[
C^{-1} = \frac{1}{1 - \rho^2} \begin{bmatrix}
\frac{1}{\sigma_1^2} & -\rho \\
-\rho & \frac{1}{\sigma_2^2}
\end{bmatrix} \quad (2)
\]

(c) The general form of the multivariate density for \( X(t_1), X(t_2) \) is

\[
f_{X(t_1),X(t_2)}(x_1, x_2) = \frac{1}{(2\pi)^{k/2} |C|^{1/2}} e^{-\frac{1}{2}(x - \mu_X)^T C^{-1} (x - \mu_X)} \quad (3)
\]

where \( k = 2 \) and \( x = [x_1 \quad x_2]' \) and \( \mu_X = [\mu_1 \quad \mu_2]' \). Hence,

\[
\frac{1}{(2\pi)^{k/2} |C|^{1/2}} = \frac{1}{2\pi \sqrt{\sigma_1^2 \sigma_2^2 (1 - \rho^2)}}. \quad (4)
\]
Furthermore, the exponent is

\[-\frac{1}{2}(\bar{x} - \bar{\mu}_X)^\top C^{-1}(\bar{x} - \bar{\mu}_X)\]

\[= -\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 & x_2 - \mu_2 \end{bmatrix} \frac{1}{1 - \rho^2} \begin{bmatrix} \frac{1}{\sigma_1^2} & -\rho \\ -\rho & \frac{1}{\sigma_2^2} \end{bmatrix} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix} \]

\[= \frac{\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho(x_1 - \mu_1)(x_2 - \mu_2) + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2}{2(1 - \rho^2)} \] (5)

Plugging in each piece into the joint PDF \( f_{X(t_1), X(t_2)}(x_1, x_2) \) given above, we obtain the bivariate Gaussian PDF.

**Problem 10.12.3 Solution**

Let \( W = [W(t_1) \ W(t_2) \ \cdots \ \ W(t_n)]' \) denote a vector of samples of a Brownian motion process. To prove that \( W(t) \) is a Gaussian random process, we must show that \( W \) is a Gaussian random vector. To do so, let

\[ X = [X_1 \ \cdots \ X_n]' \]

\[ = [W(t_1) \ W(t_2) - W(t_1) \ W(t_3) - W(t_2) \ \cdots \ W(t_n) - W(t_{n-1})]' \] (1)

denote the vector of increments. By the definition of Brownian motion, \( X_1, \ldots, X_n \) is a sequence of independent Gaussian random variables. Thus \( X \) is a Gaussian random vector. Finally,

\[ W = \begin{bmatrix} W_1 \\ W_2 \\ \vdots \\ W_n \end{bmatrix} = \begin{bmatrix} X_1 \\ X_1 + X_2 \\ \vdots \\ X_1 + \cdots + X_n \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} X. \] (2)

Since \( X \) is a Gaussian random vector and \( W = AX \) with \( A \) a rank \( n \) matrix, Theorem 5.16 implies that \( W \) is a Gaussian random vector.

**Problem 10.13.1 Solution**

From the instructions given in the problem, the program `noisycosine.m` will generate the four plots.

```matlab
n=1000; t=0.001*(-n:n);
wgaussrv(0,0.01,(2*n)+1);
%Continuous Time, Continuous Value
xc=cos(2*pi*t)+w';
plot(t,xcc); xlabel('t');ylabel('X_{cc}(t)'); axis([-1 1 -3 3]);
figure; %Continuous Time, Discrete Value
xcd=round(xcc); plot(t,xcd); xlabel('t');ylabel('X_{cd}(t)'); axis([-1 1 -3 3]);
figure; %Discrete time, Continuous Value
ts=0.001*(-n:n); xdc=subsample(xcc,100);
plot(ts,xdc,'b.'); xlabel('t');ylabel('X_{dc}(t)'); axis([-1 1 -3 3]);
figure; %Discrete Time, Discrete Value
xdd=subsample(xcd,100); plot(ts,xdd,'b.'); xlabel('t');ylabel('X_{dd}(t)'); axis([-1 1 -3 3]);
```
In `noisycosine.m`, we use a function `subsample.m` to obtain the discrete time sample functions. In fact, `subsample` is hardly necessary since it’s such a simple one-line MATLAB function:

```matlab
function y=subsample(x,n)
%input x(1), x(2) ...
%output y(1)=x(1), y(2)=x(1+n), y(3)=x(2n+1)
y=x(1:n:length(x));
```

However, we use it just to make `noisycosine.m` a little more clear.

**Problem 10.13.2 Solution**

```
>> t=(1:600)';
>> M=simswitch(10,0.1,t);
>> Mavg=cumsum(M)./t;
>> plot(t,M,t,Mavg);
```

These commands will simulate the switch for 600 minutes, producing the vector `M` of samples of \(M(t)\) each minute, the vector `Mavg` which is the sequence of time average estimates, and a plot resembling this one:

```
function Mavg=simswitchavg(T,k)
%Usage: Mavg=simswitchavg(T,k)
%simulate k runs of duration T of the telephone switch in Chapter 10
%and plot the time average of each run
 t=(1:k)';
%each column of Mavg is a time average sample run
 Mavg=zeros(T,k);
 for n=1:k,
 M=simswitch(10,0.1,t);
 Mavg(:,n)=cumsum(M)./t;
 end
 plot(t,Mavg);
```

The command `simswitchavg(600,10)` produced this graph:

From the figure, it appears that the time average is converging to a value in the neighborhood of 100. In particular, because the switch is initially empty with \(M(0) = 0\), it takes a few hundred minutes for the time average to climb to something close to 100. Following the problem instructions, we can write the following short program to examine ten simulation runs:
From the graph, one can see that even after \( T = 600 \) minutes, each sample run produces a time average \( \overline{M}_{600} \) around 100. Note that in Chapter 12, we will able Markov chains to prove that the expected number of calls in the switch is in fact 100. However, note that even if \( T \) is large, \( \overline{M}_T \) is still a random variable. From the above plot, one might guess that \( \overline{M}_{600} \) has a standard deviation of perhaps \( \sigma = 2 \) or \( \sigma = 3 \). An exact calculation of the variance of \( \overline{M}_{600} \) is fairly difficult because it is a sum of dependent random variables, each of which has a PDF that is in itself reasonably difficult to calculate.

**Problem 10.13.3 Solution**

In this problem, our goal is to find out the average number of ongoing calls in the switch. Before we use the approach of Problem 10.13.2, it’s worth a moment to consider the physical situation. In particular, calls arrive as a Poisson process of rate \( \lambda = 100 \) call/minute and each call has duration of *exactly* one minute. As a result, if we inspect the system at an arbitrary time \( t \) at least one minute past initialization, the number of calls at the switch will be exactly the number of calls \( N_1 \) that arrived in the previous minute. Since calls arrive as a Poisson process of rate \( \lambda = 100 \) calls/minute, \( N_1 \) is a Poisson random variable with \( E[N_1] = 100 \).

In fact, this should be true for every inspection time \( t \). Hence it should surprising if we compute the time average and find the time average number in the queue to be something other than 100. To check out this quickie analysis, we use the method of Problem 10.13.2. However, unlike Problem 10.13.2, we cannot directly use the function `simswitch.m` because the call duration are no longer exponential random variables. Instead, we must modify `simswitch.m` for the deterministic one minute call durations, yielding the function `simswitchd.m`:

```matlab
function M=simswitchd(lambda,T,t)
 % Poisson arrivals, rate lambda
 % Deterministic (T) call duration
 % For vector t of times
 % M(i) = no. of calls at time t(i)
 s=poissonarrivals(lambda,max(t));
 y=s+T;
 A=countup(s,t);
 D=countup(y,t);
 M=A-D;
end
```

Note that if you compare `simswitch.m` in the text with `simswitchd.m` here, two changes occurred. The first is that the exponential call durations are replaced by the deterministic time \( T \). The other change is that `count(s,t)` is replaced by `countup(s,t)`. In fact, \( n=countup(x,y) \) does exactly the same thing as \( n=count(x,y) \); in both cases, \( n(i) \) is the number of elements less than or equal to \( y(i) \). The difference is that `countup` requires that the vectors \( x \) and \( y \) be nondecreasing.

Now we use the same procedure as in Problem 10.13.2 and form the time average

\[
\overline{M}(T) = \frac{1}{T} \sum_{t=1}^{T} M(t).
\]
We form and plot the time average using these commands will yield a plot vaguely similar to that shown below.

We used the word “vaguely” because at \( t = 1 \), the time average is simply the number of arrivals in the first minute, which is a Poisson (\( \alpha = 100 \)) random variable which has not been averaged. Thus, the left side of the graph will be random for each run. As expected, the time average appears to be converging to 100.

**Problem 10.13.4 Solution**

The random variable \( S_n \) is the sum of \( n \) exponential (\( \lambda \)) random variables. That is, \( S_n \) is an Erlang \((n, \lambda)\) random variable. Since \( K = 1 \) if and only if \( S_n > T \), \( P[K = 1] = P[S_n > T] \). Typically, \( P[K = 1] \) is fairly high because

\[
E[S_n] = \frac{n}{\lambda} = \frac{[1.1\lambda T]}{\lambda} \approx 1.1T.
\]

(1)

Increasing \( n \) increases \( P[K = 1] \); however, poissonarrivals then does more work generating exponential random variables. Although we don’t want to generate more exponential random variables than necessary, if we need to generate a lot of arrivals (ie a lot of exponential interarrival times), then MATLAB is typically faster generating a vector of them all at once rather than generating them one at a time. Choosing \( n = [1.1\lambda T] \) generates about 10 percent more exponential random variables than we typically need. However, as long as \( P[K = 1] \) is high, a ten percent penalty won’t be too costly.

When \( n \) is small, it doesn’t much matter if we are efficient because the amount of calculation is small. The question that must be addressed is to estimate \( P[K = 1] \) when \( n \) is large. In this case, we can use the central limit theorem because \( S_n \) is the sum of \( n \) exponential random variables. Since \( E[S_n] = n/\lambda \) and \( \text{Var}[S_n] = n/\lambda^2 \),

\[
P[S_n > T] = P \left[ \frac{S_n - n/\lambda}{\sqrt{n/\lambda^2}} > \frac{T - n/\lambda}{\sqrt{n/\lambda^2}} \right] \approx Q \left( \frac{\lambda T - n}{\sqrt{n}} \right)
\]

(2)

To simplify our algebra, we assume for large \( n \) that 0.1\( \lambda \)T is an integer. In this case, \( n = 1.1\lambda T \) and

\[
P[S_n > T] \approx Q \left( -\frac{0.1\lambda T}{\sqrt{1.1\lambda T}} \right) = \Phi \left( \sqrt{\frac{\lambda T}{110}} \right)
\]

(3)

Thus for large \( \lambda T \), \( P[K = 1] \) is very small. For example, if \( \lambda T = 1,000 \), \( P[S_n > T] \approx \Phi(3.01) = 0.9987 \). If \( \lambda T = 10,000 \), \( P[S_n > T] \approx \Phi(9.5) \).
Problem 10.13.5 Solution
Following the problem instructions, we can write the function `newarrivals.m`. For convenience, here are `newarrivals` and `poissonarrivals` side by side.

```
function s=newarrivals(lam,T)
%Usage s=newarrivals(lam,T)
%Returns Poisson arrival times
%s=[s(1) ... s(n)] over [0,T]
 n=poissonrv(lam*T,1);
 s=sort(T*rand(n,1));
end

function s=poissonarrivals(lam,T)
%arrival times s=[s(1) ... s(n)]
 % s(n)<= T < s(n+1)
 n=ceil(1.1*lam*T);
 s=cumsum(exponentialrv(lam,n));
 while (s(length(s))< T),
 s_new=s(length(s))+ ...
 cumsum(exponentialrv(lam,n));
 s=[s; s_new];
 end
 s=s(s<=T);
end
```

Clearly the code for `newarrivals` is shorter, more readable, and perhaps, with the help of Problem 10.6.4, more logical than `poissonarrivals`. Unfortunately this doesn’t mean the code runs better. Here are some `cputime` comparisons:

```
>> t=cputime;s=poissonarrivals(1,100000);t=cputime-t
 t =
 0.1110
>> t=cputime;s=newarrivals(1,100000);t=cputime-t
 t =
 0.5310
>> t=cputime;poissonrv(100000,1);t=cputime-t
 t =
 0.5200
```

Unfortunately, these results were highly repeatable. The function `poissonarrivals` generated 100,000 arrivals of a rate 1 Poisson process required roughly 0.1 seconds of cpu time. The same task took `newarrivals` about 0.5 seconds, or roughly 5 times as long! In the `newarrivals` code, the culprit is the way `poissonrv` generates a single Poisson random variable with expected value 100,000. In this case, `poissonrv` generates the first 200,000 terms of the Poisson PMF! This required calculation is so large that it dominates the work need to generate 100,000 uniform random numbers. In fact, this suggests that a more efficient way to generate a Poisson ($\alpha$) random variable $N$ is to generate arrivals of a rate $\alpha$ Poisson process until the $N$th arrival is after time 1.

Problem 10.13.6 Solution
We start with `brownian.m` to simulate the Brownian motion process with barriers. Since the goal is to estimate the barrier probability $P[|X(t)| = b]$, we don’t keep track of the value of the process over all time. Also, we simply assume that a unit time step $\tau = 1$ for the process. Thus, the process starts at $n = 0$ at position $W_0 = 0$ at each step $n$, the position, if we haven’t reached a barrier, is $W_n = W_{n-1} + X_n$, where $X_1, \ldots, X_T$ are iid Gaussian $(0, \sqrt{\alpha})$ random variables. Accounting for the effect of barriers,

$$ W_n = \max(\min(W_{n-1} + X_n, b), -b). \quad (1) $$

To implement the simulation, we can generate the vector $x$ of increments all at once. However to check at each time step whether we are crossing a barrier, we need to proceed sequentially. (This is analogous to the problem in Quiz 10.13.)
In *brownbarrier* shown below, \(pb(1)\) tracks how often the process touches the left barrier at \(-b\) while \(pb(2)\) tracks how often the right side barrier at \(b\) is reached. By symmetry, \(P[X(t) = b] = P[X(t) = -b]\). Thus if \(T\) is chosen very large, we should expect \(pb(1) = pb(2)\). The extent to which this is not the case gives an indication of the extent to which we are merely estimating the barrier probability. Here is the code and for each \(T \in \{10,000, 100,000, 1,000,000\}\), here two sample runs:

```matlab
function pb=brownwall(alpha,b,T)
%pb=brownwall(alpha,b,T)
%Brownian motion, param. alpha
%walls at [-b, b], sampled
%unit of time until time T
%each Returns vector pb:
%pb(1)=fraction of time at -b
%pb(2)=fraction of time at b
T=ceil(T);
x=sqrt(alpha).*gaussrv(0,1,T);
w=0;pb=zeros(1,2);
for k=1:T,
 w=w+x(k);
 if (w <= -b)
 w=-b;
 pb(1)=pb(1)+1;
 elseif (w >= b)
 w=b;
 pb(2)=pb(2)+1;
 end
end
pb=pb/T;
```

The sample runs show that for \(\alpha = 0.1\) and \(b = 1\) that the

\[
P [X(t) = -b] \approx P [X(t) = b] \approx 0.03.
\]

Otherwise, the numerical simulations are not particularly instructive. Perhaps the most important thing to understand is that the Brownian motion process with barriers is *very* different from the ordinary Brownian motion process. Remember that for ordinary Brownian motion, the variance of \(X(t)\) always increases linearly with \(t\). For the process with barriers, \(X^2(t) \leq b^2\) and thus \(\text{Var}[X(t)] \leq b^2\). In fact, for the process with barriers, the PDF of \(X(t)\) converges to a limit as \(t\) becomes large. If you’re curious, you shouldn’t have much trouble digging in the library to find out more.

**Problem 10.13.7 Solution**

In this problem, we start with the *simswitch.m* code to generate the vector of departure times \(y\). We then construct the vector \(I\) of inter-departure times. The command `hist, 20` will generate a 20 bin histogram of the departure times. The fact that this histogram resembles an exponential PDF suggests that perhaps it is reasonable to try to match the PDF of an exponential (\(\mu\)) random variable against the histogram.

In most problems in which one wants to fit a PDF to measured data, a key issue is how to choose the parameters of the PDF. In this problem, choosing \(\mu\) is simple. Recall that the switch has a Poisson arrival process of rate \(\lambda\) so interarrival times are exponential (\(\lambda\)) random variables. If \(1/\mu < 1/\lambda\), then the average time between departures from the switch is less than the average
time between arrivals to the switch. In this case, calls depart the switch faster than they arrive which is impossible because each departing call was an arriving call at an earlier time. Similarly, if $1/\mu > 1/\lambda$, then calls would be departing from the switch more slowly than they arrived. This can happen to an overloaded switch; however, it’s impossible in this system because each arrival departs after an exponential time. Thus the only possibility is that $1/\mu = 1/\lambda$. In the program `simswitchdepart.m`, we plot a histogram of departure times for a switch with arrival rate $\lambda$ against the scaled exponential ($\lambda$) PDF $\lambda e^{-\lambda x}b$ where $b$ is the histogram bin size. Here is the code:

```matlab
function I=simswitchdepart(lambda,mu,T)
%Usage: I=simswitchdepart(lambda,mu,T)
%Poisson arrivals, rate lambda
%Exponential (mu) call duration
%Over time [0,T], returns I,
%the vector of inter-departure times
%M(i) = no. of calls at time t(i)
s=poissonarrivals(lambda,T);
y=s+exponentialrv(mu,length(s));
y=sort(y);
N=length(y);
I=y-[0; y(1:N-1)]; %interdeparture times
imax=max(I);b=ceil(N/100);
id=imax/b; x=id/2:id:imax;
pd=hist(I,x); pd=pd/sum(pd);
px=exponentialpdf(lambda,x)*id;
plot(x,px,x,pd);
xlabel(\it x');ylabel(\it Probability');
legend('Exponential PDF','Relative Frequency');
```

Here is an example of the output corresponding to `simswitchdepart(10,1,1000)`.

As seen in the figure, the match is quite good. Although this is not a carefully designed statistical test of whether the inter-departure times are exponential random variables, it is enough evidence that one may want to pursue whether such a result can be proven.

In fact, the switch in this problem is an example of an $M/M/\infty$ queuing system for which it has been shown that not only do the inter-departure have an exponential distribution, but the steady-state departure process is a Poisson process. For the curious reader, details can be found, for example, in the text *Discrete Stochastic Processes* by Gallager.
Problem 11.1.1 Solution
For this problem, it is easiest to work with the expectation operator. The mean function of the output is
\[ E[Y(t)] = 2 + E[X(t)] = 2 \]  
(1)
The autocorrelation of the output is
\[ R_Y(t, \tau) = E[(2 + X(t)) (2 + X(t + \tau))] \]
\[ = E[4 + 2X(t) + 2X(t + \tau) + X(t)X(t + \tau)] \]
\[ = 4 + 2E[X(t)] + 2E[X(t + \tau)] + E[X(t)X(t + \tau)] \]
\[ = 4 + R_X(\tau) \]
(5)
We see that \( R_Y(t, \tau) \) only depends on the time difference \( \tau \). Thus \( Y(t) \) is wide sense stationary.

Problem 11.1.2 Solution
By Theorem 11.2, the mean of the output is
\[ \mu_Y = \mu_X \int_{-\infty}^{\infty} h(t) \, dt \]
\[ = -3 \int_{0}^{10^{-3}} (1 - 10^6 t^2) \, dt \]
\[ = -3 \left( t - \left(\frac{10^6}{3} t^3\right)\right) \bigg|_{0}^{10^{-3}} \]
\[ = -2 \times 10^{-3} \text{ volts} \]
(4)

Problem 11.1.3 Solution
By Theorem 11.2, the mean of the output is
\[ \mu_Y = \mu_X \int_{-\infty}^{\infty} h(t) \, dt = 4 \int_{0}^{\infty} e^{-t/a} \, dt = -4a e^{-t/a} \bigg|_{0}^{\infty} = 4a. \]
(1)
Since \( \mu_Y = 1 = 4a \), we must have \( a = 1/4 \).

Problem 11.1.4 Solution
Since \( E[Y^2(t)] = R_Y(0) \), we use Theorem 11.2(a) to evaluate \( R_Y(\tau) \) at \( \tau = 0 \). That is,
\[ R_Y(0) = \int_{-\infty}^{\infty} h(u) \int_{-\infty}^{\infty} h(v) R_X(u - v) \, dv \, du \]
\[ = \int_{-\infty}^{\infty} h(u) \int_{-\infty}^{\infty} h(v) \eta_0 \delta(u - v) \, dv \, du \]
\[ = \eta_0 \int_{-\infty}^{\infty} h^2(u) \, du, \]
by the sifting property of the delta function.

