External Problem:
Let \(x \) and \(y \) be two real numbers selected at random over the interval \([0, 1]\) and define the events \(A, B \) and \(C \) as follows:

\[
A = \{ x > 0.5 \} \quad B = \{ y > 0.5 \} \quad \text{and} \quad C = \{ x > y \}
\]

1. Are \(A \) and \(B \) independent?
2. Are \(A \) and \(C \) independent?

Hint: Use the \(x-y \) Cartesian plane to model the problem.

Solution:

Because the events \(A, B \) and \(C \) are continuous, their probability is the area they cover, respectively.

1. \[
P[A|B] = \frac{P[A \cap B]}{P[B]} = \frac{1/4}{1/2} = \frac{1}{2} = P[A]
\]
 \[\implies A \text{ and } B \text{ are independent.}\]

2. \[
P[A|C] = \frac{P[A \cap C]}{P[C]} = \frac{(1/2)(1/2)}{1/2} = \frac{1}{2} \neq P[A]
\]
 \[\implies A \text{ and } C \text{ are NOT independent.}\]