381
Problem 11.2.1 Solution

(a) Note that
\[ Y_i = \sum_{n=-\infty}^{\infty} h_n X_{i-n} = \frac{1}{3} X_{i+1} + \frac{1}{3} X_i + \frac{1}{3} X_{i-1} \]  

By matching coefficients, we see that
\[ h_n = \begin{cases} 
1/3 & n = -1, 0, 1 \\
0 & \text{otherwise} 
\end{cases} \]

(b) By Theorem 11.5, the output autocorrelation is
\[ R_Y[n] = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h_i h_j R_X[n+i-j] \]
\[ = \frac{1}{9} \sum_{i=-1}^{1} \sum_{j=-1}^{1} R_X[n+i-j] \]
\[ = \frac{1}{9} (R_X[n+2] + 2R_X[n+1] + 3R_X[n] + 2R_X[n-1] + R_X[n-2]) \]

Substituting in \( R_X[n] \) yields
\[ R_Y[n] = \begin{cases} 
1/3 & n = 0 \\
2/9 & |n| = 1 \\
1/9 & |n| = 2 \\
0 & \text{otherwise} 
\end{cases} \]

Problem 11.2.2 Solution
Applying Theorem 11.4 with sampling period \( T_s = 1/4000 \) s yields
\[ R_X[k] = R_X(kT_s) = 10 \frac{\sin(2000\pi kT_s) + \sin(1000\pi kT_s)}{2000\pi kT_s} \]
\[ = 20 \frac{\sin(0.5\pi k) + \sin(0.25\pi k)}{\pi k} \]
\[ = 10 \text{sinc}(0.5k) + 5 \text{sinc}(0.25k) \]

Problem 11.2.3 Solution

(a) By Theorem 11.5, the expected value of the output is
\[ \mu_W = \mu_Y \sum_{n=-\infty}^{\infty} h_n = 2\mu_Y = 2 \]
(b) Theorem 11.5 also says that the output autocorrelation is

\[ R_W[n] = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h_i h_j R_Y[n + i - j] \]

(2)

\[ = \sum_{i=0}^{1} \sum_{j=0}^{1} R_Y[n + i - j] \]

(3)

\[ = R_Y[n - 1] + 2R_Y[n] + R_Y[n + 1] \]

(4)

For \( n = -3 \),


(5)

Following the same procedure, it's easy to show that \( R_W[n] \) is nonzero for \(|n| = 0, 1, 2\). Specifically,

\[ R_W[n] = \begin{cases} 
0.5 & |n| = 3 \\
3 & |n| = 2 \\
7.5 & |n| = 1 \\
10 & n = 0 \\
0 & \text{otherwise}
\end{cases} \]

(6)

(c) The second moment of the output is \( E[W_n^2] = R_W[0] = 10 \). The variance of \( W_n \) is

\[ \text{Var}[W_n] = E[W_n^2] - (E[W_n])^2 = 10 - 2^2 = 6 \]

(7)

(d) This part doesn’t require any probability. It just checks your knowledge of linear systems and convolution. There is a bit of confusion because \( h_n \) is used to denote both the filter that transforms \( X_n \) to \( Y_n \) as well as the filter that transforms \( Y_n \) to \( W_n \). To avoid confusion, we will use \( \hat{h}_n \) to denote the filter that transforms \( X_n \) to \( Y_n \). Using Equation (11.25) for discrete-time convolution, we can write

\[ W_n = \sum_{j=-\infty}^{\infty} h_j Y_{n-j}, \quad Y_{n-j} = \sum_{i=-\infty}^{\infty} \hat{h}_i X_{n-j-i}. \]

(8)

Combining these equations yields

\[ W_n = \sum_{j=-\infty}^{\infty} h_j \sum_{i=-\infty}^{\infty} \hat{h}_i X_{n-j-i}. \]

(9)

For each \( j \), we make the substitution \( k = i + j \), and then reverse the order of summation to obtain

\[ W_n = \sum_{j=-\infty}^{\infty} h_j \sum_{k=-\infty}^{\infty} \hat{h}_{k-j} X_{n-k} = \sum_{k=-\infty}^{\infty} \left( \sum_{j=-\infty}^{\infty} h_j \hat{h}_{k-j} \right) X_{n-k}. \]

(10)

Thus we see that

\[ g_k = \sum_{j=-\infty}^{\infty} h_j \hat{h}_{k-j}. \]

(11)

That is, the filter \( g_n \) is the convolution of the filters \( \hat{h}_n \) and \( h_n \).
In the context of our particular problem, the filter \( \hat{h}_n \) that transforms \( X_n \) to \( Y_n \) is given in Example 11.5. The two filters are
\[
\hat{h} = \begin{bmatrix} \hat{h}_0 & \hat{h}_1 \end{bmatrix}' = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}'
\]
and
\[
h = \begin{bmatrix} h_0 & h_1 \end{bmatrix}' = \begin{bmatrix} 1 & 1 \end{bmatrix}'
\]
(12)

Keep in mind that \( h_n = \hat{h}_n = 0 \) for \( n < 0 \) or \( n > 1 \). From Equation (11),
\[
g_k = \hat{h}_k + \hat{h}_{k-1} = \begin{cases} 
1/2 & k = 0 \\
1 & k = 1 \\
1/2 & k = 2 \\
0 & \text{otherwise}
\end{cases}
\]
(13)

Problem 11.2.4 Solution

(a) By Theorem 11.5, the mean output is
\[
\mu_V = \mu_Y \sum_{n=-\infty}^{\infty} h_n = (-1 + 1)\mu_Y = 0
\]
(1)

(b) Theorem 11.5 also says that the output autocorrelation is
\[
R_V[n] = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h_i h_j R_Y[n + i - j]
\]
(2)
\[
= \sum_{i=0}^{1} \sum_{j=0}^{1} h_i h_j R_Y[n + i - j]
\]
(3)
\[
= -R_Y[n - 1] + 2R_Y[n] - R_Y[n + 1]
\]
(4)

For \( n = -3 \),
\[
\]
(5)

Following the same procedure, it’s easy to show that \( R_Y[n] \) is nonzero for \( |n| = 0, 1, 2 \). Specifically,
\[
R_V[n] = \begin{cases} 
-0.5 & |n| = 3 \\
-1 & |n| = 2 \\
0.5 & |n| = 1 \\
2 & n = 0 \\
0 & \text{otherwise}
\end{cases}
\]
(6)

(c) Since \( E[V_n] = 0 \), the variance of the output is \( E[V_n^2] = R_V[0] = 2 \). The variance of \( W_n \) is
\[
\text{Var}[V_n] = E\left[ W_n^2 \right] R_V[0] = 2
\]
(7)

(d) This part doesn’t require any probability. It just checks your knowledge of linear systems and convolution. There is a bit of confusion because \( h_n \) is used to denote both the filter that transforms \( X_n \) to \( Y_n \) as well as the filter that transforms \( Y_n \) to \( V_n \). To avoid confusion, we will
use \( \hat{h}_n \) to denote the filter that transforms \( X_n \) to \( Y_n \). Using Equation (11.25) for discrete-time convolution, we can write

\[
V_n = \sum_{j=-\infty}^{\infty} h_j Y_{n-j}, \quad Y_{n-j} = \sum_{i=-\infty}^{\infty} \hat{h}_i X_{n-j-i}. \tag{8}
\]

Combining these equations yields

\[
V_n = \sum_{j=-\infty}^{\infty} h_j \sum_{i=-\infty}^{\infty} \hat{h}_i X_{n-j-i}. \tag{9}
\]

For the inner sum, we make the substitution \( k = i + j \) and then reverse the order of summation to obtain

\[
V_n = \sum_{j=-\infty}^{\infty} h_j \sum_{k=-\infty}^{\infty} \hat{h}_{k-j} X_{n-k} = \sum_{k=-\infty}^{\infty} \left( \sum_{j=-\infty}^{\infty} h_j \hat{h}_{k-j} \right) X_{n-k}. \tag{10}
\]

Thus we see that

\[
f_k = \sum_{j=-\infty}^{\infty} h_j \hat{h}_{k-j}. \tag{11}
\]

That is, the filter \( f_n \) is the convolution of the filters \( \hat{h}_n \) and \( h_n \). In the context of our particular problem, the filter \( \hat{h}_n \) that transforms \( X_n \) to \( Y_n \) is given in Example 11.5. The two filters are

\[
\hat{h} = [\hat{h}_0 \ \hat{h}_1]' = \left[ 1/2 \ 1/2 \right]', \quad h = [h_0 \ h_1]' = [1 \ -1]' \tag{12}
\]

Keep in mind that \( h_n = \hat{h}_n = 0 \) for \( n < 0 \) or \( n > 1 \). From Equation (11),

\[
f_k = \hat{h}_k - \hat{h}_{k-1} = \begin{cases} 1/2 & k = 0 \\ 0 & k = 1 \\ -1/2 & k = 2 \\ 0 & \text{otherwise} \end{cases} \tag{13}
\]

Problem 11.2.5 Solution
We start with Theorem 11.5:

\[
R_Y [n] = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h_i h_j R_X [n+i-j] \tag{1}
\]

\[
= R_X [n-1] + 2R_X [n] + R_X [n+1] \tag{2}
\]

First we observe that for \( n \leq -2 \) or \( n \geq 2 \),

\[
R_Y [n] = R_X [n-1] + 2R_X [n] + R_X [n+1] = 0 \tag{3}
\]

This suggests that \( R_X [n] = 0 \) for \( |n| > 1 \). In addition, we have the following facts:

\[
R_Y [0] = R_X [-1] + 2R_X [0] + R_X [1] = 2 \tag{4}
\]

\[
R_Y [-1] = R_X [-2] + 2R_X [-1] + R_X [0] = 1 \tag{5}
\]

\[
\]

A simple solution to this set of equations is \( R_X [0] = 1 \) and \( R_X [n] = 0 \) for \( n \neq 0 \).
Problem 11.2.6 Solution
The mean of \( Y_n = (X_n + Y_{n-1})/2 \) can be found by realizing that \( Y_n \) is an infinite sum of the \( X_i \)'s.

\[
Y_n = \left[ \frac{1}{2}X_n + \frac{1}{4}X_{n-1} + \frac{1}{8}X_{n-2} + \ldots \right]
\]  

(1)

Since the \( X_i \)'s are each of zero mean, the mean of \( Y_n \) is also 0. The variance of \( Y_n \) can be expressed as

\[
\text{Var}[Y_n] = \left[ \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \ldots \right] \text{Var}[X] = \sum_{i=1}^{\infty} \left( \frac{1}{4} \right)^i = \frac{1}{1 - 1/4} = \frac{\sigma^2}{3}
\]  

(2)

The above infinite sum converges to \( \frac{1}{1-1/4} - 1 = 1/3 \), implying

\[
\text{Var}[Y_n] = (1/3) \text{Var}[X] = 1/3
\]  

(3)

The covariance of \( Y_{i+1}, Y_i \) can be found by the same method.

\[
\text{Cov}[Y_{i+1}, Y_i] = \left[ \frac{1}{2}X_n + \frac{1}{4}X_{n-1} + \frac{1}{8}X_{n-2} + \ldots \right] \left[ \frac{1}{2}X_{n-1} + \frac{1}{4}X_{n-2} + \frac{1}{8}X_{n-3} + \ldots \right]
\]  

(4)

Since \( E[X_iX_j] = 0 \) for all \( i \neq j \), the only terms that are left are

\[
\text{Cov}[Y_{i+1}, Y_i] = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{1}{2^i} E[X_i^2] = \frac{1}{2} \sum_{i=1}^{\infty} \frac{1}{4^i} E[X_i^2]
\]  

(5)

Since \( E[X_i^2] = \sigma^2 \), we can solve the above equation, yielding

\[
\text{Cov}[Y_{i+1}, Y_i] = \sigma^2/6
\]  

(6)

Finally the correlation coefficient of \( Y_{i+1} \) and \( Y_i \) is

\[
\rho_{Y_{i+1}Y_i} = \frac{\text{Cov}[Y_{i+1}, Y_i]}{\sqrt{\text{Var}[Y_{i+1}]} \sqrt{\text{Var}[Y_i]}} = \frac{\sigma^2/6}{\sigma^2/3} = \frac{1}{2}
\]  

(7)

Problem 11.2.7 Solution
There is a technical difficulty with this problem since \( X_n \) is not defined for \( n < 0 \). This implies \( C_X[n, k] \) is not defined for \( k < -n \) and thus \( C_X[n, k] \) cannot be completely independent of \( k \). When \( n \) is large, corresponding to a process that has been running for a long time, this is a technical issue, and not a practical concern. Instead, we will find \( \bar{\sigma}^2 \) such that \( C_X[n, k] = C_X[k] \) for all \( n \) and \( k \) for which the covariance function is defined. To do so, we need to express \( X_n \) in terms of \( Z_0, Z_1, \ldots, Z_n \). We do this in the following way:

\[
X_n = cX_{n-1} + Z_{n-1}
\]  

(1)

\[
= c[cX_{n-2} + Z_{n-2}] + Z_{n-1}
\]  

(2)

\[
= c^2[cX_{n-3} + Z_{n-3}] + cZ_{n-2} + Z_{n-1}
\]  

(3)

\[
\vdots
\]  

(4)

\[
= c^nX_0 + c^{n-1}Z_0 + c^{n-2}Z_2 + \cdots + Z_{n-1}
\]  

(5)

\[
= c^nX_0 + \sum_{i=0}^{n-1} c^{n-i}Z_i
\]  

(6)
Since \( E[Z_i] = 0 \), the mean function of the \( X_n \) process is

\[
E[X_n] = c^n E[X_0] + \sum_{i=0}^{n-1} c^{n-1-i} E[Z_i] = E[X_0]
\]  

(7)

Thus, for \( X_n \) to be a zero mean process, we require that \( E[X_0] = 0 \). The autocorrelation function can be written as

\[
R_X[n,k] = E[X_n X_{n+k}] = E \left[ \left( c^n X_0 + \sum_{i=0}^{n-1} c^{n-1-i} Z_i \right) \left( c^{n+k} X_0 + \sum_{j=0}^{n+k-1} c^{n+k-1-j} Z_j \right) \right]
\]  

(8)

Although it was unstated in the problem, we will assume that \( X_0 \) is independent of \( Z_0, Z_1, \ldots \) so that \( E[X_0 Z_i] = 0 \). Since \( E[Z_i] = 0 \) and \( E[Z_i Z_j] = 0 \) for \( i \neq j \), most of the cross terms will drop out. For \( k \geq 0 \), autocorrelation simplifies to

\[
R_X[n,k] = c^{2n+k} \text{Var}[X_0] + \sum_{i=0}^{n-1} c^{2(n-1)+k-2i} \sigma^2 = c^{2n+k} \text{Var}[X_0] + \sigma^2 c^k \frac{1 - c^{2n}}{1 - c^2}
\]  

(9)

Since \( E[X_n] = 0 \), \( \text{Var}[X_0] = R_X[n,0] = \sigma^2 \) and we can write for \( k \geq 0 \),

\[
R_X[n,k] = \sigma^2 \frac{c^k}{1 - c^2} + c^{2n+k} \left( \sigma^2 - \frac{\sigma^2}{1 - c^2} \right)
\]  

(10)

For \( k < 0 \), we have

\[
R_X[n,k] = E \left[ \left( c^n X_0 + \sum_{i=0}^{n-1} c^{n-1-i} Z_i \right) \left( c^{n+k} X_0 + \sum_{j=0}^{n+k-1} c^{n+k-1-j} Z_j \right) \right]
\]  

(11)

\[
= c^{2n+k} \text{Var}[X_0] + c^{-k} \sum_{j=0}^{n+k-1} c^{2(n+k-1-j)} \sigma^2
\]  

(12)

\[
= c^{2n+k} \sigma^2 + \sigma^2 c^{-k} \frac{1 - c^{2(n+k)}}{1 - c^2}
\]  

(13)

\[
= \frac{\sigma^2}{1 - c^2} c^{-k} + c^{2n+k} \left( \sigma^2 - \frac{\sigma^2}{1 - c^2} \right)
\]  

(14)

We see that \( R_X[n,k] = \sigma^2 c^{|k|} \) by choosing

\[
\tilde{\sigma}^2 = (1 - c^2) \sigma^2
\]  

(15)

**Problem 11.2.8 Solution**

We can recursively solve for \( Y_n \) as follows.

\[
Y_n = aX_n + aY_{n-1}
\]  

(1)

\[
= aX_n + a[aX_{n-1} + aY_{n-2}]
\]  

(2)

\[
= aX_n + a^2 X_{n-1} + a^2[aX_{n-2} + aY_{n-3}]
\]  

(3)
By continuing the same procedure, we can conclude that

\[ Y_n = \sum_{j=0}^{n} a^{j+1}X_{n-j} + a^nY_0 \]  

(4)

Since \( Y_0 = 0 \), the substitution \( i = n - j \) yields

\[ Y_n = \sum_{i=0}^{n} a^{n-i+1}X_i \]  

(5)

Now we can calculate the mean

\[ E[Y_n] = E\left[ \sum_{i=0}^{n} a^{n-i+1}X_i \right] = \sum_{i=0}^{n} a^{n-i+1}E[X_i] = 0 \]  

(6)

To calculate the autocorrelation \( R_Y[m, k] \), we consider first the case when \( k \geq 0 \).

\[ C_Y[m, k] = E\left[ \sum_{i=0}^{m} a^{m-i+1}X_i \sum_{j=0}^{m+k} a^{m+k-j+1}X_j \right] = \sum_{i=0}^{m} \sum_{j=0}^{m+k} a^{m-i+1}a^{m+k-j+1}E[X_iX_j] \]  

(7)

Since the \( X_i \) is a sequence of iid standard normal random variables,

\[ E[X_iX_j] = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases} \]  

(8)

Thus, only the \( i = j \) terms make a nonzero contribution. This implies

\[ C_Y[m, k] = \sum_{i=0}^{m} a^{m-i+1}a^{m+k-i+1} \]  

(9)

\[ = a^k \sum_{i=0}^{m} a^{2(m-i+1)} \]  

(10)

\[ = a^k [(a^2)^{m+1} + (a^2)^m + \cdots + a^2] \]  

(11)

\[ = \frac{a^2}{1-a^2}a^k [1 - (a^2)^{m+1}] \]  

(12)

For \( k \leq 0 \), we start from

\[ C_Y[m, k] = \sum_{i=0}^{m} \sum_{j=0}^{m+k} a^{m-i+1}a^{m+k-j+1}E[X_iX_j] \]  

(13)

As in the case of \( k \geq 0 \), only the \( i = j \) terms make a contribution. Also, since \( m + k \leq m \),

\[ C_Y[m, k] = \sum_{j=0}^{m+k} a^{m-j+1}a^{m+k-j+1} = a^{-k} \sum_{j=0}^{m+k} a^{m+k-j+1}a^{m+k-j+1} \]  

(14)

By steps quite similar to those for \( k \geq 0 \), we can show that

\[ C_Y[m, k] = \frac{a^2}{1-a^2}a^{-k} [1 - (a^2)^{m+k+1}] \]  

(15)

A general expression that is valid for all \( m \) and \( k \) would be

\[ C_Y[m, k] = \frac{a^2}{1-a^2}a^{|k|} [1 - (a^2)^{\min(m,m+k)+1}] \]  

(16)

Since \( C_Y[m, k] \) depends on \( m \), the \( Y_n \) process is not wide sense stationary.
Problem 11.3.1 Solution

Since the process $X_n$ has expected value $E[X_n] = 0$, we know that $C_X(k) = R_X(k) = 2^{-|k|}$. Thus $\mathbf{X} = [X_1 \ X_2 \ X_3]'$ has covariance matrix

$$C_X = \begin{bmatrix} 2^0 & 2^{-1} & 2^{-2} \\ 2^{-1} & 2^0 & 2^{-1} \\ 2^{-2} & 2^{-1} & 2^0 \end{bmatrix} = \begin{bmatrix} 1 & 1/2 & 1/4 \\ 1/2 & 1 & 1/2 \\ 1/4 & 1/2 & 1 \end{bmatrix}. \quad (1)$$

From Definition 5.17, the PDF of $\mathbf{X}$ is

$$f_X(x) = \frac{1}{(2\pi)^{n/2} |\det(C_X)|^{1/2}} \exp \left(-\frac{1}{2} x'C_X^{-1}x \right). \quad (2)$$

If we are using MATLAB for calculations, it is best to declare the problem solved at this point. However, if you like algebra, we can write out the PDF in terms of the variables $x_1, x_2$ and $x_3$. To do so we find that the inverse covariance matrix is

$$C_X^{-1} = \begin{bmatrix} 4/3 & -2/3 & 0 \\ -2/3 & 5/3 & -2/3 \\ 0 & -2/3 & 4/3 \end{bmatrix} \quad (3)$$

A little bit of algebra will show that $\det(C_X) = 9/16$ and that

$$\frac{1}{2} x'C_X^{-1}x = \frac{2x_1^2}{3} + \frac{5x_2^2}{6} + \frac{2x_3^2}{3} - \frac{2x_1x_2}{3} - \frac{2x_2x_3}{3}. \quad (4)$$

It follows that

$$f_X(x) = \frac{4}{3(2\pi)^{3/2}} \exp \left(-\frac{2x_1^2}{3} - \frac{5x_2^2}{6} - \frac{2x_3^2}{3} + \frac{2x_1x_2}{3} + \frac{2x_2x_3}{3} \right). \quad (5)$$

Problem 11.3.2 Solution

The sequence $X_n$ is passed through the filter

$$\mathbf{h} = [h_0 \ h_1 \ h_2]' = [1 \ -1 \ 1]' \quad (1)$$

The output sequence is $Y_n$.

(a) Following the approach of Equation (11.58), we can write the output $\mathbf{Y}_3 = [Y_1 \ Y_2 \ Y_3]'$ as

$$\mathbf{Y}_3 = \mathbf{H} \mathbf{X}$$

We note that the components of $\mathbf{X}$ are iid Gaussian $(0, 1)$ random variables. Hence $\mathbf{X}$ has covariance matrix $C_X = I$, the identity matrix. Since $\mathbf{Y}_3 = \mathbf{H} \mathbf{X}$,

$$C_{\mathbf{Y}_3} = \mathbf{H} C_X \mathbf{H}' = \mathbf{H} \mathbf{H}' = \begin{bmatrix} 2 & -2 & 1 \\ -2 & 3 & -2 \\ 1 & -2 & 3 \end{bmatrix}. \quad (3)$$

389
Some calculation (by hand or by MATLAB) will show that $\det(C_{Y_3}) = 3$ and that
\[ C_{Y_3}^{-1} = \frac{1}{3} \begin{bmatrix} 5 & 4 & 1 \\ 4 & 5 & 2 \\ 1 & 2 & 2 \end{bmatrix}. \] (4)

Some algebra will show that
\[ y' C_{Y_3}^{-1} y = \frac{5y_1^2 + 5y_2^2 + 2y_3^2 + 8y_1y_2 + 2y_1y_3 + 4y_2y_3}{3}. \] (5)

This implies $Y_3$ has PDF
\[ f_{Y_3}(y) = \frac{1}{(2\pi)^{3/2}|\det(C_{Y_3})|^{1/2}} \exp \left( -\frac{1}{2} y' C_{Y_3}^{-1} y \right) \] (6)

\[ = \frac{1}{(2\pi)^{3/2}\sqrt{3}} \exp \left( -\frac{5y_1^2 + 5y_2^2 + 2y_3^2 + 8y_1y_2 + 2y_1y_3 + 4y_2y_3}{6} \right). \] (7)

(b) To find the PDF of $Y_2 = [Y_1 \ Y_2]'$, we start by observing that the covariance matrix of $Y_2$ is just the upper left $2 \times 2$ submatrix of $C_{Y_3}$. That is,
\[ C_{Y_2} = \begin{bmatrix} 2 & -2 \\ -2 & 3 \end{bmatrix} \quad \text{and} \quad C_{Y_2}^{-1} = \begin{bmatrix} 3/2 & 1 \\ 1 & 1 \end{bmatrix}. \] (8)

Since $\det(C_{Y_2}) = 2$, it follows that
\[ f_{Y_2}(y) = \frac{1}{(2\pi)^{3/2}|\det(C_{Y_2})|^{1/2}} \exp \left( -\frac{1}{2} y' C_{Y_2}^{-1} y \right) \] (9)

\[ = \frac{1}{(2\pi)^{3/2}\sqrt{2}} \exp \left( -\frac{3}{2} y_1^2 - 2y_1y_2 - y_2^2 \right). \] (10)

**Problem 11.3.3 Solution**

The sequence $X_n$ is passed through the filter
\[ h = [h_0 \ h_1 \ h_2]' = [1 \ -1 \ 1]' \] (1)

The output sequence is $Y_n$. Following the approach of Equation (11.58), we can write the output $Y = [Y_1 \ Y_2 \ Y_3]'$ as
\[ Y = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} h_2 \ h_1 \ h_0 \\ 0 \ h_2 \ h_1 \ h_0 \\ 0 \ 0 \ h_2 \ h_1 \ h_0 \end{bmatrix} \begin{bmatrix} X_{-1} \\ X_0 \\ X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} X_{-1} \\ X_0 \\ X_1 \\ X_2 \\ X_3 \end{bmatrix}. \] (2)

Since $X_n$ has autocovariance function $C_X(k) = 2^{-|k|}$, $X$ has covariance matrix
\[ C_X = \begin{bmatrix} 1 & 1/2 & 1/4 & 1/8 & 1/16 \\ 1/2 & 1 & 1/2 & 1/4 & 1/8 \\ 1/4 & 1/2 & 1 & 1/2 & 1/4 \\ 1/8 & 1/4 & 1/2 & 1 & 1/2 \\ 1/16 & 1/8 & 1/4 & 1/2 & 1 \end{bmatrix}. \] (3)
Since \( Y = HX \),
\[
C_Y = HC_XH' = \begin{bmatrix}
3/2 & -3/8 & 9/16 \\
-3/8 & 3/2 & -3/8 \\
9/16 & -3/8 & 3/2
\end{bmatrix} .
\] (4)

Some calculation (by hand or preferably by MATLAB) will show that \( \det(C_Y) = 675/256 \) and that
\[
C_Y^{-1} = \frac{1}{15} \begin{bmatrix}
12 & 2 & -4 \\
2 & 11 & 2 \\
-4 & 2 & 12
\end{bmatrix} .
\] (5)

Some algebra will show that
\[
y'C_Y^{-1}y = \frac{12y_1^2 + 11y_2^2 + 12y_3^2 + 4y_1y_2 + -8y_1y_3 + 4y_2y_3}{15} .
\] (6)

This implies \( Y \) has PDF
\[
f_Y(y) = \frac{1}{(2\pi)^3/2[\det(C_Y)]^{1/2}} \exp\left(-\frac{1}{2}y'C_Y^{-1}y\right)
= \frac{16}{(2\pi)^3/15\sqrt{3}} \exp\left(-\frac{12y_1^2 + 11y_2^2 + 12y_3^2 + 4y_1y_2 + -8y_1y_3 + 4y_2y_3}{30}\right) .
\] (7)

This solution is another demonstration of why the PDF of a Gaussian random vector should be left in vector form.

**Comment:** We know from Theorem 11.5 that \( Y \) is a stationary Gaussian process. As a result, the random variables \( Y_1, Y_2 \) and \( Y_3 \) are identically distributed and \( C_Y \) is a symmetric Toeplitz matrix. This might make one think that the PDF \( f_Y(y) \) should be symmetric in the variables \( y_1, y_2 \) and \( y_3 \). However, because \( Y_2 \) is in the middle of \( Y_1 \) and \( Y_3 \), the information provided by \( Y_1 \) and \( Y_3 \) about \( Y_2 \) is different than the information \( Y_1 \) and \( Y_2 \) convey about \( Y_3 \). This fact appears as asymmetry in \( f_Y(y) \).

**Problem 11.3.4 Solution**
The sequence \( X_n \) is passed through the filter
\[
h = [h_0, h_1, h_2]' = [1, 0, -1]' .
\] (1)

The output sequence is \( Y_n \). Following the approach of Equation (11.58), we can write the output \( Y = [Y_1, Y_2, Y_3]' \) as
\[
Y = \begin{bmatrix}
Y_1' \\
Y_2' \\
Y_3'
\end{bmatrix} = \begin{bmatrix}
h_2 & h_1 & h_0 & 0 & 0 \\
0 & h_2 & h_1 & h_0 & 0 \\
0 & 0 & h_2 & h_1 & h_0
\end{bmatrix} \begin{bmatrix}
X_{-1} \\
X_0 \\
X_1 \\
X_2 \\
X_3
\end{bmatrix} \begin{bmatrix}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & -1
\end{bmatrix} .
\] (2)

Since \( X_n \) has autocovariance function \( C_X(k) = 2^{-|k|} \), \( X \) has the Toeplitz covariance matrix
\[
C_X = \begin{bmatrix}
1 & 1/2 & 1/4 & 1/8 & 1/16 \\
1/2 & 1 & 1/2 & 1/4 & 1/8 \\
1/4 & 1/2 & 1 & 1/2 & 1/4 \\
1/8 & 1/4 & 1/2 & 1 & 1/2 \\
1/16 & 1/8 & 1/4 & 1/2 & 1
\end{bmatrix} .
\] (3)
Since \( \mathbf{Y} = \mathbf{HX}, \)
\[
\mathbf{C}_Y = \mathbf{HCH}' = \begin{bmatrix}
3/2 & 3/8 & -9/16 \\
3/8 & 3/2 & 3/8 \\
-9/16 & 3/8 & 3/2
\end{bmatrix}. \tag{4}
\]

Some calculation (preferably by MATLAB) will show that \( \det(\mathbf{C}_Y) = 297/128 \) and that
\[
\mathbf{C}_Y^{-1} = \begin{bmatrix}
10/11 & -1/3 & 14/33 \\
-1/3 & 5/6 & -1/3 \\
14/33 & -1/3 & 10/11
\end{bmatrix}. \tag{5}
\]

Some algebra will show that
\[
\mathbf{y}'\mathbf{C}_Y^{-1}\mathbf{y} = \frac{10}{11}y_1^2 + \frac{5}{6}y_2^2 + \frac{10}{11}y_3^2 - \frac{2}{3}y_1y_2 + \frac{28}{33}y_1y_3 - \frac{2}{3}y_2y_3. \tag{6}
\]

This implies \( \mathbf{Y} \) has PDF
\[
f_\mathbf{Y}(\mathbf{y}) = \frac{1}{(2\pi)^{3/2}[\det(\mathbf{C}_Y)]^{1/2}} \exp \left( -\frac{1}{2} \mathbf{y}'\mathbf{C}_Y^{-1}\mathbf{y} \right) \quad \tag{7}
\]
\[
= \frac{8\sqrt{2}}{(2\pi)^{3/2}3\sqrt{33}} \exp \left( -\frac{5}{11}y_1^2 - \frac{5}{12}y_2^2 - \frac{5}{11}y_3^2 + \frac{1}{3}y_1y_2 - \frac{14}{33}y_1y_3 + \frac{1}{3}y_2y_3 \right). \quad \tag{8}
\]

This solution is yet another demonstration of why the PDF of a Gaussian random vector should be left in vector form.

**Problem 11.4.1 Solution**

This problem is solved using Theorem 11.9 with \( M = 2 \) and \( k = 1 \). The optimum linear predictor filter \( \mathbf{h} = [h_0 \ h_1]' \) of \( X_{n+1} \) given \( X_n = [X_{n-1} \ X_n]' \) is given by
\[
\mathbf{h} = \mathbf{R}_n^{-1} \mathbf{R}_n \mathbf{x}_{n+k}, \tag{1}
\]

where
\[
\mathbf{R}_n = \begin{bmatrix}
R_X[0] & R_X[1] \\
R_X[1] & R_X[0]
\end{bmatrix} = \begin{bmatrix}
1 & 3/4 \\
3/4 & 1
\end{bmatrix} \tag{2}
\]

and
\[
\mathbf{R}_n \mathbf{x}_{n+1} = E \begin{bmatrix}
X_{n-1} \\
X_n
\end{bmatrix} X_{n+1} = \begin{bmatrix} R_X[2] \\
R_X[1]\end{bmatrix} = \begin{bmatrix}
1/2 \\
3/4
\end{bmatrix}. \tag{3}
\]

Thus the filter vector \( \mathbf{h} \) satisfies
\[
\mathbf{h} = \begin{bmatrix} h_1 \\
\end{bmatrix} = \begin{bmatrix} 1/3 \quad 3/4 \quad 1 \end{bmatrix}^{-1} \begin{bmatrix} 1/2 \\
3/4
\end{bmatrix} = \begin{bmatrix} -1/7 \\
6/7
\end{bmatrix}. \tag{4}
\]

Thus \( \mathbf{h} = [6/7 \ -1/7]' \) and the optimum linear predictor of \( X_{n+1} \) given \( X_n \) and \( X_{n-1} \) is
\[
\hat{X}_{n+1} = \mathbf{h}'X_n = \left[ -\frac{1}{7} \ rac{6}{7} \right] \begin{bmatrix} X_{n-1} \\
X_n
\end{bmatrix} = -\frac{1}{7}X_{n-1} + \frac{6}{7}X_n. \tag{5}
\]

To find the mean square error of this predictor, we can calculate it directly as
\[
e_L^* = E \left[ (\hat{X}_{n+1} - X_{n+1})^2 \right] = E \left[ \left( -\frac{1}{7}X_{n-1} + \frac{6}{7}X_n - X_{n+1} \right)^2 \right]. \tag{6}
\]

392
By expanding the square and taking the expectation, each cross-term is of the form $E[X_iX_j] = R_X[i-j]$, so that

$$e^*_L = E \left[ \left( -\frac{1}{7}X_{n-1} + \frac{6}{7}X_n - X_{n+1} \right) \left( -\frac{1}{7}X_{n-1} + \frac{6}{7}X_n - X_{n+1} \right) \right]$$

$$= \frac{1}{49}R_X[0] - \frac{12}{49}R_X[1] + \frac{2}{7}R_X[2] + \frac{36}{49}R_X[0] - \frac{12}{7}R_X[1] + R_X[0]$$

$$= \frac{86}{49}R_X[0] - \frac{96}{49}R_X[1] + \frac{2}{7}R_X[2] = \frac{3}{7}. \quad (7)$$

This direct method is already tedious, even for a simple filter of order $M = 2$. A better way to calculate the mean square error is to recall that Theorem 11.9 is just of Theorem 9.7 expressed in the terminology of filters. Expressing part (c) of Theorem 9.7 in terms of the linear prediction filter $h$, the mean square error of the predictor is

$$e^*_L = \text{Var}[X_{n+1}] - \overline{h}'R_{X_nX_{n+k}} \quad (10)$$

$$= R_X[0] - \overline{h}' \begin{bmatrix} R_X[2] \\ R_X[1] \end{bmatrix} \quad (11)$$

$$= 1 - \left[ -\frac{1}{7} \quad \frac{6}{7} \right] \begin{bmatrix} 1/2 \\ 3/4 \end{bmatrix} = \frac{3}{7}. \quad (12)$$

For an arbitrary filter order $M$, Equation (10) is a much simpler way to compute the mean square error.

**Problem 11.4.2 Solution**

This problem is solved using Theorem 11.9 with $k = 1$. The optimum linear predictor filter $h = [h_0 \ h_1]'$ of $X_{n+1}$ given $X_n = [X_{n-1} \ X_n]'$ is given by

$$\overline{h} = \begin{bmatrix} h_1 \\ h_0 \end{bmatrix} = R_{X_n}^{-1}R_{X_nX_{n+1}}, \quad (1)$$

where

$$R_{X_n} = \begin{bmatrix} R_X[0] & R_X[1] \\ R_X[1] & R_X[0] \end{bmatrix} = \begin{bmatrix} 1.1 & 0.75 \\ 0.75 & 1.1 \end{bmatrix}. \quad (2)$$

and

$$R_{X_nX_{n+1}} = E \begin{bmatrix} X_{n-1} \\ X_n \end{bmatrix}X_{n+1} = \begin{bmatrix} R_X[2] \\ R_X[1] \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.75 \end{bmatrix}. \quad (3)$$

Thus the filter vector $h$ satisfies

$$\overline{h} = \begin{bmatrix} h_1 \\ h_0 \end{bmatrix} = \begin{bmatrix} 1.1 & 0.75 \\ 0.75 & 1.1 \end{bmatrix}^{-1} \begin{bmatrix} 0.5 \\ 0.75 \end{bmatrix} = \begin{bmatrix} -0.0193 \\ 0.6950 \end{bmatrix}. \quad (4)$$

Thus $h = [0.6950 \ -0.0193]'$ and the optimum linear predictor of $X_{n+1}$ given $X_n$ and $X_{n-1}$ is

$$\hat{X}_{n+1} = \overline{h}'X_n = \begin{bmatrix} -0.0193 & 0.6950 \end{bmatrix} \begin{bmatrix} X_{n-1} \\ X_n \end{bmatrix} = -0.0193X_{n-1} + 0.6950X_n. \quad (5)$$

To find the mean square error of this predictor, we can calculate it directly as

$$e^*_L = E \left[ (\hat{X}_{n+1} - X_{n+1})^2 \right] = E \left[ (-0.0193X_{n-1} + 0.6950X_n - X_{n+1})^2 \right]. \quad (6)$$
We can expand the square and take the expectation term by term since each cross-term is of the form $E[X_iX_j] = RX[i - j]$. This approach is followed in the solution of Problem 11.4.1 and it is quite tedious. A better way to calculate the mean square error is to recall that Theorem 11.9 is just Theorem 9.7 expressed in the terminology of filters. Expressing part (c) of Theorem 9.7 in terms of the linear prediction filter $h$, the mean square error of the predictor is

$$e_L^* = \text{Var}[X_{n+1}] - \bar{h}'RX_{n+k} = RX[0] - \bar{h}'[RX[2] \quad RX[1]] \quad (7)$$

$$= 1.1 - [-0.0193 \quad 0.6950] \begin{bmatrix} 1/2 \\ 3/4 \end{bmatrix} = 0.5884. \quad (8)$$

Comment: It is instructive to compare this solution to the solution of Problem 11.4.1 where the random process, denoted $\tilde{X}_n$ here to distinguish it from $X_n$ in this problem, has autocorrelation function

$$R_{\tilde{X}}[k] = \begin{cases} 1 - 0.25 |k| & |k| \leq 4, \\ 0 & \text{otherwise}. \end{cases} \quad (10)$$

The difference is simply that $R_{\tilde{X}}[0] = 1$, rather than $R_X[0] = 1.1$ as in this problem. This difference corresponds to adding an iid noise sequence to $\tilde{X}_n$ to create $X_n$. That is,

$$X_n = \tilde{X}_n + Z_n \quad (11)$$

where $Z_n$ is an iid additive noise sequence with autocorrelation function $R_Z[k] = 0.1\delta[k]$ that is independent of the $X_n$ process. Thus $X_n$ in this problem can be viewed as a noisy version of $\tilde{X}_n$ in Problem 11.4.1. Because the $\tilde{X}_n$ process is less noisy, the optimal predictor filter of $\tilde{X}_{n+1}$ given $\tilde{X}_{n-1}$ and $\tilde{X}_n$ is $h = \begin{bmatrix} 6/7 & -1/7 \end{bmatrix}' = [0.8571 \quad -0.1429]'$, which places more emphasis on the current value $\tilde{X}_n$ in predicting the next value.

In addition, the mean squared error of the predictor of $\tilde{X}_{n+1}$ is only $3/7 = 0.4285$, which is less than $0.5884$. Not surprisingly, the noise in the $X_n$ process reduces the performance of the predictor.

Problem 11.4.3 Solution

This problem generalizes Example 11.14 in that $-0.9$ is replaced by the parameter $c$ and the noise variance $0.2$ is replaced by $\eta^2$. Because we are only finding the first order filter $h = \begin{bmatrix} h_0 & h_1 \end{bmatrix}'$, it is relatively simple to generalize the solution of Example 11.14 to the parameter values $c$ and $\eta^2$.

Based on the observation $Y = [Y_{n-1} \quad Y_n]'$, Theorem 11.11 states that the linear MMSE estimate of $X = X_n$ is $\bar{h}'Y$ where

$$\bar{h} = R_X^{-1}R_Y X_n = (RX_n + RW_n)^{-1}RX_{n+k}. \quad (1)$$

From Equation (11.82), $RX_nX_n = [RX[1] \quad RX[0]]' = [c \quad 1]'$. From the problem statement,

$$RX_n + RW_n = \begin{bmatrix} 1 & c \\ c & 1 \end{bmatrix} + \begin{bmatrix} \eta^2 & 0 \\ 0 & \eta^2 \end{bmatrix} = \begin{bmatrix} 1 + \eta^2 & c \\ c & 1 + \eta^2 \end{bmatrix}. \quad (2)$$
This implies

$$\vec{h} = \left[ \begin{array}{cc} 1 + \eta^2 & c \\ c & 1 + \eta^2 \end{array} \right]^{-1} \left[ \begin{array}{c} c \\ 1 \end{array} \right]$$

(3)

$$\frac{1}{(1 + \eta^2)^2 - c^2} \left[ \begin{array}{cc} 1 + \eta^2 & -c \\ -c & 1 + \eta^2 \end{array} \right] \left[ \begin{array}{c} c \\ 1 \end{array} \right]$$

(4)

$$\frac{1}{(1 + \eta^2)^2 - c^2} \left[ \begin{array}{c} c \eta^2 \\ 1 + \eta^2 - c \end{array} \right].$$

(5)

The optimal filter is

$$h = \frac{1}{(1 + \eta^2)^2 - c^2} \left[ \begin{array}{c} 1 + \eta^2 - c^2 \\ c \eta^2 \end{array} \right].$$

(6)

To find the mean square error of this predictor, we recall that Theorem 11.11 is just Theorem 9.7 expressed in the terminology of filters. Expressing part (c) of Theorem 9.7 in terms of the linear estimation filter \(h\), the mean square error of the estimator is

$$e_L^* = \text{Var}[X_n] - \vec{h}' \text{R}_{Y_n \mid X_n}$$

(7)

$$= \text{Var}[X_n] - \vec{h}' \text{R}_{X_n \mid X_n}$$

(8)

$$= R_X[0] - \vec{h}' \left[ \begin{array}{c} c \\ 1 \end{array} \right]$$

(9)

$$= 1 - \frac{c^2 \eta^2 + \eta^2 + 1 - c^2}{(1 + \eta^2)^2 - c^2}. $$

(10)

Note that we always find that \(e_L^* < \text{Var}[X_n] = 1\) simply because the optimal estimator cannot be worse than the blind estimator that ignores the observation \(Y_n\).

**Problem 11.4.4 Solution**

In this problem, we find the mean square estimation error of the optimal first order filter in Problem 11.4.3. This problem highlights a shortcoming of Theorem 11.11 in that the theorem doesn’t explicitly provide the mean square error associated with the optimal filter \(h\). We recall from the discussion at the start of Section 11.4 that Theorem 11.11 is derived from Theorem 9.7 with

$$\vec{h} = a = R_{Y}^{-1}R_{Y \mid X} = (R_{X_n \mid X} + R_{W_n})^{-1}R_{X_n \mid X_n}$$

(1)

From Theorem 9.7, the mean square error of the filter output is

$$e_L^* = \text{Var}[X] - a' \text{R}_{Y \mid X}$$

(2)

$$= R_X[0] - \vec{h}' \text{R}_{X_n \mid X_n}$$

(3)

$$= R_X[0] - R_{X_n \mid X_n} (R_{X_n \mid X} + R_{W_n})^{-1}R_{X_n \mid X_n}$$

(4)

Equations (3) and (4) are general expressions for the means square error of the optimal linear filter that can be applied to any situation described by Theorem 11.11.

To apply this result to the problem at hand, we observe that \(R_X[0] = c^2 = 1\) and that

$$\vec{h} = \frac{1}{(1 + \eta^2)^2 - c^2} \left[ \begin{array}{c} c \eta^2 \\ 1 + \eta^2 - c \end{array} \right],$$

$$R_{X_n \mid X_n} = \begin{bmatrix} R_X[1] \\ R_X[0] \end{bmatrix} = \begin{bmatrix} c \\ 1 \end{bmatrix}$$

(5)
This implies

\[ e^*_L = R_X[0] - \mathbf{h}'R_{X_nX_n} \]

\[ = 1 \frac{1}{(1 + \eta^2)^2 - c^2} \left[ c\eta^2 + 1 + \eta^2 - c^2 \right] \frac{c}{1} \]  

\[ = 1 - \frac{c^2\eta^2 + 1 + \eta^2 - c^2}{(1 + \eta^2)^2 - c^2} \]  

\[ = \eta^2 \left( \frac{1 + \eta^2 - c^2}{(1 + \eta^2)^2 - c^2} \right) \]

(6)  

(7)  

(8)  

(9)

The remaining question is what value of \( c \) minimizes the mean square error \( e^*_L \). The usual approach is to set the derivative \( \frac{de^*_L}{dc} \) to zero. This would yield the incorrect answer \( c = 0 \). In fact, evaluating the second derivative at \( c = 0 \) shows that \( \frac{d^2e^*_L}{dc^2} \bigg|_{c=0} < 0 \). Thus the mean square error \( e^*_L \) is maximum at \( c = 0 \). For a more careful analysis, we observe that \( e^*_L = \eta^2 f(x) \) where

\[ f(x) = \frac{a - x}{a^2 - x}, \]  

(10)

with \( x = c^2 \), and \( a = 1 + \eta^2 \). In this case, minimizing \( f(x) \) is equivalent to minimizing the mean square error. Note that for \( R_X[k] \) to be a respectable autocorrelation function, we must have \( |c| \leq 1 \). Thus we consider only values of \( x \) in the interval \( 0 \leq x \leq 1 \). We observe that

\[ \frac{df(x)}{dx} = -\frac{a^2 - a}{(a^2 - x)^2} \]  

(11)

Since \( a > 1 \), the derivative is negative for \( 0 \leq x \leq 1 \). This implies the mean square error is minimized by making \( x \) as large as possible, i.e., \( x = 1 \). Thus \( c = 1 \) minimizes the mean square error. In fact \( c = 1 \) corresponds to the autocorrelation function \( R_X[k] = 1 \) for all \( k \). Since each \( X_n \) has zero expected value, every pair of sample \( X_n \) and \( X_m \) has correlation coefficient

\[ \rho_{X_n, X_m} = \frac{\text{Cov}[X_n, X_m]}{\sqrt{\text{Var}[X_n]\text{Var}[X_m]}} = \frac{R_X[n - m]}{R_X[0]} = 1. \]  

(12)

That is, \( c = 1 \) corresponds to a degenerate process in which every pair of samples \( X_n \) and \( X_m \) are perfectly correlated. Physically, this corresponds to the case where the random process \( X_n \) is generated by generating a sample of a random variable \( X \) and setting \( X_n = X \) for all \( n \). The observations are then of the form \( Y_n = X + Z_n \). That is, each observation is just a noisy observation of the random variable \( X \). For \( c = 1 \), the optimal filter

\[ h = \frac{1}{2 + \eta^2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \]  

(13)

is just an equally weighted average of the past two samples.

**Problem 11.4.5 Solution**

This problem involves both linear estimation and prediction because we are using \( Y_{n-1} \), the noisy observation of \( X_{n_1} \) to estimate the future value \( X_n \). Thus we can’t follow the cookbook recipes of Theorem 11.9 or Theorem 11.11. Instead we go back to Theorem 9.4 to find the minimum mean
square error linear estimator. In that theorem, \( X_n \) and \( Y_{n-1} \) play the roles of \( X \) and \( Y \). That is, our estimate \( \hat{X}_n \) of \( X_n \) is

\[
\hat{X}_n = \hat{X}_L(Y_{n-1}) = \rho_{X_n,Y_{n-1}} \left( \frac{\text{Var}[X_n]}{\text{Var}[Y_{n-1}]} \right)^{1/2} (Y_{n-1} - E[Y_{n-1}]) + E[X_n]
\]  

(1)

By recursive application of \( X_n = cX_{n-1} + Z_{n-1} \), we obtain

\[
X_n = a^nX_0 + \sum_{j=1}^{n} a^{j-1}Z_{n-j}
\]  

(2)

The expected value of \( X_n \) is \( E[X_n] = a^nE[X_0] + \sum_{j=1}^{n} a^{j-1}E[Z_{n-j}] = 0 \). The variance of \( X_n \) is

\[
\text{Var}[X_n] = a^{2n}\text{Var}[X_0] + \sum_{j=1}^{n} [a^{j-1}]^2 \text{Var}[Z_{n-j}] = a^{2n}\text{Var}[X_0] + \sigma^2 \sum_{j=1}^{n} [a^2]^{j-1}
\]  

(3)

Since \( \text{Var}[X_0] = \sigma^2/(1-c^2) \), we obtain

\[
\text{Var}[X_n] = \frac{a^{2n}\sigma^2}{1-c^2} + \frac{\sigma^2(1-c^{2n})}{1-c^2} = \frac{\sigma^2}{1-c^2}
\]  

(4)

Note that \( E[Y_{n-1}] = dE[X_{n-1}] + E[W_n] = 0 \). The variance of \( Y_{n-1} \) is

\[
\text{Var}[Y_{n-1}] = d^2\text{Var}[X_{n-1}] + \text{Var}[W_n] = \frac{d^2\sigma^2}{1-c^2} + \eta^2
\]  

(5)

Since \( X_n \) and \( Y_{n-1} \) have zero mean, the covariance of \( X_n \) and \( Y_{n-1} \) is

\[
\text{Cov}[X_n,Y_{n-1}] = E[X_nY_{n-1}] = E[(cX_{n-1} + Z_{n-1})(dX_{n-1} + W_{n-1})]
\]  

(6)

From the problem statement, we learn that

\[
E[X_{n-1}W_{n-1}] = 0 \quad E[X_{n-1}]E[W_{n-1}] = 0 \quad E[Z_{n-1}W_{n-1}] = 0
\]

(7)

Hence, the covariance of \( X_n \) and \( Y_{n-1} \) is

\[
\text{Cov}[X_n,Y_{n-1}] = cd\text{Var}[X_{n-1}]
\]  

(7)

The correlation coefficient of \( X_n \) and \( Y_{n-1} \) is

\[
\rho_{X_n,Y_{n-1}} = \frac{\text{Cov}[X_n,Y_{n-1}]}{\sqrt{\text{Var}[X_n]\text{Var}[Y_{n-1}]}}
\]  

(8)

Since \( E[Y_{n-1}] \) and \( E[X_n] \) are zero, the linear predictor for \( X_n \) becomes

\[
\hat{X}_n = \rho_{X_n,Y_{n-1}} \left( \frac{\text{Var}[X_n]}{\text{Var}[Y_{n-1}]} \right)^{1/2} Y_{n-1} = \frac{\text{Cov}[X_n,Y_{n-1}]}{\text{Var}[Y_{n-1}]} Y_{n-1} = \frac{cd\text{Var}[X_{n-1}]}{\text{Var}[Y_{n-1}]} Y_{n-1}
\]  

(9)

Substituting the above result for \( \text{Var}[X_n] \), we obtain the optimal linear predictor of \( X_n \) given \( Y_{n-1} \).

\[
\hat{X}_n = \frac{c}{d} \frac{1}{1+\beta^2(1-c^2)} Y_{n-1}
\]  

(10)

where \( \beta^2 = \eta^2/(d^2\sigma^2) \). From Theorem 9.4, the mean square estimation error at step \( n \)

\[
e^*_L(n) = E[(X_n - \hat{X}_n)^2] = \text{Var}[X_n](1-\rho^2_{X_n,Y_{n-1}}) = \sigma^2 \frac{1+\beta^2}{1+\beta^2(1-c^2)}
\]  

(11)

We see that mean square estimation error \( e^*_L(n) = e^*_L \), a constant for all \( n \). In addition, \( e^*_L \) is an increasing function \( \beta \).
Problem 11.5.1 Solution
To use Table 11.1, we write \( R_X(\tau) \) in terms of the autocorrelation
\[
sinc(x) = \frac{\sin(\pi x)}{\pi x}.
\] (1)
In terms of the \( \text{sinc}(\cdot) \) function, we obtain
\[
R_X(\tau) = 10 \text{sinc}(2000\tau) + 5 \text{sinc}(1000\tau).
\] (2)
From Table 11.1,
\[
S_X(f) = \frac{10}{2000} \text{rect} \left( \frac{f}{2000} \right) + \frac{5}{1000} \text{rect} \left( \frac{f}{1000} \right)
\] (3)
Here is a graph of the PSD.

![Graph of PSD](image)

Problem 11.5.2 Solution
The process \( Y(t) \) has expected value \( E[Y(t)] = 0 \). The autocorrelation of \( Y(t) \) is
\[
R_Y(t, \tau) = E[Y(t)Y(t + \tau)] = E[X(\alpha t)X(\alpha(t + \tau))] = R_X(\alpha \tau)
\] (1)
Thus \( Y(t) \) is wide sense stationary. The power spectral density is
\[
S_Y(f) = \int_{-\infty}^{\infty} R_X(\alpha \tau)e^{-j2\pi f \tau} d\tau.
\] (2)
At this point, we consider the cases \( \alpha > 0 \) and \( \alpha < 0 \) separately. For \( \alpha > 0 \), the substitution \( \tau' = \alpha \tau \) yields
\[
S_Y(f) = \frac{1}{\alpha} \int_{-\infty}^{\infty} R_X(\tau')e^{-j2\pi (f/\alpha) \tau'} d\tau' = \frac{S_X(f/\alpha)}{\alpha}
\] (3)
When \( \alpha < 0 \), we start with Equation (2) and make the substitution \( \tau' = -\alpha \tau \), yielding
\[
S_Y(f) = \frac{1}{-\alpha} \int_{-\infty}^{\infty} R_X(-\tau')e^{-j2\pi \frac{f}{-\alpha} \tau'} d\tau'.
\] (4)
Since \( R_X(-\tau') = R_X(\tau') \),
\[
S_Y(f) = \frac{1}{-\alpha} \int_{-\infty}^{\infty} R_X(\tau')e^{-j2\pi \frac{f}{-\alpha} \tau'} d\tau' = \frac{1}{-\alpha} S_X \left( \frac{f}{-\alpha} \right)
\] (5)
For \( -\alpha = |\alpha| \) for \( \alpha < 0 \), we can combine the \( \alpha > 0 \) and \( \alpha < 0 \) cases in the expression
\[
S_Y(f) = \frac{1}{|\alpha|} S_X \left( \frac{f}{|\alpha|} \right).
\] (6)
Problem 11.6.1 Solution
Since the random sequence $X_n$ has autocorrelation function

$$R_X[k] = \delta_k + (0.1)^{|k|},$$

(1)

We can find the PSD directly from Table 11.2 with $0.1^{|k|}$ corresponding to $a^{|k|}$. The table yields

$$S_X(\phi) = 1 + \frac{1 - (0.1)^2}{1 + (0.1)^2 - 2(0.1)\cos 2\pi \phi} = \frac{2 - 0.2 \cos 2\pi \phi}{1.01 - 0.2 \cos 2\pi \phi}.$$  
(2)

Problem 11.7.1 Solution
First we show that $S_{YX}(f) = S_{XY}(-f)$. From the definition of the cross spectral density,

$$S_{YX}(f) = \int_{-\infty}^{\infty} R_{YX}(\tau)e^{-j2\pi f \tau} d\tau$$

(1)

Making the substitution $\tau' = -\tau$ yields

$$S_{YX}(f) = \int_{-\infty}^{\infty} R_{YX}(\tau')e^{j2\pi f \tau'} d\tau'$$

(2)

By Theorem 10.14, $R_{YX}(-\tau') = R_{XY}(\tau')$. This implies

$$S_{YX}(f) = \int_{-\infty}^{\infty} R_{XY}(\tau')e^{-j2\pi (-f) \tau'} d\tau' = S_{XY}(-f)$$

(3)

To complete the problem, we need to show that $S_{XY}(-f) = [S_{XY}(f)]^*$. First we note that since $R_{XY}(\tau)$ is real valued, $[R_{XY}(\tau)]^* = R_{XY}(\tau)$. This implies

$$[S_{XY}(f)]^* = \int_{-\infty}^{\infty} [R_{XY}(\tau)]^*[e^{-j2\pi f \tau}]^* d\tau$$

(4)

$$= \int_{-\infty}^{\infty} R_{XY}(\tau)e^{-j2\pi (-f) \tau} d\tau$$

(5)

$$= S_{XY}(-f)$$

(6)

Problem 11.8.1 Solution
Let $a = 1/RC$. The solution to this problem parallels Example 11.22.

(a) From Table 11.1, we observe that

$$S_X(f) = \frac{2 \cdot 10^4}{(2\pi f)^2 + 10^4} \quad H(f) = \frac{1}{a + j2\pi f}$$

(1)

By Theorem 11.16,

$$S_Y(f) = |H(f)|^2 S_X(f) = \frac{2 \cdot 10^4}{[(2\pi f)^2 + a^2][2\pi f]^2 + 10^4]$$

(2)

To find $R_Y(\tau)$, we use a form of partial fractions expansion to write

$$S_Y(f) = \frac{A}{(2\pi f)^2 + a^2} + \frac{B}{(2\pi f)^2 + 10^4}$$

(3)
Note that this method will work only if \( a \neq 100 \). This same method was also used in Example 11.22. The values of \( A \) and \( B \) can be found by

\[
A = \frac{2 \cdot 10^4}{(2\pi f)^2 + 10^4} \bigg|_{f=\frac{a}{2\pi}} = \frac{-2 \cdot 10^4}{a^2 - 10^4} \quad B = \frac{2 \cdot 10^4}{a^2 + 10^4} \bigg|_{f=\frac{100}{2\pi}} = \frac{2 \cdot 10^4}{a^2 - 10^4} \quad (4)
\]

This implies the output power spectral density is

\[
S_Y(f) = -\frac{10^4}{a^2 - 10^4} + \frac{2a}{(2\pi f)^2 + a^2} + \frac{100}{10^4 (2\pi f)^2 + 10^4} \quad (5)
\]

Since \( e^{-c|\tau|} \) and \( 2c/((2\pi f)^2 + c^2) \) are Fourier transform pairs for any constant \( c > 0 \), we see that

\[
R_Y(\tau) = -\frac{10^4}{a^2 - 10^4}e^{-a|\tau|} + \frac{100}{a^2 - 10^4}e^{-100|\tau|} \quad (6)
\]

(b) To find \( a = 1/(RC) \), we use the fact that

\[
E[Y^2(t)] = 100 = R_Y(0) = -\frac{10^4}{a^2 - 10^4} + \frac{100}{a^2 - 10^4} \quad (7)
\]

Rearranging, we find that \( a \) must satisfy

\[
a^3 - (10^4 + 1)a + 100 = 0 \quad (8)
\]

This cubic polynomial has three roots:

\[
a = 100 \quad a = -50 + \sqrt{2501} \quad a = -50 - \sqrt{2501} \quad (9)
\]

Recall that \( a = 100 \) is not a valid solution because our expansion of \( S_Y(f) \) was not valid for \( a = 100 \). Also, we require \( a > 0 \) in order to take the inverse transform of \( S_Y(f) \). Thus \( a = -50 + \sqrt{2501} \approx 0.01 \) and \( RC \approx 100 \).

**Problem 118.8.2 Solution**

(a) \( R_W(\tau) = \delta(\tau) \) is the autocorrelation function whose Fourier transform is \( S_W(f) = 1 \).

(b) The output \( Y(t) \) has power spectral density

\[
S_Y(f) = |H(f)|^2 S_W(f) = |H(f)|^2 \quad (1)
\]

(c) Since \( |H(f)| = 1 \) for \( f \in [-B,B] \), the average power of \( Y(t) \) is

\[
E[Y^2(t)] = \int_{-\infty}^{\infty} S_Y(f) \, df = \int_{-B}^{B} df = 2B \quad (2)
\]

(d) Since the white noise \( W(t) \) has zero mean, the mean value of the filter output is

\[
E[Y(t)] = E[W(t)] H(0) = 0 \quad (3)
\]

400
Problem 11.8.3 Solution

Since \( S_Y(f) = |H(f)|^2 S_X(f) \), we first find

\[
|H(f)|^2 = H(f) H^*(f) = (a_1 e^{-j2\pi f t_1} + a_2 e^{-j2\pi f t_2}) (a_1 e^{j2\pi f t_1} + a_2 e^{j2\pi f t_2})
\]

\[
= a_1^2 + a_2^2 + 2a_1a_2 \left( e^{-j2\pi f(t_2-t_1)} + e^{-j2\pi f(t_1-t_2)} \right)
\]

It follows that the output power spectral density is

\[
S_Y(f) = (a_1^2 + a_2^2) S_X(f) + 2a_1a_2 \left( e^{-j2\pi f(t_2-t_1)} + e^{-j2\pi f(t_1-t_2)} \right)
\]

Using Table 11.1, the autocorrelation of the output is

\[
R_Y(\tau) = (a_1^2 + a_2^2) R_X(\tau) + 2a_1a_2 \left( R_X(\tau - (t_2-t_1)) + R_X(\tau + (t_1-t_2)) \right)
\]

Problem 11.8.4 Solution

(a) The average power of the input is

\[
E \left[ X^2(t) \right] = R_X(0) = 1
\]

(b) From Table 11.1, the input has power spectral density

\[
S_X(f) = \frac{1}{2} e^{-\pi f^2/4}
\]

The output power spectral density is

\[
S_Y(f) = |H(f)|^2 S_X(f) = \begin{cases} \frac{1}{2} e^{-\pi f^2/4} & |f| \leq 2 \\ 0 & \text{otherwise} \end{cases}
\]

(c) The average output power is

\[
E \left[ Y^2(t) \right] = \int_{-\infty}^{\infty} S_Y(f) \, df = \frac{1}{2} \int_{-2}^{2} e^{-\pi f^2/4} \, df
\]

This integral cannot be expressed in closed form. However, we can express it in the form of the integral of a standardized Gaussian PDF by making the substitution \( f = z\sqrt{2/\pi} \). With this substitution,

\[
E \left[ Y^2(t) \right] = \frac{1}{\sqrt{2\pi}} \int_{-\sqrt{2\pi}}^{\sqrt{2\pi}} e^{-z^2/2} \, dz = \Phi(\sqrt{2\pi}) - \Phi(-\sqrt{2\pi}) = 2\Phi(\sqrt{2\pi}) - 1 = 0.9876
\]

The output power almost equals the input power because the filter bandwidth is sufficiently wide to pass through nearly all of the power of the input.
Problem 11.8.5 Solution

(a) From Theorem 11.13(b),

\[ E[X^2(t)] = \int_{-\infty}^{\infty} S_X(f) \, df \int_{-100}^{100} 10^{-4} \, df = 0.02 \tag{1} \]

(b) From Theorem 11.17

\[ S_{XY}(f) = H(f)S_X(f) = \begin{cases} 10^{-4}H(f) & |f| \leq 100 \\ 0 & \text{otherwise} \end{cases} \tag{2} \]

(c) From Theorem 10.14,

\[ R_{YX}(\tau) = R_{XY}(-\tau) \tag{3} \]

From Table 11.1, if \( g(\tau) \) and \( G(f) \) are a Fourier transform pair, then \( g(-\tau) \) and \( G^*(f) \) are a Fourier transform pair. This implies

\[ S_{YX}(f) = S_{XY}^*(f) = \begin{cases} 10^{-4}H^*(f) & |f| \leq 100 \\ 0 & \text{otherwise} \end{cases} \tag{4} \]

(d) By Theorem 11.17,

\[ S_Y(f) = H^*(f)S_{XY}(f) = |H(f)|^2S_X(f) \tag{5} \]

\[ = \begin{cases} 10^{-4}/[10^4\pi^2 + (2\pi f)^2] & |f| \leq 100 \\ 0 & \text{otherwise} \end{cases} \tag{6} \]

(e) By Theorem 11.13,

\[ E[Y^2(t)] = \int_{-\infty}^{\infty} S_Y(f) \, df = \int_{-100}^{100} \frac{10^{-4}}{10^4\pi^2 + 4\pi^2 f^2} \, df \tag{7} \]

\[ = \frac{2}{10^8\pi^2} \int_{0}^{100} \frac{df}{1 + (f/50)^2} \tag{8} \]

By making the substitution, \( f = 50\tan \theta \), we have \( df = 50\sec^2 \theta \, d\theta \). Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we have

\[ E[Y^2(t)] = \frac{100}{10^8\pi^2} \int_{0}^{\tan^{-1}(2)} d\theta = \frac{\tan^{-1}(2)}{10^6\pi^2} = 1.12 \times 10^{-7} \tag{9} \]

Problem 11.8.6 Solution

The easy way to do this problem is to use Theorem 11.17 which states

\[ S_{XY}(f) = H(f)S_X(f) \tag{1} \]
(a) From Table 11.1, we observe that

\[ S_X(f) = \frac{8}{16 + (2\pi f)^2} \quad H(f) = \frac{1}{7 + j2\pi f} \]  

From Theorem 11.17,

\[ S_{XY}(f) = H(f)S_X(f) = \frac{8}{[7 + j2\pi f][16 + (2\pi f)^2]} \]  

(b) To find the cross correlation, we need to find the inverse Fourier transform of \( S_{XY}(f) \). A straightforward way to do this is to use a partial fraction expansion of \( S_{XY}(f) \). That is, by defining \( s = j2\pi f \), we observe that

\[ \frac{8}{(7 + s)(4 + s)(4 - s)} = \frac{-8/33}{7 + s} + \frac{1/3}{4 + s} + \frac{1/11}{4 - s} \]  

Hence, we can write the cross spectral density as

\[ S_{XY}(f) = \frac{-8/33}{7 + j2\pi f} + \frac{1/3}{4 + j2\pi f} + \frac{1/11}{4 - j2\pi f} \]  

Unfortunately, terms like \( 1/(a - j2\pi f) \) do not have an inverse transforms. The solution is to write \( S_{XY}(f) \) in the following way:

\[ S_{XY}(f) = \frac{-8/33}{7 + j2\pi f} + \frac{8/33}{4 + j2\pi f} + \frac{1/11}{4 + j2\pi f} + \frac{8/11}{4 - j2\pi f} \]  

Now, we see from Table 11.1 that the inverse transform is

\[ R_{XY}(\tau) = -\frac{8}{33}e^{-7\tau}u(\tau) + \frac{8}{33}e^{-4\tau}u(\tau) + \frac{1}{11}e^{-4|\tau|} \]  

Problem 11.8.7 Solution

(a) Since \( E[N(t)] = \mu_N = 0 \), the expected value of the output is \( \mu_Y = \mu_N H(0) = 0 \).

(b) The output power spectral density is

\[ S_Y(f) = |H(f)|^2 S_N(f) = 10^{-3}e^{-2\times10^6|f|} \]  

(c) The average power is

\[ E[Y^2(t)] = \int_{-\infty}^{\infty} S_Y(f) \, df = \int_{-\infty}^{\infty} 10^{-3}e^{-2\times10^6|f|} \, df \]  

\[ = 2 \times 10^{-3} \int_{0}^{\infty} e^{-2\times10^6f} \, df \]  

\[ = 10^{-3} \]
(d) Since $N(t)$ is a Gaussian process, Theorem 11.3 says $Y(t)$ is a Gaussian process. Thus the random variable $Y(t)$ is Gaussian with

$$E[Y(t)] = 0 \quad \text{Var}[Y(t)] = E[Y^2(t)] = 10^{-3} \tag{5}$$

Thus we can use Table 3.1 to calculate

$$P[Y(t) > 0.01] = P\left[\frac{Y(t)}{\sqrt{\text{Var}[Y(t)]}} > \frac{0.01}{\sqrt{\text{Var}[Y(t)]}}\right] \tag{6}$$

$$1 - \Phi\left(\frac{0.01}{\sqrt{0.001}}\right) \tag{7}$$

$$= 1 - \Phi(0.32) = 0.3745 \tag{8}$$

**Problem 11.8.8 Solution**

Suppose we assume that $N(t)$ and $Y(t)$ are the input and output of a linear time invariant filter $h(u)$. In that case,

$$Y(t) = \int_0^t N(u) \, du = \int_{-\infty}^{\infty} h(t-u)N(u) \, du \tag{1}$$

For the above two integrals to be the same, we must have

$$h(t-u) = \begin{cases} 1 & 0 \leq t-u \leq t \\ 0 & \text{otherwise} \end{cases} \tag{2}$$

Making the substitution $v = t-u$, we have

$$h(v) = \begin{cases} 1 & 0 \leq v \leq t \\ 0 & \text{otherwise} \end{cases} \tag{3}$$

Thus the impulse response $h(v)$ depends on $t$. That is, the filter response is linear but not time invariant. Since Theorem 11.2 requires that $h(t)$ be time invariant, this example does not violate the theorem.

**Problem 11.8.9 Solution**

(a) Note that $|H(f)| = 1$. This implies $S_M(f) = S_M(f)$. Thus the average power of $\hat{M}(t)$ is

$$\hat{q} = \int_{-\infty}^{\infty} S_M(f) \, df = \int_{-\infty}^{\infty} S_M(f) \, df = q \tag{1}$$

(b) The average power of the upper sideband signal is

$$E[U^2(t)] = E[M^2(t) \cos^2(2\pi f_c t + \Theta)] \tag{2}$$

$$- E[2M(t)\hat{M}(t) \cos(2\pi f_c t + \Theta) \sin(2\pi f_c t + \Theta)] \tag{3}$$

$$+ E[\hat{M}^2(t) \sin^2(2\pi f_c t + \Theta)] \tag{4}$$

404
To find the expected value of the random phase cosine, for an integer \( n \neq 0 \), we evaluate

\[
E[\cos(2\pi f_c t + n\Theta)] = \int_0^{2\pi} \cos(2\pi f_c t + n\theta) \frac{1}{2\pi} d\theta
\]

\[
= \frac{1}{2\pi n} \sin(2\pi f_c t + n\theta)
\]

\[
= \frac{1}{2\pi n} \sin(4\pi f_c t + 2n\pi) - \sin(2\pi f_c t)) = 0
\]

Similar steps will show that for any integer \( n \neq 0 \), the random phase sine also has expected value

\[
E[\sin(2\pi f_c t + n\Theta)] = 0
\]

Using the trigonometric identity \( \cos^2 \phi = (1 + \cos 2\phi)/2 \), we can show

\[
E[\cos^2(2\pi f_c t + \Theta)] = E\left[\frac{1}{2} (1 + \cos(2\pi(2f_c)t + 2\Theta))\right] = 1/2
\]

Similarly,

\[
E[\sin^2(2\pi f_c t + \Theta)] = E\left[\frac{1}{2} (1 - \cos(2\pi(2f_c)t + 2\Theta))\right] = 1/2
\]

In addition, the identity \( 2\sin \phi \cos \phi = \sin 2\phi \) implies

\[
E[2\sin(2\pi f_c t + \Theta)\cos(2\pi f_c t + \Theta)] = E[\cos(4\pi f_c t + 2\Theta)] = 0
\]

Since \( M(t) \) and \( \hat{M}(t) \) are independent of \( \Theta \), the average power of the upper sideband signal is

\[
E[U^2(t)] = E[M^2(t)] E[\cos^2(2\pi f_c t + \Theta)] + E[\hat{M}^2(t)] E[\sin^2(2\pi f_c t + \Theta)]
\]

\[
- E[M(t)\hat{M}(t)] E[2\cos(2\pi f_c t + \Theta)\sin(2\pi f_c t + \Theta)]
\]

\[
= q/2 + q/2 + 0 = q
\]

\section*{Problem 11.8.10 Solution}

(a) Since \( S_W(f) = 10^{-15} \) for all \( f \), \( R_W(\tau) = 10^{-15}\delta(\tau) \).

(b) Since \( \Theta \) is independent of \( W(t) \),

\[
E[V(t)] = E[W(t)\cos(2\pi f_c t + \Theta)] = E[W(t)] E[\cos(2\pi f_c t + \Theta)] = 0
\]

(c) We cannot initially assume \( V(t) \) is WSS so we first find

\[
R_V(t, \tau) = E[V(t)V(t+\tau)]
\]

\[
= E[W(t)\cos(2\pi f_c t + \Theta)W(t+\tau)\cos(2\pi f_c (t+\tau) + \Theta)]
\]

\[
= E[W(t)]E[\cos(2\pi f_c t + \Theta)\cos(2\pi f_c (t+\tau) + \Theta)]
\]

\[
= 10^{-15}\delta(\tau)E[\cos(2\pi f_c t + \Theta)\cos(2\pi f_c (t+\tau) + \Theta)]
\]
We see that for all \( \tau \neq 0 \), \( R_V(t, t + \tau) = 0 \). Thus we need to find the expected value of

\[
E [\cos(2\pi f_c t + \Theta) \cos(2\pi f_c (t + \tau) + \Theta)]
\]  

only at \( \tau = 0 \). However, it's good practice to solve for arbitrary \( \tau \):

\[
E [\cos(2\pi f_c t + \Theta) \cos(2\pi f_c (t + \tau) + \Theta)]
\]

Consequently,

\[
R_V(t, \tau) = \frac{1}{2}10^{-15}\delta(\tau) \cos(2\pi f_c \tau) = \frac{1}{2}10^{-15}\delta(\tau)
\]  

(d) Since \( E[V(t)] = 0 \) and since \( R_V(t, \tau) = R_V(\tau) \), we see that \( V(t) \) is a wide sense stationary process. Since \( L(f) \) is a linear time invariant filter, the filter output \( Y(t) \) is also a wide sense stationary process.

(e) The filter input \( V(t) \) has power spectral density \( S_V(f) = \frac{1}{2}10^{-15} \). The filter output has power spectral density

\[
S_Y(f) = |L(f)|^2 S_V(f) = \begin{cases} 
10^{-15} / 2 & |f| \leq B \\
0 & \text{otherwise}
\end{cases}
\]  

The average power of \( Y(t) \) is

\[
E[Y^2(t)] = \int_{-\infty}^{\infty} S_Y(f) \, df = \int_{-B}^{B} \frac{1}{2}10^{-15} \, df = 10^{-15}B
\]
It follows that the optimal filter is
\[ \hat{H}(f) = \frac{\frac{1}{2W} \text{rect} \left( \frac{f}{2W} \right) + 10^{-5}}{\frac{1}{2W} \text{rect} \left( \frac{f}{2W} \right)} = \frac{10^5}{10^5 + 2W} \text{rect} \left( \frac{f}{2W} \right). \] (3)

(b) From Equation (11.147), the minimum mean square error is
\[ e_L^* = \int_{-\infty}^{\infty} \frac{S_X(f) S_N(f)}{S_X(f) + S_N(f)} df = \int_{-\infty}^{\infty} \hat{H}(f) S_N(f) df \]
\[ = \frac{10^5}{10^5 + 2W} \int_{-W}^{W} 10^{-5} df \]
\[ = \frac{2W}{10^5 + 2W}. \] (6)

It follows that the mean square error satisfies \( e_L^* \leq 0.04 \) if and only if \( W \leq 2,083.3 \text{ Hz} \). What is occurring in this problem is the optimal filter is simply an ideal lowpass filter of bandwidth \( W \). Increasing \( W \) increases the bandwidth of the signal and the bandwidth of the filter \( \hat{H}(f) \). This allows more noise to pass through the filter and decreases the quality of our estimator.

**Problem 11.9.2 Solution**

The system described in this problem corresponds exactly to the system in the text that yielded Equation (11.146).

(a) From Equation (11.146), the optimal linear filter is
\[ \hat{H}(f) = \frac{S_X(f)}{S_X(f) + S_N(f)} \] (1)

In this problem, \( R_X(\tau) = e^{-5000|\tau|} \) so that
\[ S_X(f) = \frac{10^4}{(5,000)^2 + (2\pi f)^2}. \] (2)

It follows that the optimal filter is
\[ \hat{H}(f) = \frac{\frac{10^4}{(5,000)^2 + (2\pi f)^2} + 10^{-5}}{\frac{10^4}{(5,000)^2 + (2\pi f)^2}} = \frac{10^9}{1.025 \times 10^9 + (2\pi f)^2}. \] (3)

From Table 11.2, we see that the filter \( \hat{H}(f) \) has impulse response
\[ \hat{h}(\tau) = \frac{10^9}{2\alpha} e^{-\alpha|\tau|} \] (4)
where \( \alpha = \sqrt{1.025 \times 10^9} = 3.20 \times 10^4 \).

(b) From Equation (11.147), the minimum mean square error is
\[ e_L^* = \int_{-\infty}^{\infty} \frac{S_X(f) S_N(f)}{S_X(f) + S_N(f)} df = \int_{-\infty}^{\infty} \hat{H}(f) S_N(f) df \]
\[ = 10^{-5} \int_{-\infty}^{\infty} \hat{H}(f) df \]
\[ = 10^{-5} \hat{h}(0) = \frac{10^4}{2\alpha} = 0.1562. \] (7)
**Problem 11.10.1 Solution**

Although it is straightforward to calculate sample paths of $Y_n$ using the filter response $Y_n = \frac{1}{2}Y_{n-1} + \frac{1}{2}X_n$ directly, the necessary loops makes for a slow program. A solution using vectors and matrices tends to run faster. From the filter response, we can write

\begin{align*}
Y_1 &= \frac{1}{2}X_1 \\
Y_2 &= \frac{1}{4}X_1 + \frac{1}{2}X_2 \\
Y_3 &= \frac{1}{8}X_1 + \frac{1}{4}X_2 + \frac{1}{2}X_3 \\
& \vdots \\
Y_n &= \frac{1}{2^n}X_1 + \frac{1}{2^{n-1}}X_2 + \cdots + \frac{1}{2}X_n
\end{align*}

In vector notation, these equations become

$$
\begin{bmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_n
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{2} & 0 & \cdots & 0 \\
\frac{1}{4} & \frac{1}{2} & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
\frac{1}{2^n} & \cdots & 1/4 & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix}
$$

When $X$ is a column of iid Gaussian $(0, 1)$ random variables, the column vector $Y = HX$ is a single sample path of $Y_1, \ldots, Y_n$. When $X$ is an $n \times m$ matrix of iid Gaussian $(0, 1)$ random variables, each column of $Y = HX$ is a sample path of $Y_1, \ldots, Y_n$. In this case, let matrix entry $Y_{i,j}$ denote a sample $Y_i$ of the $j$th sample path. The samples $Y_{i,1}, Y_{i,2}, \ldots, Y_{i,m}$ are iid samples of $Y_i$. We can estimate the mean and variance of $Y_i$ using the sample mean $M_n(Y_i)$ and sample variance $V_m(Y_i)$ of Section 7.3. These estimates are

$$
M_n(Y_i) = \frac{1}{m} \sum_{j=1}^{m} Y_{i,j}, \quad V(Y_i) = \frac{1}{m-1} \sum_{j=1}^{m} (Y_{i,j} - M_n(Y_i))^2
$$

This is the approach of the following program.

```matlab
function ymv=yfilter(m);
%ymv(i) is the mean and var (over m paths) of y(i),
%the filter output of 11.2.6 and 11.10.1
X=randn(500,m); % 500 rows due to 11.2.6
H=toeplitz([(0.5).^(1:500)],[0.5 zeros(1,499)]);
Y=H*X;
yav=sum(Y,2)/m;
yavmat=yav*ones(1,m);
yvar=sum((Y-yavmat).^2,2)/(m-1);
ymv=[yav yvar];
```

The commands `ymv=yfilter(100);plot(ymv)` will generate a plot similar to this:
We see that each sample mean is small, on the other order of 0.1. Note that \( E[Y_i] = 0 \). For \( m = 100 \) samples, the sample mean has variance \( 1/m = 0.01 \) and standard deviation 0.1. Thus it is to be expected that we observe sample mean values around 0.1.

Also, it can be shown (in the solution to Problem 11.2.6 for example) that as \( i \) becomes large, \( \text{Var}[Y_i] \) converges to 1/3. Thus our sample variance results are also not surprising.

**Comment:** Although within each sample path, \( Y_i \) and \( Y_{i+1} \) are quite correlated, the sample means of \( Y_i \) and \( Y_{i+1} \) are not very correlated when a large number of sample paths are averaged. Exact calculation of the covariance of the sample means of \( Y_i \) and \( Y_{i+1} \) might be an interesting exercise. The same observations apply to the sample variance as well.

**Problem 11.10.2 Solution**

This is just a MATLAB question that has nothing to do with probability. In the MATLAB operation \( R = \text{fft}(r,N) \), the shape of the output \( R \) is the same as the shape of the input \( r \). If \( r \) is a column vector, then \( R \) is a column vector. If \( r \) is a row vector, then \( R \) is a row vector. For \( \text{fftc} \) to work the same way, the shape of \( n \) must be the same as the shape of \( R \). The instruction \( n = \text{reshape}(0: (N-1), \text{size}(R)) \) does this.

**Problem 11.10.3 Solution**

The program `cospaths.m` generates Gaussian sample paths with the desired autocorrelation function \( R_X(k) = \cos(0.04 \pi k) \). Here is the code:

```matlab
function x=cospaths(n,m);
%Generate m sample paths of length n of a Gaussian process with ACF R[k]=cos(0.04*pi*k)
k=0:n-1;
rx=cos(0.04*pi*k)';
x=gaussvector(0,rx,m);
```

The program is simple because if the second input parameter to `gaussvector` is a length \( m \) vector \( rx \), then \( rx \) is assumed to be the first row of a symmetric Toeplitz covariance matrix. The commands `x=cospaths(100,10);plot(x)` will produce a graph like this one:
We note that every sample path of the process is Gaussian random sequence. However, it would also appear from the graph that every sample path is a perfect sinusoid. This may seem strange if you are used to seeing Gaussian processes simply as noisy processes or fluctuating Brownian motion processes. However, in this case, the amplitude and phase of each sample path is random such that over the ensemble of sinusoidal sample functions, each sample $X_n$ is a Gaussian $(0, 1)$ random variable.

Finally, to confirm that that each sample path is a perfect sinusoid, rather than just resembling a sinusoid, we calculate the DFT of each sample path. The commands

$$\begin{align*}
&\text{>> } x=\text{cospaths}(100,10); \\
&\text{>> } X=\text{fft}(x); \\
&\text{>> stem((0:99)/100,abs(X));}
\end{align*}$$

will produce a plot similar to this:

The above plot consists of ten overlaid 100-point DFT magnitude stem plots, one for each Gaussian sample function. Each plot has exactly two nonzero components at frequencies $k/100 = 0.02$ and $(100 - k)/100 = 0.98$ corresponding to each sample path sinusoid having frequency 0.02. Note that the magnitude of each 0.02 frequency component depends on the magnitude of the corresponding sinusoidal sample path.

**Problem 11.10.4 Solution**

Searching the MATLAB full product help for `inv` yields this bit of advice:

> In practice, it is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of `inv` arises when solving the system of linear equations. One way to solve this is with $x = \text{inv}(A) * b$. A better way, from both an execution time and numerical accuracy standpoint, is to use the matrix division operator $x = A \backslash b$. This produces the solution using Gaussian elimination, without forming the inverse. See \ and / for further information.

The same discussion goes on to give an example where $x = A \backslash b$ is both faster and more accurate.

**Problem 11.10.5 Solution**

The function `lmsepredictor.m` is designed so that if the sequence $X_n$ has a finite duration autocorrelation function such that $R_X[k] = 0$ for $|k| \geq m$, but the LMSE filter of order $M - 1$ for $M \geq m$ is supposed to be returned, then the `lmsepredictor` automatically pads the autocorrelation vector $rx$ with a sufficient number of zeros so that the output is the order $M - 1$ filter. Conversely, if $rx$ specifies more values $R_X[k]$ than are needed, then the operation $rx(1:M)$ extracts the $M$ values $R_X[0], \ldots, R_X[M - 1]$ that are needed.
However, in this problem $R_X[k] = (-0.9)^{|k|}$ has infinite duration. When we pass the truncated representation $rx$ of length $m = 6$ and request $\text{lmsepredictor}(rx,M)$ for $M \geq 6$, the result is that $rx$ is incorrectly padded with zeros. The resulting filter output will be the LMSE filter for the filter response

$$R_X[k] = \begin{cases} (-0.9)^{|k|} & |k| \leq 5, \\ 0 & \text{otherwise}, \end{cases}$$

rather than the LMSE filter for the true autocorrelation function.

**Problem 11.10.6 Solution**

Applying Theorem 11.4 with sampling period $T_s = 1/4000 \text{ s}$ yields

$$R_X[k] = R_X(kT_s) = 10 \text{sinc}(0.5k) + 5 \text{sinc}(0.25k). \quad (1)$$

To find the power spectral density $S_X(\phi)$, we need to find the DTFT of $\text{sinc}(\phi_0k)$. Unfortunately, this was omitted from Table 11.2 so we now take a detour and derive it here. As with any derivation of the transform of a sinc function, we guess the answer and calculate the inverse transform. In this case, suppose

$$S_X(\phi) = \frac{1}{\phi_0} \text{rect}(\phi/\phi_0) = \begin{cases} 1 & |\phi| \leq \phi_0/2, \\ 0 & \text{otherwise}. \end{cases} \quad (2)$$

We find $R_X[k]$ from the inverse DTFT. For $|\phi_0| \leq 1$,

$$R_X[k] = \int_{-1/2}^{1/2} S_X(\phi) e^{j2\pi\phi k} d\phi = \frac{1}{\phi_0} \int_{-\phi_0/2}^{\phi_0/2} e^{j2\pi\phi k} d\phi = \frac{1}{\phi_0} \left[ e^{j\pi\phi_0 k} - e^{-j\pi\phi_0 k} \right] = \text{sinc}(\phi_0 k) \quad (3)$$

Now we apply this result to take the transform of $R_X[k]$ in Equation (1). This yields

$$S_X(\phi) = \frac{10}{0.5} \text{rect}(\phi/0.5) + \frac{5}{0.25} \text{rect}(\phi/0.25). \quad (4)$$

Ideally, an $2N + 1$-point DFT would yield a sampled version of the DTFT $S_X(\phi)$. However, the truncation of the autocorrelation $R_X[k]$ to 201 points results in a difference. For $N = 100$, the DFT will be a sampled version of the DTFT of $R_X[k] \text{rect}(k/(2N+1))$. Here is a MATLAB program that shows the difference when the autocorrelation is truncated to $2N + 1$ terms.

```matlab
function DFT=twosincsdft(N);

% Usage: SX=twosincsdft(N);
% Returns and plots the 2N+1
% point DFT of R(-N) ... R(0) ... R(N)
% for ACF R[k] in Problem 11.2.2
k=-N:N;
rx=10*sinc(0.5*k) + 5*sinc(0.25*k);
DFT=fftc(rx);
M=ceil(0.6*N);
phi=(0:M)/(2*N+1);
stem(phi,abs(DFT(1:(M+1))));
xlabel('\it \phi');
ylabel('\it S_X(\phi)');

Here is the output of twosincsdft(100).
```

411
From the stem plot of the DFT, it is easy to see the deviations from the two rectangles that make up the DTFT $S_X(\phi)$. We see that the effects of windowing are particularly pronounced at the break points.

**Comment:** In `twosincsdft`, DFT must be real-valued since it is the DFT of an autocorrelation function. Hence the command `stem(DFT)` should be sufficient. However, due to numerical precision issues, the actual DFT tends to have a tiny imaginary hence we use the `abs` operator.

**Problem 11.10.7 Solution**

In this problem, we generalize the solution of Problem 11.4.1 using Theorem 11.9 with $k = 1$ for filter order $M > 2$ The optimum linear predictor filter $\mathbf{h} = [h_0 \ h_1 \ \cdots \ h_{M-1}]'$ of $X_{n+1}$ given $\mathbf{X}_n = [X_{n-(M-1)} \ \cdots \ X_{n-1} \ X_n]'$ is given by

$$\mathbf{h} = \mathbf{h}_{M-1} = \mathbf{R}_X^{-1} \mathbf{R}_{X_{n}X_{n+1}},$$

where $\mathbf{R}_X$ is given by Theorem 11.6 and $\mathbf{R}_{X_{n}X_{n+1}}$ is given by Equation (11.66). In this problem,

$$\mathbf{R}_{X_{n}X_{n+1}} = E \begin{bmatrix} X_{n-M+1} \\ \vdots \\ X_n \\ X_{n+1} \end{bmatrix} \begin{bmatrix} R_X [M] \\ \vdots \\ R_X [1] \end{bmatrix}.$$  

Going back to Theorem 9.7(a), the mean square error is

$$e^*_L = E \left[ (X_{n+1} - \mathbf{h}' \mathbf{X}_n)^2 \right] = \text{Var}[X_{n+1}] - \mathbf{h}' \mathbf{R}_{X_{n}X_{n+1}}.$$  

For $M > 2$, we use the MATLAB function `onesteppredictor(r,M)` to perform the calculations.
The code is pretty straightforward. Here are two examples just to show it works.

```plaintext
>> [h2,e2]=onesteppredictor(r,2)
 h2 =
 0.8571
 0.1429
 e2 =
 0.4286

>> [h4,e4]=onesteppredictor(r,4)
 h4 =
 0.8000
 0.0000
 -0.0000
 -0.2000
 e4 =
 0.4000
```

The problem also requested that we calculate the mean square error as a function of the filter order \( M \). Here is a script and the resulting plot of the MSE.

```plaintext
%onestepmse.m
r=1-0.25*(0:3);
e=[];
for M=2:10,
 [h,e]=onesteppredictor(r,M);
e=[e,e];
end
plot(2:10,e,'-d');
xlabel('\it M');
ylabel('\it MSE');
```

**Problem 11.10.8 Solution**

This problem generalizes the solution of Problem 11.10.7 to a \( k \)-step predictor. The optimum linear predictor filter \( \mathbf{h} = [h_0 \ h_1 \ \cdots \ h_{M-1}]' \) of \( X_{n+1} \) given \( \mathbf{X}_n = [X_{n-(M-1)} \ \cdots \ X_{n-1} \ X_n]' \) is given by

\[
\hat{\mathbf{h}} = \begin{bmatrix} h_{M-1} \\ \vdots \\ h_0 \end{bmatrix} = \mathbf{R}_X^{-1} \mathbf{R}_{X_nX_{n+k}}, \tag{1}
\]

where \( \mathbf{R}_X \) is given by Theorem 11.6 and \( \mathbf{R}_{X_nX_{n+k}} \) is given by Equation (11.66). In this problem,

\[
\mathbf{R}_{X_nX_{n+k}} = E \begin{bmatrix} X_{n-M+1} \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_{n+k} \\ \vdots \\ X_n \end{bmatrix}' = \begin{bmatrix} R_X [M+k-1] \\ \vdots \\ R_X [k] \end{bmatrix}. \tag{2}
\]

Going back to Theorem 9.7(a), the mean square error is

\[
e_L^* = E \left[ (X_{n+k} - \hat{\mathbf{h}}' \mathbf{X}_n)^2 \right] = \text{Var}[X_{n+k}] - \hat{\mathbf{h}}' \mathbf{R}_{X_nX_{n+k}}. \tag{3}
\]

The MATLAB function *kpredictor(r,M)* implements this solution.
function h=kpredictor(r,M,k);
%usage: h=kpredictor(r,M,k);
%input: r=[R_X(0) R_X(1) .. R_X(m-1)]
%assumes R_X(n)==0 for n >=m
%output=vector a
% for lmse predictor xx=h' [X(n),X(n-1),..,X(n-N+1)] for X(n+k)
m=length(r);
r=[r(:);zeros(M-m+1,1)]; %appends zeros if needed
RY=toeplitz(r(1:M));
RYX=r(1+k:M+k);
h=flipud(RY\RYX);

The code is pretty straightforward.

Problem 11.10.9 Solution
To generate the sample paths $X_n$ and $Y_n$ is relatively straightforward. For $\sigma = \eta = 1$, the solution to Problem 11.4.5 showed that the optimal linear predictor $\hat{X}_n(Y_{n-1})$ of $X_n$ given $Y_{n-1}$ is

$$\hat{X}_n = \frac{cd}{d^2 + (1-c^2)} Y_{n-1}. \quad (1)$$

In the following, we plot sample paths of $X_n$ and $\hat{X}_n$. To show how sample paths are similar for different values of $c$ and $d$, we construct all samples paths using the same sequence of noise samples $W_n$ and $Z_n$. In addition, given $c$, we choose $X_0 = X_{00}/\sqrt{1-c^2}$ where $X_{00}$ is a Gaussian (0,1) random variable that is the same for all sample paths. To do this, we write a function `xpathsplot(c,d,x00,z,w)` which constructs a sample path given the parameters $c$ and $d$, and the noise vectors $z$ and $w$. A simple script `predictpaths.m` calls `xpathsplot` to generate the requested sample paths. Here are the two programs:

```
function [x,xhat]=xpaths(c,d,x00,z,w)
 n=length(z);
n0=(0:(n-1))'; n1=(1:n)';
vx=1/(1-c^2);
x0=sqrt(vx)*x00;
x=(c.^(n1)*x0)+...
toeplitz(c.^(n0),eye(1,n))*z;
y=d*[x0;x(1:n-1)']+w;
vy=((d^2)*vx) + 1;
xhat=((c*d*vx)/vy)*y;
plot(n,x,'b-',n1,xhat,'k:');
axis([0 50 -3 3]);
xlabel('\it n'); ylabel('\it X_n');
%
%p redictpaths.m
w=randn(50,1);z=randn(50,1);
x00=randn(1);
xpaths(0.9,10,x00,z,w);
pause;
xpaths(0.9,1,x00,z,w);
pause;
xpaths(0.9,0.1,x00,z,w);
pause;
xpaths(0.6,10,x00,z,w);
pause;
xpaths(0.6,1,x00,z,w);
pause;
xpaths(0.6,0.1,x00,z,w);
```

Some sample paths for $X_n$ and $\hat{X}_n$ for the requested parameters are shown below. In each pair, the one-step prediction $\hat{X}_n$ is marked by dots.
The mean square estimation error at step $n$ was found to be

$$e^*_L(n) = e^*_L = \sigma^2 \frac{d^2 + 1}{d^2 + (1 - c^2)}$$

(2)

We see that the mean square estimation error is $e^*_L(n) = e^*_L$, a constant for all $n$. In addition, $e^*_L$ is a decreasing function of $d$. In graphs (a) through (c), we see that the predictor tracks $X_n$ less well as $d$ decreases because decreasing $d$ corresponds to decreasing the contribution of $X_{n-1}$ to the measurement $Y_{n-1}$. Effectively, the impact of the measurement noise is increased. As $d$ decreases, the predictor places less emphasis on the measurement $Y_n$ and instead makes predictions closer to $E[X] = 0$. That is, when $d$ is small in graphs (c) and (f), the predictor stays close to zero. With respect to $c$, the performance of the predictor is less easy to understand. In Equation (11), the mean square error $e^*_L$ is the product of

$$\text{Var}[X_n] = \frac{\sigma^2}{1 - c^2} \quad 1 - \rho^2_{X_n,Y_{n-1}} = \frac{(d^2 + 1)(1 - c^2)}{d^2 + (1 - c^2)}$$

(3)

As a function of increasing $c^2$, $\text{Var}[X_n]$ increases while $1 - \rho^2_{X_n,Y_{n-1}}$ decreases. Overall, the mean square error $e^*_L$ is an increasing function of $c^2$. However, $\text{Var}[X]$ is the mean square error obtained using a blind estimator that always predicts $E[X]$ while $1 - \rho^2_{X_n,Y_{n-1}}$ characterizes the extent to which the optimal linear predictor is better than the blind predictor. When we compare graphs (a)-(c) with $c = 0.9$ to graphs (d)-(f) with $c = 0.6$, we see greater variation in $X_n$ for larger $a$ but in both cases, the predictor worked well when $d$ was large.
Problem Solutions – Chapter 12

Problem 12.1.1 Solution
From the given Markov chain, the state transition matrix is
\[
P = \begin{bmatrix} P_{00} & P_{01} & P_{02} \\ P_{10} & P_{11} & P_{12} \\ P_{20} & P_{21} & P_{22} \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.25 & 0.25 & 0.5 \end{bmatrix} \]
\[
(1)
\]

Problem 12.1.2 Solution
This problem is very straightforward if we keep in mind that \( P_{ij} \) is the probability that we transition from state \( i \) to state \( j \). From Example 12.1, the state transition matrix is
\[
P = \begin{bmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{bmatrix} = \begin{bmatrix} 1 - p & p \\ q & 1 - q \end{bmatrix} \]
\[
(1)
\]

Problem 12.1.3 Solution
In addition to the normal OFF and ON states for packetized voice, we add state 2, the “mini-OFF” state. The Markov chain is

![Markov Chain Diagram](image)

The only difference between this chain and an arbitrary 3 state chain is that transitions from 0, the OFF state, to state 2, the mini-OFF state, are not allowed. From the problem statement, the corresponding Markov chain is
\[
P = \begin{bmatrix} P_{00} & P_{01} & P_{02} \\ P_{10} & P_{11} & P_{12} \\ P_{20} & P_{21} & P_{22} \end{bmatrix} = \begin{bmatrix} 0.999929 & 0.000071 & 0 \\ 0.000100 & 0.899900 & 0.1 \\ 0.000100 & 0.699900 & 0.3 \end{bmatrix} . \]
\[
(1)
\]

Problem 12.1.4 Solution
Based on the problem statement, the state of the wireless LAN is given by the following Markov chain:

![Markov Chain Diagram](image)

The Markov chain has state transition matrix
\[
P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.04 & 0.9 & 0.06 \\ 0.04 & 0 & 0.9 \end{bmatrix} . \]
\[
(1)
\]
Problem 12.1.5 Solution
In this problem, it is helpful to go fact by fact to identify the information given.

• “...each read or write operation reads or writes an entire file and that files contain a geometric number of sectors with mean 50.”

This statement says that the length \( L \) of a file has PMF

\[
P_L(l) = \begin{cases} 
(1 - p)^{l-1}p & l = 1, 2, \ldots \\
0 & \text{otherwise}
\end{cases}
\]  

with \( p = 1/50 = 0.02 \). This says that when we write a sector, we will write another sector with probability 49/50 = 0.98. In terms of our Markov chain, if we are in the write state, we write another sector and stay in the write state with probability \( P_{22} = 0.98 \). This fact also implies \( P_{20} + P_{21} = 0.02 \).

Also, since files that are read obey the same length distribution,

\[
P_{11} = 0.98 \quad P_{10} + P_{12} = 0.02 \quad (2)
\]

• “Further, suppose idle periods last for a geometric time with mean 500.”

This statement simply says that given the system is idle, it remains idle for another unit of time with probability \( P_{00} = 499/500 = 0.998 \). This also says that \( P_{01} + P_{02} = 0.002 \).

• “After an idle period, the system is equally likely to read or write a file.”

Given that at time \( n \), \( X_n = 0 \), this statement says that the conditional probability that

\[
P[X_{n+1} = 1|X_n = 0, X_{n+1} \neq 0] = \frac{P_{01}}{P_{01} + P_{02}} = 0.5
\]  

Combined with the earlier fact that \( P_{01} + P_{02} = 0.002 \), we learn that

\[
P_{01} = P_{02} = 0.001 \quad (4)
\]

• “Following the completion of a read, a write follows with probability 0.8.”

Here we learn that given that at time \( n \), \( X_n = 1 \), the conditional probability that

\[
P[X_{n+1} = 2|X_n = 1, X_{n+1} \neq 1] = \frac{P_{12}}{P_{10} + P_{12}} = 0.8
\]  

Combined with the earlier fact that \( P_{10} + P_{12} = 0.02 \), we learn that

\[
P_{10} = 0.004 \quad P_{12} = 0.016 \quad (6)
\]

• “However, on completion of a write operation, a read operation follows with probability 0.6.”

Now we find that given that at time \( n \), \( X_n = 2 \), the conditional probability that

\[
P[X_{n+1} = 1|X_n = 2, X_{n+1} \neq 2] = \frac{P_{21}}{P_{20} + P_{21}} = 0.6
\]  

Combined with the earlier fact that \( P_{20} + P_{21} = 0.02 \), we learn that

\[
P_{20} = 0.008 \quad P_{21} = 0.012 \quad (8)
\]
The complete tree is

![Image of a complete tree with probabilities]

**Problem 12.1.6 Solution**

To determine whether the sequence \( \hat{X}_n \) forms a Markov chain, we write

\[
P \left[ \hat{X}_{n+1} = j | \hat{X}_n = i, \hat{X}_{n-1} = i_{n-1}, \ldots, \hat{X}_0 = i_0 \right] = P \left[ X_{mn+1} = j | X_{mn} = i, X_{mn(n-1)} = i_{n-1}, \ldots, X_0 = i_0 \right] = P_{ij}(m)
\]

(1)

\[
P \left[ X_{m(n+1)} = j | X_{mn} = i \right] = P_{ij}(m)
\]

(2)

\[
P \left[ \hat{X}_{m(n+1)} = j | X_{mn} = i \right] = P_{ij}(m)
\]

(3)

The key step is in observing that the Markov property of \( X_n \) implies that \( X_{mn} \) summarizes the past history of the \( X_n \) process. That is, given \( X_{mn} \), \( X_{m(n+1)} \) is independent of \( X_{mk} \) for all \( k < n \).

Finally, this implies that the state \( \hat{X}_n \) has one-step state transition probabilities equal to the \( m \)-step transition probabilities for the Markov chain \( X_n \). That is, \( P = P^m \).

**Problem 12.1.7 Solution**

Under construction.

**Problem 12.1.8 Solution**

Under construction.

**Problem 12.2.1 Solution**

From Example 12.1, the state transition matrix is

\[
P = \begin{bmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{bmatrix} = \begin{bmatrix} 1 - p & p \\ q & 1 - q \end{bmatrix} = \begin{bmatrix} 0.2 & 0.8 \\ 0.9 & 0.1 \end{bmatrix}.
\]

(1)

This chain is a special case of the two-state chain in Example 12.5 and Example 12.6 with \( p = 0.8 \) and \( q = 0.9 \). You may wish to derive the eigenvalues and eigenvectors of \( P \) in order to diagonalize and then find \( P^n \). Or, you may wish just to refer to Example 12.6 which showed that the chain has eigenvalues \( \lambda_1 = 1 \) and \( \lambda_2 = 1 - (p + q) = -0.7 \) and that the \( n \)-step transition matrix is

\[
P^n = \begin{bmatrix} P_{00}(n) & P_{01}(n) \\ P_{10}(n) & P_{11}(n) \end{bmatrix} = \frac{1}{p+q} \begin{bmatrix} q & p \\ q & p \end{bmatrix} + \frac{\lambda_2^n}{p+q} \begin{bmatrix} p & -p \\ -q & q \end{bmatrix} = \frac{1}{1.7} \begin{bmatrix} 0.9 & 0.8 \\ 0.9 & 0.8 \end{bmatrix} + \frac{(-0.7)^n}{1.7} \begin{bmatrix} 0.8 & -0.8 \\ -0.9 & 0.9 \end{bmatrix}.
\]

(2)

(3)
Problem 12.2.2 Solution
From the given Markov chain, the state transition matrix is
\[
P = \begin{bmatrix} P_{00} & P_{01} & P_{02} \\ P_{10} & P_{11} & P_{12} \\ P_{20} & P_{21} & P_{22} \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.25 & 0.25 & 0.5 \end{bmatrix}
\] (1)
The way to find \( P^n \) is to make the decomposition \( P = SDS^{-1} \) where the columns of \( S \) are the eigenvectors of \( P \) and \( D \) is a diagonal matrix containing the eigenvalues of \( P \). The eigenvalues are
\[
\lambda_1 = 1 \quad \lambda_2 = 0 \quad \lambda_3 = 1/2
\] (2)
The corresponding eigenvectors are
\[
s_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad s_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \quad s_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\] (3)
The decomposition of \( P \) is
\[
P = SDS^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0.5 \end{bmatrix} \begin{bmatrix} 0.5 & 0.5 & 0 \\ -0.5 & 0.5 & 0 \\ -0.5 & -0.5 & 1 \end{bmatrix}
\] (4)
Finally, \( P^n \) is
\[
P^n = SD^nS^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & (0.5)^n \end{bmatrix} \begin{bmatrix} 0.5 & 0.5 & 0 \\ -0.5 & 0.5 & 0 \\ -0.5 & -0.5 & 1 \end{bmatrix}
\] (5)
\[
= \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 - (0.5)^{n+1} & 0.5 - (0.5)^{n+1} & (0.5)^n \end{bmatrix}
\] (6)

Problem 12.3.1 Solution
From Example 12.8, the state probabilities at time \( n \) are
\[
p(n) = \left[ \frac{7}{12} \quad \frac{5}{12} \right] + \lambda_2^n \left[ \frac{5}{12} p_0 - \frac{7}{12} p_1 \right] + \frac{5}{12} p_0 + \frac{7}{12} p_1
\] (1)
with \( \lambda_2 = 1 - (p + q) = 344/350 \). With initial state probabilities \( [p_0 \quad p_1] = [1 \quad 0] \),
\[
p(n) = \left[ \frac{7}{12} \quad \frac{5}{12} \right] + \lambda_2^n \left[ \frac{5}{12} \right] + \frac{5}{12} p_0 + \frac{7}{12} p_1
\] (2)
The limiting state probabilities are \( [\pi_0 \quad \pi_1] = [7/12 \quad 5/12] \). Note that \( p_j(n) \) is within 1% of \( \pi_j \) if
\[
|\pi_j - p_j(n)| \leq 0.01 \pi_j
\] (3)
These requirements become
\[
\lambda_2^n \leq 0.01 \frac{7/12}{5/12} \quad \lambda_2^n \leq 0.01
\] (4)
The minimum value \( n \) that meets both requirements is
\[
n = \left[ \frac{\ln 0.01}{\ln \lambda_2} \right] = 267
\] (5)
Hence, after 267 time steps, the state probabilities are all within one percent of the limiting state probability vector. Note that in the packet voice system, the time step corresponded to a 10 ms time slot. Hence, 2.67 seconds are required.
Problem 12.3.2 Solution
At time \( n - 1 \), let \( p_i(n - 1) \) denote the state probabilities. By Theorem 12.4, the probability of state \( k \) at time \( n \) is
\[
p_k(n) = \sum_{i=0}^{\infty} p_i(n - 1)P_{ik}
\]
(1)
Since \( P_{ik} = q \) for every state \( i \),
\[
p_k(n) = q \sum_{i=0}^{\infty} p_i(n - 1) = q
\]
(2)
Thus for any time \( n > 0 \), the probability of state \( k \) is \( q \).

Problem 12.3.3 Solution
In this problem, the arrivals are the occurrences of packets in error. It would seem that \( N(t) \) cannot be a renewal process because the interarrival times seem to depend on the previous interarrival times. However, following a packet error, the sequence of packets that are correct (\( c \)) or in error (\( e \)) up to and including the next error is given by the tree

Assuming that sending a packet takes one unit of time, the time \( X \) until the next packet error has the PMF
\[
P_X(x) = \begin{cases} 
0.9 & x = 1 \\
0.001(0.9)^{x-2} & x = 2, 3, \\
0 & \text{otherwise}
\end{cases}
\]
(1)
Thus, following an error, the time until the next error always has the same PMF. Moreover, this time is independent of previous interarrival times since it depends only on the Bernoulli trials following a packet error. It would appear that \( N(t) \) is a renewal process; however, there is one additional complication. At time 0, we need to know the probability \( p \) of an error for the first packet. If \( p = 0.9 \), then \( X_1 \), the time until the first error, has the same PMF as \( X \) above and the process is a renewal process. If \( p \neq 0.9 \), then the time until the first error is different from subsequent renewal times. In this case, the process is a delayed renewal process.

Problem 12.4.1 Solution
The hardest part of this problem is that we are asked to find all ways of replacing a branch. The primary problem with the Markov chain in Problem 12.1.1 is that state 2 is a transient state. We can get rid of the transient behavior by making a nonzero branch probability \( P_{12} \) or \( P_{02} \). The possible ways to do this are:

- Replace \( P_{00} = 1/2 \) with \( P_{02} = 1/2 \)
- Replace \( P_{01} = 1/2 \) with \( P_{02} = 1/2 \)
- Replace \( P_{11} = 1/2 \) with \( P_{12} = 1/2 \)
- Replace \( P_{10} = 1/2 \) with \( P_{12} = 1/2 \)

Keep in mind that even if we make one of these replacements, there will be at least one self transition probability, either \( P_{00} \) or \( P_{11} \), that will be nonzero. This will guarantee that the resulting Markov chain will be aperiodic.
Problem 12.4.2 Solution
The chain given in Example 12.11 has two communicating classes as well as the transient state 2. To create a single communicating class, we need to add a transition that enters state 2. Yet, no matter how we add such a transition, we will still have two communicating classes. A second transition will be needed to create a single communicating class. Thus, we need to add two branches. There are many possible pairs of branches. Some pairs of positive branch probabilities that create an irreducible chain are
\[ \{P_{12}, P_{23}\}, \{P_{50}, P_{02}\}, \{P_{51}, P_{02}\} \] (1)

Problem 12.4.3 Solution
The idea behind this claim is that if states \( j \) and \( i \) communicate, then sometimes when we go from state \( j \) back to state \( j \), we will pass through state \( i \). If \( E[T_{ij}] = \infty \), then on those occasions we pass through \( i \), the expected time to go back to \( j \) will be infinite. This would suggest \( E[T_{jj}] = \infty \) and thus state \( j \) would not be positive recurrent. Using a math to prove this requires a little bit of care.

Suppose \( E[T_{ij}] = \infty \). Since \( i \) and \( j \) communicate, we can find \( n \), the smallest nonnegative integer such that \( P_{ji}(n) > 0 \). Given we start in state \( j \), let \( G_i \) denote the event that we go through state \( i \) on our way back to \( j \). By conditioning on \( G_i \),
\[
E[T_{jj}] = E[T_{jj}|G_i] P[G_i] + E[T_{jj}|G_i] P[G_i] P[G_i]
\]
(1)

Since \( E[T_{jj}|G_i] P[G_i] \geq 0 \),
\[
E[T_{jj}] \geq E[T_{jj}|G_i] P[G_i]
\]
(2)

Given the event \( G_i \), \( T_{jj} = T_{ji} + T_{ij} \). This implies
\[
E[T_{jj}|G_i] = E[T_{ji}|G_i] + E[T_{ij}|G_i] \geq E[T_{ij}|G_i]
\]
(3)

Since the random variable \( T_{ij} \) assumes that we start in state \( i \), \( E[T_{ij}|G_i] = E[T_{ij}] \). Thus \( E[T_{jj}|G_i] \geq E[T_{ij}] \). In addition, \( P[G_i] \geq P_{ji}(n) \) since there may be paths with more than \( n \) hops that take the system from state \( j \) to \( i \). These facts imply
\[
E[T_{jj}] \geq E[T_{jj}|G_i] P[G_i] \geq E[T_{ij}] P_{ji}(n) = \infty
\]
(4)

Thus, state \( j \) is not positive recurrent, which is a contradiction. Hence, it must be that \( E[T_{ij}] < \infty \).

Problem 12.5.1 Solution
In the solution to Problem 12.1.5, we found that the state transition matrix was
\[
P = \begin{bmatrix}
0.998 & 0.001 & 0.001 \\
0.004 & 0.98 & 0.016 \\
0.008 & 0.012 & 0.98
\end{bmatrix}
\]
(1)

We can find the stationary probability vector \( \pi = [\pi_0 \ \pi_1 \ \pi_2]' \) by solving \( \pi' = \pi'P \) along with \( \pi_0 + \pi_1 + \pi_2 = 1 \). It’s possible to find the solution by hand but its easier to use MATLAB or a similar tool. The solution is \( \pi = [0.7536 \ 0.1159 \ 0.1304] \).

421
Problem 12.5.2 Solution
From the Markov chain given in Problem 12.1.1, the state transition matrix is
\[ P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.25 & 0.25 & 0.5 \end{bmatrix} \] (1)

We find the stationary probabilities \( \pi = [\pi_0 \ \pi_1 \ \pi_2]' \) by solving
\[ \pi' = \pi' P \quad \sum_{j=0}^{2} 2\pi_j = 1 \] (2)

Of course, one equation of \( \pi' = \pi' P \) will be redundant. The three independent equations are
\[ \pi_0 = 0.5\pi_0 + 0.5\pi_1 + 0.25\pi_2 \] (3)
\[ \pi_2 = 0.5\pi_2 \] (4)
\[ 1 = \pi_0 + \pi_1 + \pi_2 \] (5)

From the second equation, we see that \( \pi_2 = 0 \). This leaves the two equations:
\[ \pi_0 = 0.5\pi_0 + 0.5\pi_1 \] (6)
\[ 1 = \pi_0 + \pi_1 \] (7)

Solving these two equations yields \( \pi_0 = \pi_1 = 0.5 \). The stationary probability vector is
\[ \pi' = [\pi_0 \ \pi_1 \ \pi_2] = [0.5 \ 0.5 \ 0] \] (8)

If you happened to solve Problem 12.2.2, you would have found that the \( n \)-step transition matrix is
\[ P^n = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 - (0.5)^{n+1} & 0.5 - (0.5)^{n+1} & (0.5)^n \end{bmatrix} \] (9)

From Theorem 12.21, we know that each rows of the \( n \)-step transition matrix converges to \( \pi' \). In this case,
\[ \lim_{n \to \infty} P^n = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.5 - (0.5)^{n+1} & 0.5 - (0.5)^{n+1} & (0.5)^n \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0 \end{bmatrix} \frac{\pi'}{\pi'} \] (10)

Problem 12.5.3 Solution
From the problem statement, the Markov chain is

The diagram shows a Markov chain with states 0 to 4, with transitions labeled with probabilities p and 1-p.
The self-transitions in state 0 and state 4 guarantee that the Markov chain is aperiodic. Since the chain is also irreducible, we can find the stationary probabilities by solving $\pi = \pi'P$; however, in this problem it is simpler to apply Theorem 12.13. In particular, by partitioning the chain between states $i$ and $i+1$, we obtain

$$\pi_i p = \pi_{i+1}(1 - p). \quad (1)$$

This implies $\pi_{i+1} = \alpha \pi_i$ where $\alpha = p/(1 - p)$. It follows that $\pi_i = \alpha^i \pi_0$. Requiring the stationary probabilities to sum to 1 yields

$$\sum_{i=0}^{4} \pi_i = \pi_0(1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4) = 1. \quad (2)$$

This implies

$$\pi_0 = \frac{1 - \alpha^5}{1 - \alpha} \quad (3)$$

Thus, for $i = 0, 1, \ldots, 4$,

$$\pi_i = \frac{1 - \alpha^5}{1 - \alpha} \alpha^i = \frac{1 - \left(\frac{p}{1-p}\right)^5}{1 - \left(\frac{p}{1-p}\right)} \left(\frac{p}{1-p}\right)^i. \quad (4)$$

**Problem 12.5.4 Solution**

From the problem statement, the Markov chain is

The self-transitions in state 0 and state $K$ guarantee that the Markov chain is aperiodic. Since the chain is also irreducible, we can find the stationary probabilities by solving $\pi' = \pi'P$; however, in this problem it is simpler to apply Theorem 12.13. In particular, by partitioning the chain between states $i$ and $i+1$, we obtain

$$\pi_i p = \pi_{i+1}(1 - p). \quad (1)$$

This implies $\pi_{i+1} = \alpha \pi_i$ where $\alpha = p/(1 - p)$. It follows that $\pi_i = \alpha^i \pi_0$. Requiring the stationary probabilities to sum to 1 yields

$$\sum_{i=0}^{K} \pi_i = \pi_0(1 + \alpha + \alpha^2 + \cdots + \alpha^K) = 1. \quad (2)$$

This implies

$$\pi_0 = \frac{1 - \alpha^{K+1}}{1 - \alpha} \quad (3)$$

Thus, for $i = 0, 1, \ldots, K$,

$$\pi_i = \frac{1 - \alpha^{K+1}}{1 - \alpha} \alpha^i = \frac{1 - \left(\frac{p}{1-p}\right)^{K+1}}{1 - \left(\frac{p}{1-p}\right)} \left(\frac{p}{1-p}\right)^i. \quad (4)$$
Problem 12.5.5 Solution
For this system, it’s hard to draw the entire Markov chain since from each state $n$ there are six branches, each with probability $1/6$ to states $n+1, n+2, \ldots, n+6$. (Of course, if $n+k > K-1$, then the transition is to state $n+k \mod K$.) Nevertheless, finding the stationary probabilities is not very hard. In particular, the $n$th equation of $\pi' = \pi'P$ yields

$$\pi_n = \frac{1}{6} (\pi_{n-6} + \pi_{n-5} + \pi_{n-4} + \pi_{n-3} + \pi_{n-2} + \pi_{n-1}).$$  \hspace{1cm} (1)$$

Rather than try to solve these equations algebraically, it’s easier to guess that the solution is

$$\pi = \begin{bmatrix} 1/K & 1/K & \cdots & 1/K \end{bmatrix}'.$$  \hspace{1cm} (2)$$

It’s easy to check that $1/K = (1/6) \cdot 6 \cdot (1/K)$.

Problem 12.5.6 Solution
This system has three states:

0 front teller busy, rear teller idle
1 front teller busy, rear teller busy
2 front teller idle, rear teller busy

We will assume the units of time are seconds. Thus, if a teller is busy one second, the teller will become idle in the next second with probability $p = 1/120$. The Markov chain for this system is

We can solve this chain very easily for the stationary probability vector $\pi$. In particular,

$$\pi_0 = (1 - p)\pi_0 + p(1 - p)\pi_1$$  \hspace{1cm} (1)$$

This implies that $\pi_0 = (1 - p)\pi_1$. Similarly,

$$\pi_2 = (1 - p)\pi_2 + p(1 - p)\pi_1$$  \hspace{1cm} (2)$$

yields $\pi_2 = (1 - p)\pi_1$. Hence, by applying $\pi_0 + \pi_1 + \pi_2 = 1$, we obtain

$$\pi_0 = \pi_2 = \frac{1-p}{3-2p} = 119/358$$  \hspace{1cm} (3)$$

$$\pi_1 = \frac{1}{3-2p} = 120/358$$  \hspace{1cm} (4)$$

The stationary probability that both tellers are busy is $\pi_1 = 120/358$.  \hspace{1cm} (424)
Problem 12.5.7 Solution
In this case, we will examine the system each minute. For each customer in service, we need to keep track of how soon the customer will depart. For the state of the system, we will use \((i, j)\), the remaining service requirements of the two customers. To reduce the number of states, we will order the requirements so that \(i \leq j\). For example, when two new customers start service each requiring two minutes of service, the system state will be \((2, 2)\). Since the system assumes there is always a backlog of cars waiting to enter service, the set of states is

0 \((0, 1)\) One teller is idle, the other teller has a customer requiring one more minute of service

1 \((1, 1)\) Each teller has a customer requiring one more minute of service.

2 \((1, 2)\) One teller has a customer requiring one minute of service. The other teller has a customer requiring two minutes of service.

3 \((2, 2)\) Each teller has a customer requiring two minutes of service.

The resulting Markov chain is shown on the right. Note that when we departing from either state \((0, 1)\) or \((1, 1)\) corresponds to both custoemrs finishing service and two new customers entering service. The state transiton probabilities reflect the fact that both customer will have two minute service requirements with probability 1/4, or both customers will hae one minute service requirements with probability 1/4, or one customer will need one minute of service and the other will need two minutes of service with probability 1/2.

Writing the stationary probability equations for states 0, 2, and 3 and adding the constraint \(\sum_j \pi_j = 1\) yields the following equations:

\[
\begin{align*}
\pi_0 &= \pi_2 \quad (1) \\
\pi_2 &= (1/2)\pi_0 + (1/2)\pi_1 \quad (2) \\
\pi_3 &= (1/4)\pi_0 + (1/4)\pi_1 \quad (3) \\
1 &= \pi_0 + \pi_1 + \pi_2 + \pi_3 \quad (4)
\end{align*}
\]

Substituting \(\pi_2 = \pi_0\) in the second equation yields \(\pi_1 = \pi_0\). Substituting that result in the third equation yields \(\pi_3 = \pi_0/2\). Making sure the probabilities add up to 1 yields

\[
\pi = [\pi_0 \pi_1 \pi_2 \pi_3]' = [2/7 \quad 2/7 \quad 2/7 \quad 1/7]' .
\]

Both tellers are busy unless the system is in state 0. The stationary probability both tellers are busy is \(1 - \pi_0 = 5/7\).

Problem 12.5.8 Solution

Under construction.

Problem 12.5.9 Solution

Under construction.
Problem 12.6.1 Solution

Equivalently, we can prove that if \( P_{ii} \neq 0 \) for some \( i \), then the chain cannot be periodic. So, suppose for state \( i \), \( P_{ii} > 0 \). Since \( P_{ii} = P_{ii}(1) \), we see that the largest \( d \) that divides \( n \) for all \( n \) such that \( P_{ii}(n) > 0 \) is \( d = 1 \). Hence, state \( i \) is aperiodic and thus the chain is aperiodic.

The converse that \( P_{ii} = 0 \) for all \( i \) implies the chain is periodic is false. As a counterexample, consider the simple chain on the right with \( P_{ii} = 0 \) for each \( i \).

Note that \( P_{00} > 0 \) and \( P_{00} > 0 \). The largest \( d \) that divides both 2 and 3 is \( d = 1 \). Hence, state 0 is aperiodic. Since the chain has one communicating class, the chain is also aperiodic.

Problem 12.6.2 Solution

The Markov chain for this system is

Note that \( P[N > 0] = 1 \) and that

\[
P[N > n | N > n - 1] = \frac{P[N > n, N > n - 1]}{P[N > n - 1]} = \frac{P[N > n]}{P[N > n - 1]}.
\]

Solving \( \pi' = \pi P \) yields

\[
\pi_1 = P[N > 1 | N > 0] \pi_0 = P[N > 1] \pi_0
\]
\[
\pi_2 = P[N > 2 | N > 1] \pi_1 = \frac{P[N > 2]}{P[N > 1]} \pi_1 = P[N > 2] \pi_0
\]
\[
\vdots
\]
\[
\pi_n = P[N > n | N > n - 1] \pi_{n-1} = \frac{P[N > n]}{P[N > n - 1]} \pi_{n-1} = P[N > n] \pi_0
\]

Next we apply the requirement that the stationary probabilities sum to 1. Since \( P[N \leq K + 1] = 1 \), we see for \( n \geq K + 1 \) that \( P[N > n] = 0 \). Thus

\[
1 = \sum_{n=0}^{K} \pi_n = \pi_0 \sum_{n=0}^{K} P[N > n] = \pi_0 \sum_{n=0}^{\infty} P[N > n].
\]

From Problem 2.5.11, we recall that \( \sum_{n=0}^{\infty} P[N > n] = E[N] \). This implies \( \pi_0 = 1/E[N] \) and that

\[
\pi_n = \frac{P[N > n]}{E[N]}.
\]

This is exactly the same stationary distribution found in Quiz 12.5! In this problem, we can view the system state as describing the age of an object that is repeatedly replaced. In state 0, we start with a new (zero age) object, and each unit of time, the object ages one unit of time. The random
variable $N$ is the lifetime of the object. A transition to state 0 corresponds to the current object expiring and being replaced by a new object.

In Quiz 12.5, the system state described a countdown timer for the residual life of an object. At state 0, the system would transition to a state $N = n$ corresponding to the lifetime of $n$ for a new object. This object expires and is replaced each time that state 0 is reached. This solution and the solution to Quiz 12.5 show that the age and the residual life have the same stationary distribution. That is, if we inspect an object at an arbitrary time in the distant future, the PMF of the age of the object is the same as the PMF of the residual life.

**Problem 12.6.3 Solution**
Consider an arbitrary state $i \in C_l$. To show that state $i$ has period $L$, we must show that $P_{ii}(n) > 0$ implies $n$ is divisible by $L$. Consider any sequence of states $i, i_1, i_2, \ldots, i_n = i$ that returns to state $i$ in $n$ steps. The structure of the Markov chain implies that $i_1 \in C_{l+1}, i_2 \in C_{l+2}$ and so on. In general, $i_j \in C_{(l+j) \mod L}$. Moreover, since state $i \in C_l$, $i_n = i$ only if $i_n \in C_l$. Since $i_n \in C_{(l+n) \mod L}$, we must have that $(l + n) \mod L = l$. This occurs if and only if $n$ is divisible by $L$.

**Problem 12.6.4 Solution**
This problem is easy as long as you don’t try to prove that the chain must have a single communicating class. A counterexample is easy to find. Here is a 4 state Markov chain with two recurrent communicating classes and each state having period 2. The two classes $C_0$ and $C_1$ are shown.

![Diagram](Image)

From each state $i \in C_0$, all transitions are to states $j \in C_1$. Similarly, from each state $i \in C_1$, only transitions to states $j \in C_0$ are permitted. The sets $\{0, 1\}$ and $\{2, 3\}$ are each communicating classes. However, each state has period 2.

**Problem 12.6.5 Solution**
Since the Markov chain has period $d$, there exists a state $i_0$ such that $P_{i_0i_0}(d) > 0$. For this state $i_0$, let $C_n(i_0)$ denote the set of states that reachable from $i_0$ in $n$ hops. We make the following claim:

- If $j \in C_n(i_0)$ and $j \in C_{n'}(i_0)$ with $n' > n$, then $n' = n + kd$ for some integer $k$

To prove this claim, we observe that irreducibility of the Markov chain implies there is a sequence of $m$ hops from state $j$ to state $i_0$. Since there is an $n$ hop path from $i_0$ to $j$ and an $m$ hop path from $j$ back to $i_0$, $n + m = kd$ for some integer $k$. Similarly, since there is an $n'$ hop path from $i_0$ to $j$, $n' + m = k'd$ for some integer $k'$. Thus

$$n' - n = (n' + m) - (n + m) = (k' - k)d. \quad (1)$$

Now we define

$$C_n = \bigcup_{k=0}^{\infty} C_{n+kd}(i_0), \quad n = 0, 1, \ldots, d - 1. \quad (2)$$

Because the chain is irreducible, any state $i$ belongs to some set $C_n(i_0)$, and thus any state $i$ belongs to at least one set $C_n$. By our earlier claim, each node $i$ belongs to exactly one set $C_n$. 

427
Hence, \( \{C_0, \ldots, C_{d-1}\} \) is a partition of the states of the states of the Markov chain. By construction of the set \( C_n(i_0) \), there exists states \( i \in C_n(i_0) \) and \( j \in C_{n+1}(i_0) \) such that \( P_{ij} > 0 \). Hence there exists \( i \in C_n \) and \( j \in C_{n+1} \) such that \( P_{ij} > 0 \).

Now suppose there exists states \( i \in C_n \) and \( j \in C_{n+m} \) such that \( P_{ij} > 0 \) and \( m > 1 \). In this case, the sequence of \( n + kd \) hops from \( i_0 \) to \( i \) followed by one hop to state \( j \) is an \( n + 1 + kd \) hop path from \( i_0 \) to \( j \), implying \( j \in C_{n+1} \). This contradicts the fact that \( j \) cannot belong to both \( C_{n+1} \) and \( C_{n+m} \). Hence no such transition from \( i \in C_n \) to \( j \in C_{n+m} \) is possible.

**Problem 12.8.1 Solution**

A careful reader of the text will observe that the Markov chain in this problem is identical to the Markov chain introduced in Example 12.21:

\[
\begin{align*}
0 & \xrightarrow{l-p} 1 \\
0 & \xrightarrow{l-p} 0 & 1 & \xrightarrow{l-p} 2 & \cdots
\end{align*}
\]

The stationary probabilities were found in Example 12.26 to be

\[
\pi_i = (1 - \alpha)\alpha^i, \quad i = 0, 1, 2, \ldots
\]  

where \( \alpha = p/(1 - p) \). Note that the stationary probabilities do not exist if \( \alpha \geq 1 \), or equivalently, \( p \geq 1/2 \).

**Problem 12.8.2 Solution**

If there are \( k \) customers in the system at time \( n \), then at time \( n + 1 \), the number of customers in the system is either \( n - 1 \) (if the customer in service departs and no new customer arrives), \( n \) (if either there is no new arrival and no departure or if there is both a new arrival and a departure) or \( n + 1 \), if there is a new arrival but no new departure. The transition probabilities are given by the following chain:

\[
\begin{align*}
0 & \xrightarrow{1-p} 1 & \xrightarrow{\alpha} 2 & \cdots
\end{align*}
\]

where \( \alpha = p(1 - q) \) and \( \delta = q(1 - p) \). To find the stationary probabilities, we apply Theorem 12.13 by partitioning the state space between states \( S = \{0, 1, \ldots, i\} \) and \( S' = \{i + 1, i + 2, \ldots\} \) as shown in Figure 12.4. By Theorem 12.13, for state \( i > 0 \),

\[
\pi_i \alpha = \pi_{i+1} \delta.
\]  

This implies \( \pi_{i+1} = (\alpha/\delta)\pi_i \). A cut between states 0 and 1 yields \( \pi_1 = (p/\delta)\pi_0 \). Combining these results, we have for any state \( i > 0 \),

\[
\pi_i = \frac{p}{\delta} \left( \frac{\alpha}{\delta} \right)^{i-1} \pi_0
\]  

Under the condition \( \alpha < \delta \), it follows that

\[
\sum_{i=0}^{\infty} \pi_i = \pi_0 + \pi_0 \sum_{i=1}^{\infty} \frac{p}{\delta} \left( \frac{\alpha}{\delta} \right)^{i-1} = \pi_0 \left( 1 + \frac{p/\delta}{1 - \alpha/\delta} \right)
\]  

428
since \( p < q \) implies \( \alpha/\delta < 1 \). Thus, applying \( \sum_i \pi_i = 1 \) and noting \( \delta - \alpha = q - p \), we have

\[
\pi_0 = \frac{q}{q-p}, \quad \pi_i = \frac{p}{(1-p)(1-q)} \left[ \frac{p/(1-p)}{q/(1-q)} \right]^{i-1}, \quad i = 1, 2, \ldots
\]  

(4)

Note that \( \alpha < \delta \) if and only if \( p < q \), which is both sufficient and necessary for the Markov chain to be positive recurrent.

**Problem 12.9.1 Solution**

From the problem statement, we learn that in each state \( i \), the tiger spends an exponential time with parameter \( \lambda_i \). When we measure time in hours,

\[
\lambda_0 = q_{01} = 1/3 \quad \lambda_1 = q_{12} = 1/2 \quad \lambda_2 = q_{20} = 2
\]

(1)

The corresponding continuous time Markov chain is shown below:

The state probabilities satisfy

\[
\frac{1}{3} \pi_0 = 2 \pi_2 \quad \frac{1}{2} \pi_1 = \frac{1}{3} \pi_0 \quad \pi_0 + \pi_1 + \pi_2 = 1
\]

(2)

The solution is

\[
[p_0 \ p_1 \ p_2] = \left[ \frac{6}{11} \ 4/11 \ 1/11 \right]
\]

(3)

**Problem 12.9.2 Solution**

In the continuous time chain, we have states 0 (silent) and 1 (active). The transition rates and the chain are

\[
g_{01} = \frac{1}{1.4} = 0.7143 \quad g_{10} = 1.0
\]

(1)

The stationary probabilities satisfy \((1/1.4)p_0 = p_1\). Since \( p_0 + p_1 = 1 \), the stationary probabilities are

\[
p_0 = \frac{1.4}{2.4} = \frac{7}{12} \quad p_1 = \frac{1}{2.4} = \frac{5}{12}
\]

(2)

In this case, the continuous time chain and the discrete time chain have the exact same state probabilities. In this problem, this is not surprising since we could use a renewal-reward process to calculate the fraction of time spent in state 0. From the renewal-reward process, we know that the fraction of time spent in state 0 depends only on the expected time in each state. Since in both the discrete time and continuous time chains, the expected time in each state is the same, the stationary probabilities must be the same. It is always possible to approximate a continuous time chain with a discrete time chain in which the unit of time is chosen to be very small. In general however, the stationary probabilities of the two chains will be close though not identical.
**Problem 12.9.3 Solution**

From each state $i$, there are transitions of rate $q_{ij} = 1$ to each of the other $k - 1$ states. Thus each state $i$ has departure rate $\nu_i = k - 1$. Thus, the stationary probabilities satisfy

$$p_j(k - 1) = \sum_{i \neq j} p_j \quad j = 1, 2, \ldots, k \quad (1)$$

It is easy to verify that the solution to these equations is

$$p_j = \frac{1}{k} \quad j = 1, 2, \ldots, k \quad (2)$$

**Problem 12.9.4 Solution**

In this problem, we build a two-state Markov chain such that the system in state $i \in \{0, 1\}$ if the most recent arrival of either Poisson process is type $i$. Note that if the system is in state 0, transitions to state 1 occur with rate $\lambda_1$. If the system is in state 1, transitions to state 0 occur at rate $\lambda_0$. The continuous time Markov chain is just

```
0 \rightarrow \lambda_0 \rightarrow 1
```

The stationary probabilities satisfy $p_0 \lambda_1 = p_1 \lambda_0$. Thus $p_1 = (\lambda_1 / \lambda_0) p_0$. Since $p_0 + p_1 = 1$, we have that

$$p_0 + (\lambda_1 / \lambda_0) p_0 = 1. \quad (1)$$

This implies

$$p_0 = \frac{\lambda_0}{\lambda_0 + \lambda_1}, \quad p_1 = \frac{\lambda_1}{\lambda_0 + \lambda_1}. \quad (2)$$

It is also possible to solve this problem using a discrete time Markov chain. One way to do this is to assume a very small time step $\Delta$. In state 0, a transition to state 1 occurs with probability $\lambda_1 \Delta$; otherwise the system stays in state 0 with probability $1 - \lambda_1 \Delta$. Similarly, in state 1, a transition to state 0 occurs with probability $\lambda_0 \Delta$; otherwise the system stays in state 1 with probability $1 - \lambda_0 \Delta$. Here is the Markov chain for this discrete time system:

```
0 \rightarrow \lambda_0 \rightarrow 1
```

Not surprisingly, the stationary probabilities for this discrete time system are

$$\pi_0 = \frac{\lambda_0}{\lambda_0 + \lambda_1}, \quad \pi_1 = \frac{\lambda_1}{\lambda_0 + \lambda_1}. \quad (3)$$

**Problem 12.10.1 Solution**

In Equation (12.93), we found that the blocking probability of the $M/M/c/c$ queue was given by the Erlang-B formula

$$P[B] = P_N(c) = \frac{\rho^c}{c! \sum_{k=0}^{c} \rho^k / k!} \quad (1)$$
The parameter $\rho = \lambda/\mu$ is the normalized load. When $c = 2$, the blocking probability is

$$P[B] = \frac{\rho^2/2}{1 + \rho + \rho^2/2} \quad (2)$$

Setting $P[B] = 0.1$ yields the quadratic equation

$$\rho^2 - \frac{2}{9} \rho - \frac{2}{9} = 0 \quad (3)$$

The solutions to this quadratic are

$$\rho = \frac{1 \pm \sqrt{19}}{9} \quad (4)$$

The meaningful nonnegative solution is $\rho = (1 + \sqrt{19})/9 = 0.5954$.

**Problem 12.10.2 Solution**

When we double the call arrival rate, the offered load $\rho = \lambda/\mu$ doubles to $\rho = 160$. However, since we double the number of circuits to $c = 200$, the offered load per circuit remains the same. In this case, if we inspect the system after a long time, the number of calls in progress is described by the stationary probabilities and has PMF

$$P_N(n) = \begin{cases} \frac{\rho^n/n!}{\sum_{k=0}^{200} \rho^k/k!} & n = 0, 1, \ldots, 200 \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

The probability a call is blocked is

$$P[B] = P_N(200) = \frac{\rho^{200}/200!}{\sum_{k=0}^{200} \rho^k/k!} = 2.76 \times 10^{-4} \quad (2)$$

Note that although the load per server remains the same, doubling the number of circuits to 200 caused the blocking probability to go down by more than a factor of 10 (from 0.004 to $2.76 \times 10^{-4}$). This is a general property of the Erlang-B formula and is called *trunking efficiency* by telephone system engineers. The basic principle is that it’s more efficient to share resources among larger groups.

The hard part of calculating $P[B]$ is that most calculators, including MATLAB have trouble calculating 200!. (In MATLAB, factorial is calculated using the gamma function. That is, $200! = \text{gamma}(201)$.) To do these calculations, you need to observe that if $q_n = \rho^n/n!$, then

$$q_{n+1} = \frac{\rho}{n} q_{n-1} \quad (3)$$

A simple MATLAB program that uses this fact to calculate the Erlang-B formula for large values of $c$ is

```matlab
function y=erlangbsimple(r,c)
\%load is r=lambda/mu
\%number of servers is c
p=1.0;
psum=1.0;
for k=1:c
 p=p*r/k;
psum=psum+p;
end
y=p/psum;
```

431
Essentially the problems with the calculations of `erlangbsimple.m` are the same as those of calculating the Poisson PMF. A better program for calculating the Erlang-B formula uses the improvements employed in `poissonpmf` to calculate the Poisson PMF for large values. Here is the code:

```matlab
function pb=erlangb(rho,c);
%Usage: pb=erlangb(rho,c)
%returns the Erlang-B blocking
%probability for sn M/M/c/c
%queue with load rho
pn=exp(-rho)*poissonpmf(rho,0:c);
pb=pn(c+1)/sum(pn);
```

**Problem 12.10.3 Solution**
In the $M/M/1/c$ queue, there is one server and the system has capacity $c$. That is, in addition to the server, there is a waiting room that can hold $c - 1$ customers. With arrival rate $\lambda$ and service rate $\mu$, the Markov chain for this queue is

![Markov chain](image)

By Theorem 12.24, the stationary probabilities satisfy $p_{i-1}\lambda = p_i\mu$. By defining $\rho = \lambda/mu$, we have $p_i = \rho p_{i-1}$, which implies

$$p_n = \rho^n p_0 \quad n = 0, 1, \ldots, c$$

(1)

applying the requirement that the stationary probabilities sum to 1 yields

$$\sum_{i=0}^{c} p_i = p_0 \left[ 1 + \rho + \rho^2 + \cdots + \rho^c \right] = 1$$

(2)

This implies

$$p_0 = \frac{1 - \rho}{1 - \rho^{c+1}}$$

(3)

The stationary probabilities are

$$p_n = \frac{(1 - \rho)\rho^n}{1 - \rho^{c+1}} \quad n = 0, 1, \ldots, c$$

(4)

**Problem 12.10.4 Solution**
Since the arrivals are a Poisson process and since the service requirements are exponentially distributed, the set of toll booths are an $M/M/c/\infty$ queue. With an arrival rate of $\lambda$ and a service rate of $\mu = 1$, the Markov chain is:

![Markov chain](image)
In the solution to Quiz 12.10, we found that the stationary probabilities for the queue satisfied

$$p_n = \begin{cases} 
p_0 \rho^n/n! & n = 1, 2, \ldots, c 
p_0 (\rho/c)^{n-c} \rho^c/c! & n = c + 1, c + 2, \ldots
\end{cases}$$

(1)

where $\rho = \lambda/\mu = \lambda$. We must be sure that $\rho$ is small enough that there exists $p_0 > 0$ such that

$$\sum_{n=0}^{\infty} p_n = p_0 \left( 1 + \sum_{n=1}^{c} \frac{\rho^n}{n!} + \frac{\rho^c}{c!} \sum_{n=c+1}^{\infty} \left( \frac{\rho}{c} \right)^{n-c} \right) = 1$$

(2)

This requirement is met if and only if the infinite sum converges, which occurs if and only if

$$\sum_{n=c+1}^{\infty} \left( \frac{\rho}{c} \right)^{n-c} = \sum_{j=1}^{\infty} \left( \frac{\rho}{c} \right)^j < \infty$$

(3)

That is, $p_0 > 0$ if and only if $\rho/c < 1$, or $\lambda < c$. In short, if the arrival rate in cars per second is less than the service rate (in cars per second) when all booths are busy, then the Markov chain has a stationary distribution. Note that if $\rho > c$, then the Markov chain is no longer positive recurrent and the backlog of cars will grow to infinity.

**Problem 12.10.5 Solution**

(a) In this case, we have two $M/M/1$ queues, each with an arrival rate of $\lambda/2$. By defining $\rho = \lambda/\mu$, each queue has a stationary distribution

$$p_n = (1 - \rho/2) (\rho/2)^n \quad n = 0, 1, \ldots$$

(1)

Note that in this case, the expected number in queue $i$ is

$$E[N_i] = \sum_{n=0}^{\infty} np_n = \frac{\rho/2}{1 - \rho/2}$$

(2)

The expected number in the system is

$$E[N_1] + E[N_2] = \frac{\rho}{1 - \rho/2}$$

(3)

(b) The combined queue is an $M/M/2/\infty$ queue. As in the solution to Quiz 12.10, the stationary probabilities satisfy

$$p_n = \begin{cases} 
p_0 \rho^n/n! & n = 1, 2 
p_0 \rho^{n-2} \rho^2/2 & n = 3, 4, \ldots
\end{cases}$$

(4)

The requirement that $\sum_{n=0}^{\infty} p_n = 1$ yields

$$p_0 = \left( 1 + \rho + \frac{\rho^2}{2} + \frac{\rho^2}{2} \frac{\rho/2}{1 - \rho/2} \right)^{-1} = \frac{1 - \rho/2}{1 + \rho/2}$$

(5)

The expected number in the system is $E[N] = \sum_{n=1}^{\infty} np_n$. Some algebra will show that

$$E[N] = \frac{\rho}{1 - (\rho/2)^2}$$

(6)

We see that the average number in the combined queue is lower than in the system with individual queues. The reason for this is that in the system with individual queues, there is a possibility that one of the queues becomes empty while there is more than one person in the other queue.
Problem 12.10.6 Solution
The LCFS queue operates in a way that is quite different from the usual first come, first served queue. However, under the assumptions of exponential service times and Poisson arrivals, customers arrive at rate $\lambda$ and depart at rate $\mu$, no matter which service discipline is used. The Markov chain for the LCFS queue is the same as the Markov chain for the $M/M/1$ first come, first served queue:

It would seem that the LCFS queue should be less efficient than the ordinary $M/M/1$ queue because a new arrival causes us to discard the work done on the customer in service. This is not the case, however, because the memoryless property of the exponential PDF implies that no matter how much service had already been performed, the remaining service time remains identical to that of a new customer.

Problem 12.10.7 Solution
Since both types of calls have exponential holding times, the number of calls in the system can be used as the system state. The corresponding Markov chain is

When the number of calls, $n$, is less than $c-r$, we admit either type of call and $q_{n,n+1} = \lambda + h$. When $n \geq c - r$, we block the new calls and we admit only handoff calls so that $q_{n,n+1} = h$. Since the service times are exponential with an average time of 1 minute, the call departure rate in state $n$ is $n$ calls per minute. Theorem 12.24 says that the stationary probabilities $p_n$ satisfy

This implies

The requirement that $\sum_{n=1}^{c} p_n = 1$ yields

Finally, a handoff call is dropped if and only if a new call finds the system with $c$ calls in progress. The probability that a handoff call is dropped is

$$P[H] = p_c = \frac{(\lambda + h)^{c-r} \lambda^r}{c!} p_0 = \frac{(\lambda + h)^{c-r} \lambda^r / c!}{\sum_{n=0}^{c-r} \frac{(\lambda + h)^n}{n!} + \frac{(\lambda + h)^{c-r} \lambda^r / c!}{\sum_{n=c-r+1}^{c} \frac{\lambda^n}{n!}}}$$
Problem 12.11.1 Solution

Here is the Markov chain describing the free throws.

Note that state 4 corresponds to “4 or more consecutive successes” while state −4 corresponds to “4 or more consecutive misses.” We denote the stationary probabilities by the vector

\[ \pi = [\pi_{-4} \quad \pi_{-3} \quad \pi_{-2} \quad \pi_{-1} \quad \pi_0 \quad \pi_1 \quad \pi_2 \quad \pi_3 \quad \pi_4]' \].

For this vector \( \pi \), the state transition matrix is

\[
P = \begin{bmatrix}
0.9 & 0 & 0 & 0 & 0 & 0.1 & 0 & 0 & 0 \\
0.8 & 0 & 0 & 0 & 0 & 0.2 & 0 & 0 & 0 \\
0 & 0.7 & 0 & 0 & 0 & 0.3 & 0 & 0 & 0 \\
0 & 0 & 0.6 & 0 & 0 & 0.4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.3 & 0 & 0 & 0 & 0.7 \\
0 & 0 & 0 & 0 & 0.2 & 0 & 0 & 0 & 0.8 \\
0 & 0 & 0 & 0 & 0.1 & 0 & 0 & 0 & 0.9
\end{bmatrix}.
\]

To solve the problem at hand, we divide the work into two functions; \texttt{freethrowmat(n)} returns the \( n \) step transition matrix and \texttt{freethrowp(n)} that calculates the probability of a success on the free throw \( n \).

```matlab
function Pn=freethrowmat(n);
P=[0.9 0 0 0 0 0.1 0 0 0;...
 0.8 0 0 0 0 0.2 0 0 0;...
 0 0.7 0 0 0 0.3 0 0 0;...
 0 0 0.6 0 0 0.4 0 0 0;...
 0 0 0 0.5 0 0.5 0 0 0;...
 0 0 0 0.4 0 0.6 0 0 0;...
 0 0 0 0.3 0 0 0.7 0 0;...
 0 0 0 0.2 0 0 0 0.8;...
 0 0 0 0.1 0 0 0 0 0.9];
Pn=P^n;
```

```matlab
function ps=freethrowp(n);
PP=freethrowmat(n-1);
p0=[zeros(1,4) 1 ... zeros(1,4)];
ps=p0*PP*0.1*(1:9)';
```

In \texttt{freethrowp.m}, \texttt{p0} is the initial state probability row vector \( \pi'(0) \). Thus \texttt{p0*PP} is the state probability row vector after \( n - 1 \) free throws. Finally, \texttt{p0*PP*0.1*(1:9)'} multiplies the state probability vector by the conditional probability of successful free throw given the current state. The answer to our problem is simply 435.
In retrospect, the calculations are unnecessary! Because the system starts in state 0, symmetry of the Markov chain dictates that states $-k$ and $k$ will have the same probability at every time step. Because state $-k$ has success probability $0.5 - 0.1k$ while state $k$ has success probability $0.5 + 0.1k$, the conditional success probability given the system is in state $-k$ or $k$ is 0.5. Averaged over $k = 1, 2, 3, 4$, the average success probability is still 0.5.

Comment: Perhaps finding the stationary distribution is more interesting. This is done fairly easily:

```matlab
>> p = dmcstatprob(freethrowmat(1));
>> p'
ans =
0.3123 0.0390 0.0558 0.0929 0 0.0929 0.0558 0.0390 0.3123
```

About sixty percent of the time the shooter has either made four or more consecutive free throws or missed four or more free throws. On the other hand, one can argue that in a basketball game, a shooter rarely gets to take more than a half dozen (or so) free throws, so perhaps the stationary distribution isn’t all that interesting.

Problem 12.11.2 Solution

In this problem, we model the system as a continuous time Markov chain. The clerk and the manager each represent a “server.” The state describes the number of customers in the queue and the number of active servers. The Markov chain is somewhat complicated because when the number of customers in the store is 2, 3, or 4, the number of servers may be 1 or may be 2, depending on whether the manager became an active server.

When just the clerk is serving, the service rate is 1 customer per minute. When the manager and clerk are both serving, the rate is 2 customers per minute. Here is the Markov chain:

![Markov Chain Diagram]

In states $2c$, $3c$ and $4c$, only the clerk is working. In states $2m$, $3m$ and $4m$, the manager is also working. The state space $\{0, 1, 2c, 3c, 4c, 2m, 3m, 4m, 5, 6, \ldots\}$ is countably infinite. Finding the state probabilities is a little bit complicated because there are enough states that we would like to use MATLAB; however, MATLAB can only handle a finite state space. Fortunately, we can use MATLAB because the state space for states $n \geq 5$ has a simple structure.

We observe for $n \geq 5$ that the average rate of transitions from state $n$ to state $n+1$ must equal the average rate of transitions from state $n+1$ to state $n$, implying

$$\lambda p_n = 2p_{n+1}, \quad n = 5, 6, \ldots$$

(1)

It follows that $p_{n+1} = (\lambda/2)p_n$ and that

$$p_n = \alpha^{n-5}p_5, \quad n = 5, 6, \ldots, \quad \alpha = \frac{\lambda}{2}$$

(2)
where $\alpha = \lambda < 2 < 1$. The requirement that the stationary probabilities sum to 1 implies

$$1 = p_0 + p_1 + \sum_{j=2}^{4} (p_{jc} + p_{jm}) + \sum_{n=5}^{\infty} p_n$$

$$= p_0 + p_1 + \sum_{j=2}^{4} (p_{jc} + p_{jm}) + p_5 \sum_{n=5}^{\infty} \alpha^{n-5}$$

$$= p_0 + p_1 + \sum_{j=2}^{4} (p_{jc} + p_{jm}) + \frac{p_5}{1 - \alpha}$$

This is convenient because for each state $j < 5$, we can solve for the stationary probabilities. In particular, we use Theorem 12.23 to write $\sum \sum_i r_{ij} p_i = 0$. This leads to a set of matrix equations for the state probability vector

$$p = \begin{bmatrix} p_0 & p_1 & p_{2c} & p_{3c} & p_{4c} & p_{2m} & p_{3m} & p_{4m} & p_5 \end{bmatrix}'$$

The rate transition matrix associated with $p$ is

$$Q = \begin{bmatrix}
p_0 & p_1 & p_{2c} & p_{3c} & p_{4c} & p_{2m} & p_{3m} & p_{4m} & p_5 \\
0 & \lambda & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & \lambda & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & \lambda & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \lambda & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \lambda \\
0 & 2 & 0 & 0 & 0 & 0 & \lambda & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & \lambda & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & \lambda & 0 \\
\end{bmatrix},$$

where the first row just shows the correspondence of the state probabilities and the matrix columns. For each state $i$, excepting state 5, the departure rate $\nu_i$ from that state equals the sum of entries of the corresponding row of $Q$. To find the stationary probabilities, our normal procedure is to use Theorem 12.23 and solve $p'R = 0$ and $p'1 = 1$, where $R$ is the same as $Q$ except the zero diagonal entries are replaced by $-\nu_i$. The equation $p'1 = 1$ replaces one column of the set of matrix equations. This is the approach of $\text{cmcsstatprob.m}$.

In this problem, we follow almost the same procedure. We form the matrix $R$ by replacing the diagonal entries of $Q$. To find the stationary probabilities, our normal procedure is to use Theorem 12.23 and solve $p'R = 0$ and $p'1 = 1$. However, instead of replacing an arbitrary column with the equation $p'1 = 1$, we replace the column corresponding to $p_5$ with the equation

$$p_0 + p_1 + p_{2c} + p_{3c} + p_{4c} + p_{2m} + p_{3m} + p_{4m} + \frac{p_5}{1 - \alpha} = 1.$$  

That is, we solve

$$p'R = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}'.$$
where
\[
R = \begin{bmatrix}
-\lambda & \lambda & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & -1 - \lambda & \lambda & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & -1 - \lambda & \lambda & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 - \lambda & \lambda & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & -1 - \lambda & 0 & 0 & 0 & 1 \\
0 & 2 & 0 & 0 & 0 & -2 - \lambda & \lambda & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 2 & -2 - \lambda & \lambda & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & -2 - \lambda & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 - \alpha \\
\end{bmatrix}
\] (10)

Given the stationary distribution, we can now find \( E[N] \) and \( P[W] \).

Recall that \( N \) is the number of customers in the system at a time in the distant future. Defining
\[
p_n = p_{nc} + p_{nm}, \quad n = 2, 3, 4,
\] (11)
we can write
\[
E[N] = \sum_{n=0}^{\infty} np_n = 4 \sum_{n=0}^{\infty} np_n + \sum_{n=5}^{\infty} np_5 \alpha^{n-5} 
\] (12)
The substitution \( k = n - 5 \) yields
\[
E[N] = \sum_{n=0}^{4} np_n + p_5 \sum_{k=0}^{\infty} (k+5) \alpha^k 
\] (13)
\[
= \sum_{n=0}^{4} np_n + p_5 \frac{5}{1 - \alpha} + p_5 \sum_{k=0}^{\infty} k \alpha^k 
\] (14)

From Math Fact B.7, we conclude that
\[
E[N] = \sum_{n=0}^{4} np_n + p_5 \left( \frac{5}{1 - \alpha} + \frac{\alpha}{(1 - \alpha)^2} \right) 
\] (15)
\[
= \sum_{n=0}^{4} np_n + p_5 \frac{5 - 4 \alpha}{(1 - \alpha)^2} 
\] (16)

Furthermore, the manager is working unless the system is in state 0, 1, 2c, 3c, or 4c. Thus
\[
P[W] = 1 - (p_0 + p_1 + p_2c + p_3c + p_4c). 
\] (17)

We implement these equations in the following program, alongside the corresponding output.
function [EN, PW] = clerks(lam);
Q = diag(lam*[1 1 1 0 1 1 1], 1);
Q = Q + diag([1 1 1 0 2 2 2], -1);
Q(6, 2) = 2; Q(5, 9) = lam;
R = Q - diag(sum(Q, 2));
n = size(Q, 1);
a = lam/2;
R(:, n) = [ones(1, n - 1) 1/(1 - a)]';
pv = (zeros(1, n - 1) 1] * R^(-1));
EN = pv*[0; 1; 2; 3; 4; 2; 3; 4; ...
(5*4*a)/(1-a)^2];
PW = 1 - sum(pv(1:5));

>> [en05, pw05] = clerks(0.5)
en05 =
 0.8217
pw05 =
 0.0233
>> [en10, pw10] = clerks(1.0)
en10 =
 2.1111
pw10 =
 0.2222
>> [en15, pw15] = clerks(1.5)
en15 =
 4.5036
pw15 =
 0.5772

We see that in going from an arrival rate of 0.5 customers per minute to 1.5 customers per minute, the average number of customers goes from 0.82 to 4.5 customers. Similarly, the probability the manager is working rises from 0.02 to 0.57.

**Problem 12.11.3 Solution**

Although the inventory system in this problem is relatively simple, the performance analysis is surprisingly complicated. We can model the system as a Markov chain with state $X_n$ equal to the number of brake pads in stock at the start of day $n$. Note that the range of $X_n$ is $S_X = \{50, 51, \ldots, 109\}$. To evaluate the system, we need to find the state transition matrix for the Markov chain. We express the transition probabilities in terms of $P_K(\cdot)$, the PMF of the number of brake pads ordered on an arbitrary day. In state $i$, there are two possibilities:

- If $50 \leq i \leq 59$, then there will be $\min(i, K)$ brake pads sold. At the end of the day, the number of pads remaining is less than 60, and so 50 more pads are delivered overnight. Thus the next state is $j = 50$ if $K \geq i$ pads are ordered, $i$ pads are sold and 50 pads are delivered overnight. On the other hand, if there are $K < i$, orders, then the next state is $j = i - K + 50$.

In this case,

$$P_{ij} = \begin{cases} P[K \geq i] & j = 50, \\ P_K(50 + i - j) & j = 51, 52, \ldots, 50 + i. \end{cases}$$  \hspace{1cm} (1)

- If $60 \leq i \leq 109$, then there are several subcases:

  - $j = 50$: If there are $K \geq i$ orders, then all $i$ pads are sold, 50 pads are delivered overnight, and the next state is $j = 50$. Thus

    $$P_{ij} = P[K \geq i], \hspace{1cm} j = 50. \hspace{1cm} (2)$$

  - $51 \leq j \leq 59$: If $50 + i - j$ pads are sold, then $j - 50$ pads are left at the end of the day. In this case, 50 pads are delivered overnight, and the next state is $j$ with probability

    $$P_{ij} = P_K(50 + i - j), \hspace{1cm} j = 51, 52, \ldots, 59. \hspace{1cm} (3)$$

  - $60 \leq j \leq i$: If there are $K = i - j$ pads ordered, then there will be $j \geq 60$ pads at the end of the day and the next state is $j$. On the other hand, if $K = 50 + i - j$ pads are
ordered, then there will be \( i - (50 + i - j) = j - 50 \) pads at the end of the day. Since \( 60 \leq j \leq 109, \ 10 \leq j - 50 \leq 59 \), there will be 50 pads delivered overnight and the next state will be \( j \). Thus

\[
P_{ij} = P_K (i - j) + P_K (50 + i - j), \quad j = 60, 61, \ldots, i.
\] (4)

- For \( i < j \leq 109 \), state \( j \) can be reached from state \( i \) if there \( 50 + i - j \) orders, leaving \( i - (50 + i - j) = j - 50 \) in stock at the end of the day. This implies 50 pads are delivered overnight and the next stage is \( j \). the probability of this event is

\[
P_{ij} = P_K (50 + i - j), \quad j = i + 1, i + 2, \ldots, 109.
\] (5)

We can summarize these observations in this set of state transition probabilities:

\[
P_{ij} = \begin{cases} 
P[K \geq i] & 50 \leq i \leq 109, j = 50, \\
P_K (50 + i - j) & 50 \leq i \leq 59, 51 \leq j \leq 50 + i, \\
P_K (50 + i - j) & 60 \leq i \leq 109, 51 \leq j \leq 59, \\
P_K (i - j) + P_K (50 + i - j) & 60 \leq i \leq 109, 60 \leq j \leq i, \\
P_K (50 + i - j) & 60 \leq i \leq 109, i + 1 \leq j \leq 109 \\
0 & \text{otherwise}
\end{cases}
\] (6)

Note that the “0 otherwise” rule comes into effect when \( 50 \leq i \leq 59 \) and \( j > 50 + i \). To simplify these rules, we observe that \( P_K (k) = 0 \) for \( k < 0 \). This implies \( P_K (50 + i - j) = 0 \) for \( j > 50 + i \). In addition, for \( j > i \), \( P_K (i - j) = 0 \). These facts imply that we can write the state transition probabilities in the simpler form:

\[
P_{ij} = \begin{cases} 
P[K \geq i] & 50 \leq i \leq 109, j = 50, \\
P_K (50 + i - j) & 50 \leq i \leq 59, 51 \leq j \leq 59, \\
P_K (i - j) + P_K (50 + i - j) & 60 \leq i \leq 109, 60 \leq j \leq i
\end{cases}
\] (7)

Finally, we make the definitions

\[
\beta_i = P[K \geq i], \quad \gamma_k = P_K (50 + k), \quad \delta_k = P_K (k) + P_K (50 + k).
\] (8)

With these definitions, the state transition probabilities are

\[
P_{ij} = \begin{cases} 
\beta_i & 50 \leq i \leq 109, j = 50, \\
\gamma_{i-j} & 50 \leq i \leq 59, 51 \leq j \leq 59, \\
\gamma_{i-j} & 60 \leq i \leq 109, 51 \leq j \leq 59, \\
\delta_{i-j} & 60 \leq i \leq 109, 60 \leq j
\end{cases}
\] (9)
Expressed as a table, the state transition matrix $P$ is

$$
\begin{array}{cccccccccc}
  i | & 50 & 51 & \cdots & 59 & 60 & \cdots & \cdots & \cdots & 109 \\
  \hline
  50 & \beta_{50} & \gamma_{-1} & \cdots & \gamma_{-9} & \cdots & \cdots & \cdots & \cdots & \gamma_{-59} \\
  51 & \beta_{51} & \gamma_0 & \cdots \\
  \vdots & \vdots & \vdots & \ddots \\
  59 & \beta_{59} & \gamma_8 & \cdots & \gamma_{-1} & \cdots & \gamma_{-9} & \cdots & \cdots & \gamma_{-50} \\
  60 & \beta_{60} & \gamma_9 & \cdots & \gamma_1 & \delta_0 & \cdots & \delta_{-9} & \cdots & \delta_{-49} \\
  \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
  109 & \beta_{109} & \gamma_{58} & \cdots & \gamma_{50} & \delta_{49} & \cdots & \delta_9 & \cdots & \delta_0 \\
\end{array}
$$

(10)

In terms of MATLAB, all we need to do is to encode the matrix $P$, calculate the stationary probability vector $\pi$, and then calculate $E[Y]$, the expected number of pads sold on a typical day. To calculate $E[Y]$, we use iterated expectation. The number of pads ordered is the Poisson random variable $K$. We assume that on a day $n$ that $X_n = i$ and we calculate the conditional expectation

$$
E[Y|X_n = i] = E[\min(K, i)] = \sum_{j=0}^{i-1} jP_K(j) + iP[K \geq i].
$$

(11)

Since only states $i \geq 50$ are possible, we can write

$$
E[Y|X_n = i] = \sum_{j=0}^{49} jP_K(j) + \sum_{j=49}^{i-1} jP_K(j) + iP[K \geq i].
$$

(12)

Finally, we assume that on a typical day $n$, the state of the system $X_n$ is described by the stationary probabilities $P[X_n = i] = \pi_i$ and we calculate

$$
E[Y] = \sum_{i=50}^{109} E[Y|X_n = i] \pi_i.
$$

(13)

These calculations are given in this MATLAB program:
function [pstat,ey]=brakepads(alpha);
s=(50:109)';
beta=1-poissoncdf(alpha,s-1);
grow=poissonpmf(alpha,50+(-1:-1:-59));
gcol=poissonpmf(alpha,50+(-1:58));
drow=poissonpmf(alpha,0:-1:-49);
dcol=poissonpmf(alpha,0:49);
P=[beta,toeplitz(gcol,grow)];
P(11:60,11:60)=P(11:60,11:60)...
+toeplitz(dcol,drow);
pstat=dmcstatprob(P);
[I,J]=ndgrid(49:108,49:108);
G=J.*(I>=J);
EYX=(G*gcol)+(s.*beta);
kp=poissonpmf(alpha,0:48);
EYX=EYX+(0:48)*kp;
ey=(EYX')*pstat;

The first half of brakepads.m constructs \( P \) to calculate the stationary probabilities. The first column of \( P \) is just the vector

\[
\beta = [\beta_{50} \cdots \beta_{109}]'.
\] (14)

The rest of \( P \) is easy to construct using \texttt{toeplitz} function. We first build an asymmetric Toeplitz matrix with first row and first column

\[
grow = [\gamma_{-1} \gamma_{-2} \cdots \gamma_{-59}] \quad (15)
gcol = [\gamma_{-1} \gamma_{0} \cdots \gamma_{58}]' \quad (16)
\]

Note that \( \delta_k = P_K(k) + \gamma_k \). Thus, to construct the Toeplitz matrix in the lower right corner of \( P \), we simply add the Toeplitz matrix corresponding to the missing \( P_K(k) \) term. The second half of brakepads.m calculates \( E[Y] \) using the iterated expectation. Note that

\[
E[Y] = \left[ E[Y|X_n = 50] \cdots E[Y|X_n = 109] \right]'.
\] (17)

The somewhat convoluted code becomes clearer by noting the following correspondences:

\[
E[Y|X_n = i] = \sum_{j=0}^{48} jP_K(j) + \sum_{j=49}^{i-1} jP_K(j) + iP[K \geq i].
\] (18)

To find \( E[Y] \), we execute the commands:

\[
>> \text{[ps,ey]}=\text{brakepads}(50);
\]

\[
>> \text{ey} =
\]

\[
49.4154
\]

>>

We see that although the store receives 50 orders for brake pads on average, the average number sold is only 49.42 because once in awhile the pads are out of stock. Some experimentation will show that if the expected number of orders \( \alpha \) is significantly less than 50, then the expected number of brake pads sold each day is very close to \( \alpha \). On the other hand, if \( \alpha \gg 50 \), then the each day the store will run out of pads and will get a delivery of 50 pads each night. The expected number of unfulfilled orders will be very close to \( \alpha - 50 \).

Note that a new inventory policy in which the overnight delivery is more than 50 pads or the threshold for getting a shipment is more than 60 will reduce the expected number of unfulfilled orders. Whether such a change in policy is a good idea depends on factors such as the carrying cost of inventory that are absent from our simple model.

**Problem 12.11.4 Solution**

This problem is actually very easy. The state of the system is given by \( X \), the number of cars in the system. When \( X = 0 \), both tellers are idle. When \( X = 1 \), one teller is busy, however, we do not need to keep track of which teller is busy. When \( X = n \geq 2 \), both tellers are busy and there are \( n - 2 \) cars waiting. Here is the Markov chain:
Since this is a birth death process, we could easily solve this problem using analysis. However, as this problem is in the MATLAB section of this chapter, we might as well construct a MATLAB solution:

```
function [p,en]=veryfast2(lambda);
c=2*[0,eye(1,8)]';
r=lambda*[0,eye(1,8)];
Q=toeplitz(c,r);
Q(2,1)=1;
p=cmcstatprob(Q);
en=(0:8)*p;
```

The code solves the stationary distribution and the expected number of cars in the system for an arbitrary arrival rate \( \lambda \).

Here is the output:

```
>> [p,en]=veryfast2(0.75);
>> p'
ans =
 0.4546 0.3410 0.1279 0.0480 0.0180 0.0067 0.0025 0.0009 0.0004
>> en
en =
 0.8709
```

**Problem 12.11.5 Solution**

Under construction.

**Problem 12.11.6 Solution**

Under construction.

**Problem 12.11.7 Solution**

Under construction.

**Problem 12.11.8 Solution**

Under construction.

**Problem 12.11.9 Solution**

Under construction.